
5.3. Free, Damped Motion 1

Section 5.3. Free, Damped Motion

Note. We now add the resistance of the medium to the simple harmonic motion

of the previous section. Such motion of a mass on a spring is called free, damped

motion. The DE of Section 5.1 becomes

mx′′ + ax′ + kx = 0

where a is the damping coefficient.

Note. We can rewrite the DE as

x′′ +
a

m
x′ +

k

m
x = 0.

Letting λ2 = k/m and 2b = a/m, we get x′′ + 2bx′ + λ2x = 0. The auxiliary

equation is m2 + 2bm + λ2 = 0 and the roots are

m =
−2b ±

√
4b2 − 4λ2

2
= −b ±

√

b2 − λ2.

Recall that we are concerned with whether the two roots are real, distinct (and

real), or in a complex conjugate pair. This depends on the sign of b2 − λ2. This

leads us to three cases.

Note. If b < λ, then we get damped, oscillatory motion (or underdamped motion).

The roots of the auxiliary equation are

−b +
√

λ2 − b2 i and − b −
√

λ2 − b2 i

and the solution to the DE is

x = e−bt
(

c1 sin
√

λ2 − b2t + c2 cos
√

λ2 − b2t
)

.
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As in Section 5.2, we may write this as

x = ce−bt cos
(√

λ2 − b2t + ϕ
)

where c =
√

c2
1 + c2

2, sin ϕ = −c1/
√

c2
1 + c2

2, and cos ϕ = c2/
√

c2
1 + c2

2. The factor

ce−bt is called the damping factor or time varying amplitude. Notice that as time

increases, this term approaches 0. This motion is not periodic, but the time between

successive positive maxima of x is called the quasi period and is 2π/
√

λ2 − b2. The

graph is:

The solution to the DE can be written

x = ce−(a/(2m))t cos

(√

k

m
−

a2

4m2
t + ϕ

)

.

Notice that the frequency of the trig function is
1

2π

√

k

m
−

a2

4m2
.

Note. If b = λ then we get critical damping. The roots of the auxiliary equation

are −b (repeated). So the general solution of the DE is

x = (c1 + c2)e
−bt.

In this case, the damping just exactly balances the force of the spring. This motion
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is said to be critically damped and is not oscillatory. The graph is this motion looks

like one to the following, depending on x′(0) and a:

In this case, any decrease in a will produce oscillatory motion.

Note. If b > λ then we get overcritical damping. The roots of the auxiliary

equation are the distinct real numbers

−b +
√

b2 − λ2 and − b −
√

b2 − λ2

and the solution to the DE is

x = c1e
(−b+

√
b2−λ2)t + c2e

(−b−
√

b2+λ2)t.

The graphs of the case of critical damping apply here as well, the difference is that

“small” changes in a will not produce oscillatory motion.
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Example. Page 208 Number 1. An 8-lb weight is attached to the lower end of a

coil spring suspended from the ceiling and comes to rest in its equilibrium position,

thereby stretching the spring 0.4 ft. The weight is then pulled down 6 in. below

its equilibrium position and released at t = 0. The resistance of the medium in

pounds is numerically equal to 2x′, where x′ is the instantaneous velocity in feet

per second.

(a) Set up the differential equation for the motion and list the initial conditions.

Solution. For the spring constant, we have F = kx, so

8 lb = x(0.4 ft), or k = 20 lb/ft.

The mass satisfies m = force/acceleration, so

m = 8 lb/32 ft/sec2 = 1/4 lb sec2/ft.

Notice a = 2 lb sec/ft, x(0) = 1/2 ft, and x′(0) = 0 ft/sec2. So the DE is

x′′ + 2b︸︷︷︸
a/m

x′ + λ2
︸︷︷︸

k/m

= 0 or x′′ +
2

1/4
x′ +

20

1/4
x = 0,

or, simplifying,

x′′ + 8x′ + 80x = 0.

(b) Solve the initial-value problem set up in part (a) to determine the displacement

of the weight as a function of the time.

Solution. The auxiliary equation is m2+8n+80 = 0 (here m is a dummy variable,

not mass). We find

m =
−(8) ±

√

(8)2 − 4(1)(80)

2(1)
=

−8 ±
√

256

2
= −4 ± 8i.
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The general solution of the DE is

x = e−4t(c1 sin 8t + c2 cos 8t).

Applying initial conditions x(0) = 1/2 ft and x′(0) = 0 ft/sec2, we find:

x = e−4t

(
1

4
sin 8t +

1

2
cos 8t

)

=

√
5

4
e−4t cos(8t − ϕ) where ϕ = cos−1(2/

√
5).

Revised: 3/4/2019


