Section 5.4. Forced Motion

Note. In this section we consider a special case of forced motion where the external force satisfies: $F(t)=F_{1} \cos \omega t$.

Note. We can rewrite the DE as

$$
m x^{\prime \prime}+a x^{\prime}+k x=F_{1} \cos \omega t .
$$

So

$$
x^{\prime \prime}+2 b x^{\prime}+\lambda^{2} x=E_{1} \cos \omega t,
$$

where $2 b=1 / m, \lambda^{2}=k / m$, and $E_{1}=F_{1} / m$. The complimentary function is (from Section 5.3)

$$
x_{c}=c e^{-b t} \cos \left(\sqrt{\lambda^{2}-b^{2}} t+\varphi\right) .
$$

By the method of underdetermined coefficients we get

$$
x_{p}=\frac{E_{1}}{\sqrt{\left(\lambda^{2}-\omega^{2}\right)^{2}+4 b^{2} \omega^{2}}} \cos (\omega t-\theta)
$$

where

$$
\cos \theta=\frac{\lambda^{2}-\omega^{2}}{\sqrt{\left(\lambda^{2}-\omega^{2}\right)^{2}+4 b^{2} \omega^{2}}} \text { and } \sin \theta=\frac{2 b \omega}{\sqrt{\left(\lambda^{2}-\omega^{2}\right)^{2}+4 b^{2} \omega^{2}}} .
$$

So

$$
x=c e^{-b t} \cos \left(\sqrt{\lambda^{2}-b^{2}} t+\varphi\right)+\frac{E_{1}}{\sqrt{\left(\lambda^{2}-\omega^{2}\right)^{2}+4 b^{2} \omega^{2}}} \cos (\omega t-\theta) .
$$

Notice that the first term rapidly approaches 0 as t increases. For this reason, the second term is called the steady state term.

