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Section 6.2. Solutions About Singular Points;

The Method of Frobenius

Note. We again consider the DE

a0(x)y′′ + a1(x)y′ + a2(x)y = 0.

This time we wish to find a solution defined “near” a singular point x0 where

a0(x0) = 0. For this, we give a classification of singular points.

Definition. With the notation established, let x0 be a singular point of the above

DE. If the functions






limx→x0
(x − x0)P1(x) if x = x0

(x − x0)P1(x) if x 6= x0

and






limx→x0
(x − x0)

2P2(x) if x = x0

(x − x0)
2P2(x) if x 6= x0

are both analytic at x0, then x0 is a regular singular point of the DE. If either of

these new functions is not analytic at x0, then x0 is an irregular singular point of

the DE.

Note. We follow the notation of Ross and denote the “new” functions as

(x − x0)P1(x) and (x − x0)P2(x), even though they are defined as

(x − x0)P1(x) =







limx→x0
(x − x0)P1(x) if x = x0

(x − x0)P1(x) if x 6= x0
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and

(x − x0)
2P2(x) =







limx→x0
(x − x0)

2P2(x) if x = x0

(x − x0)
2P2(x) if x 6= x0

Note. We can find series solutions about such singular points.

Theorem 6.2. Suppose x0 is a regular singular point of

a0(x)y′′ + a1(x)y′ + a2(x)y = 0.

Then the DE has at has at least one nontrivial solution of the form

|x − x0|
R

∞
∑

n=0

cn(x − x0)
n

where R is a (real or complex) constant which may be determined. This solution

is valid in some deleted interval 0 < |x − x0| < s where s > 0.

Note. We use the Method of Frobenius when we apply Theorem 6.2.

Example. Page 254 Number 11. Find solutions of

2x2y′′ − xy′ + (x − 5)y = 0

in some deleted interval 0 < x < R.

Solution. Notice that P1(x) = −x/(2x2) and P2(x) = (x − 5)/(2x2). Now with

x0 = 0, we have

xP1(x) =
−x2

2x2
=

−1

2
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x2P2(x) =
x2(x − 5)

2x2
=

x − 5

2

where we use the red = as described above. So both of these new functions are

analytic at x = 0. That is, x = 0 is a regular singular point. So assume

y = |x|R
∞

∑

n=0

cnx
n =

∞
∑

n=0

cnx
n+R

(ignoring the absolute value for now) is a solution. Then

y′ =

∞
∑

n=0

(n + R)cnx
n+R−1 and y′′ =

∞
∑

n=0

(n + R)(n + R − 1)cnx
n+R−2

Plugging these series into the DE gives

2

∞
∑

n=0

(n+R)(n+R−1)cnx
n+R−

∞
∑

n=0

(n+R)cnx
n+R+

∞
∑

n=0

cnx
n+R−1−5

∞
∑

n=0

cnx
n+R = 0.

Simplifying we get:

(2R(R−1)−R−5)c0x
R+

∞
∑

n=1

((2(n + R)(n + R − 1) − (n + R) − 5)cn + cn−1) xn+R = 0.

This means that

2R(R − 1) − R − 5 = 2R2 − 3R − 5 = (2R − 5)(R + 1) = 0 or R = −1, 5/2.

This is called the indicial equation. So we get the recurrence formula

cn =
−cn−1

2(n + R)(n + R − 1) − (n + R) − 5
for n ≥ 1.

With R = 5/2, the recurrence formula becomes:

cn =
−cn−1

n(2n + 7)
for n ≥ 1.

Notice that c0 is arbitrary, and we get

y = c0

(

x5/2 −
1

9
x7/2 +

1

198
x9/2 −

1

7722
x11/2 + · · ·

)

.
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If we use R = −1, we get

y = c0

(

x−1 +
1

5
+

1

30
x +

1

90
x2 + · · ·

)

.

Again c0 is arbitrary. So the general solution is:

y = k1

(

x5/2 −
1

9
x7/2 +

1

198
x9/2 −

1

7722
x11/2 + · · ·

)

+k2

(

x−1 +
1

5
+

1

30
x +

1

90
x2 + · · ·

)

= k1x
5/2

(

1 −
1

9
x +

1

198
x2 −

1

7722
x3 + · · ·

)

+k2x
−1

(

1 +
1

5
x +

1

30
x2 +

1

90
x3 + · · ·

)

.

Note. Notice that Theorem 6.2 guarantees at least one solution of a certain form.

This previous example had two solutions of that form. The following theorem

clarifies this a bit.

Theorem 6.3. Let x0 be a regular singular point of

a0(x)y′′ + a1(x)y′ + a2(x)y = 0.

Let R1 and R2 be the roots of the indicial equation (where R1 > R2 for R1 and R2

real). Then

1. If R1 − R2 6∈ {0, 1, 2, . . .} then the DE has two nontrivial independent solutions

y1 and y2 of the forms:

y1(x) = |x − x0|
R1

∞
∑

n=0

cn(x − x0) and y2(x) = |x − x0|
R2

∞
∑

n=0

c∗n(x − x0)
n

where c0 6= 0 and c∗0 6= 0.



6.2. Solutions About Singular Points 5

2. If R1 − R2 ∈ {1, 2, 3, . . .} then the DE has two nontrivial linearly independent

solutions y1 and y2 of the forms:

y1(x) = |x − x0|
R1

∞
∑

n=0

cn(x − x0) and

y2(x) = |x − x0|
R2

∞
∑

n=0

c∗n(x − x0)
n + cy1(x) ln |x − x0|

where c0 6= 0, c∗0 = 0, an dc is a constant (possibly 0).

3. If R1 = R2 then the DE has two nontrivial linearly independent solutions y1 and

y2 of the forms

y1(x) = |x − x0|
R1

∞
∑

n=0

cn(x − x0) and

y2(x) = |x − x0|
R1+1

∞
∑

n=0

c∗n(x − x0)
n + y1(x) ln |x − x0|

where c0 6= 0.

In each of these cases, the solutions are valid for 0 < |x− x0| < R for some R > 0.

Example. Page 270 Number 16. Find solutions of

x2y′′ + xy′ + (x2 − 1/4)y = 0

in some deleted interval 0 < x < R.

Solution. Notice that x0 = 0 is a regular singular point. So suppose y =
∑∞

n=0
cnx

n+R. Then calculating derivatives and plugging them into the DE gives

(

R(R − 1) + R −
1

4

)

c0x
R +

(

(1 + R)2 −
1

4

)

c1x
1+R
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+

∞
∑

n=2

((

(n + R)(n + R − 1) + (n + R) −
1

4

)

cn + cn−2

)

xn+R = 0.

So from the indicial equation:

R(R − 1) + R −
1

4
= 0 and R1 =

1

2
, R2 =

−1

2
.

Notice that R1 − R2 = 1 and Case 2 of Theorem 6.3 applies. Using R = 1/2, we

find that (as in the previous example):

y1(x) = c1x
1/2

(

1 −
x2

6
+

x5

120
− · · ·

)

.

Now, we hope that for R = −1/2, we get y2(x) =
∑∞

n=0
cn(x−x0)

n. If this leads to

a contradiction, we will have to use reduction of order using y1(x). With R = −1/2

we have c0 = c0, c1 = c1 (that is, c0 and c1 are arbitrary), and

cn =
−cn−2

n2 − n
for n ≥ 2.

We get

y2(x) = c0x
−1/2

(

1 −
x2

2
+

x4

24
− · · ·

)

+ c1x
1/2

(

1 −
x2

6
+

x5

120
− · · ·

)

.

Notice that the second part of y2(x) is y1(x). In fact, y2(x) is the general solution

of the given DE.

Note. The previous example illustrates the fact that when R1 − R2 is a positive

integer, it may be the case that the smaller root R2 may generate the general

solution. Therefore, it is a good habit to always use the smaller root first.
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