Section 6.2. Solutions About Singular Points; The Method of Frobenius

Note. We again consider the DE

$$
a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0 .
$$

This time we wish to find a solution defined "near" a singular point x_{0} where $a_{0}\left(x_{0}\right)=0$. For this, we give a classification of singular points.

Definition. With the notation established, let x_{0} be a singular point of the above DE. If the functions

$$
\left\{\begin{array}{cc}
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) P_{1}(x) & \text { if } x=x_{0} \\
\left(x-x_{0}\right) P_{1}(x) & \text { if } x \neq x_{0}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{cc}
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} P_{2}(x) & \text { if } x=x_{0} \\
\left(x-x_{0}\right)^{2} P_{2}(x) & \text { if } x \neq x_{0}
\end{array}\right.
$$

are both analytic at x_{0}, then x_{0} is a regular singular point of the DE . If either of these new functions is not analytic at x_{0}, then x_{0} is an irregular singular point of the DE.

Note. We follow the notation of Ross and denote the "new" functions as $\left(x-x_{0}\right) P_{1}(x)$ and $\left(x-x_{0}\right) P_{2}(x)$, even though they are defined as

$$
\left(x-x_{0}\right) P_{1}(x)=\left\{\begin{array}{cl}
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) P_{1}(x) & \text { if } x=x_{0} \\
\left(x-x_{0}\right) P_{1}(x) & \text { if } x \neq x_{0}
\end{array}\right.
$$

and

$$
\left(x-x_{0}\right)^{2} P_{2}(x)=\left\{\begin{array}{cc}
\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} P_{2}(x) & \text { if } x=x_{0} \\
\left(x-x_{0}\right)^{2} P_{2}(x) & \text { if } x \neq x_{0}
\end{array}\right.
$$

Note. We can find series solutions about such singular points.

Theorem 6.2. Suppose x_{0} is a regular singular point of

$$
a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0 .
$$

Then the DE has at has at least one nontrivial solution of the form

$$
\left|x-x_{0}\right|^{R} \sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}
$$

where R is a (real or complex) constant which may be determined. This solution is valid in some deleted interval $0<\left|x-x_{0}\right|<s$ where $s>0$.

Note. We use the Method of Frobenius when we apply Theorem 6.2.

Example. Page 254 Number 11. Find solutions of

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+(x-5) y=0
$$

in some deleted interval $0<x<R$.

Solution. Notice that $P_{1}(x)=-x /\left(2 x^{2}\right)$ and $P_{2}(x)=(x-5) /\left(2 x^{2}\right)$. Now with $x_{0}=0$, we have

$$
x P_{1}(x)=\frac{-x^{2}}{2 x^{2}}=\frac{-1}{2}
$$

$$
x^{2} P_{2}(x)=\frac{x^{2}(x-5)}{2 x^{2}}=\frac{x-5}{2}
$$

where we use the red $=$ as described above. So both of these new functions are analytic at $x=0$. That is, $x=0$ is a regular singular point. So assume

$$
y=|x|^{R} \sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} c_{n} x^{n+R}
$$

(ignoring the absolute value for now) is a solution. Then

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+R) c_{n} x^{n+R-1} \text { and } y^{\prime \prime}=\sum_{n=0}^{\infty}(n+R)(n+R-1) c_{n} x^{n+R-2}
$$

Plugging these series into the DE gives

$$
2 \sum_{n=0}^{\infty}(n+R)(n+R-1) c_{n} x^{n+R}-\sum_{n=0}^{\infty}(n+R) c_{n} x^{n+R}+\sum_{n=0}^{\infty} c_{n} x^{n+R-1}-5 \sum_{n=0}^{\infty} c_{n} x^{n+R}=0 .
$$

Simplifying we get:

$$
(2 R(R-1)-R-5) c_{0} x^{R}+\sum_{n=1}^{\infty}\left((2(n+R)(n+R-1)-(n+R)-5) c_{n}+c_{n-1}\right) x^{n+R}=0
$$

This means that

$$
2 R(R-1)-R-5=2 R^{2}-3 R-5=(2 R-5)(R+1)=0 \text { or } R=-1,5 / 2 .
$$

This is called the indicial equation. So we get the recurrence formula

$$
c_{n}=\frac{-c_{n-1}}{2(n+R)(n+R-1)-(n+R)-5} \text { for } n \geq 1
$$

With $R=5 / 2$, the recurrence formula becomes:

$$
c_{n}=\frac{-c_{n-1}}{n(2 n+7)} \text { for } n \geq 1
$$

Notice that c_{0} is arbitrary, and we get

$$
y=c_{0}\left(x^{5 / 2}-\frac{1}{9} x^{7 / 2}+\frac{1}{198} x^{9 / 2}-\frac{1}{7722} x^{11 / 2}+\cdots\right) .
$$

If we use $R=-1$, we get

$$
y=c_{0}\left(x^{-1}+\frac{1}{5}+\frac{1}{30} x+\frac{1}{90} x^{2}+\cdots\right)
$$

Again c_{0} is arbitrary. So the general solution is:

$$
\begin{aligned}
& y=k_{1}\left(x^{5 / 2}-\frac{1}{9} x^{7 / 2}+\frac{1}{198} x^{9 / 2}-\frac{1}{7722} x^{11 / 2}+\cdots\right)+k_{2}\left(x^{-1}+\frac{1}{5}+\frac{1}{30} x+\frac{1}{90} x^{2}+\cdots\right) \\
& =k_{1} x^{5 / 2}\left(1-\frac{1}{9} x+\frac{1}{198} x^{2}-\frac{1}{7722} x^{3}+\cdots\right)+k_{2} x^{-1}\left(1+\frac{1}{5} x+\frac{1}{30} x^{2}+\frac{1}{90} x^{3}+\cdots\right)
\end{aligned}
$$

Note. Notice that Theorem 6.2 guarantees at least one solution of a certain form. This previous example had two solutions of that form. The following theorem clarifies this a bit.

Theorem 6.3. Let x_{0} be a regular singular point of

$$
a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0
$$

Let R_{1} and R_{2} be the roots of the indicial equation (where $R_{1}>R_{2}$ for R_{1} and R_{2} real). Then

1. If $R_{1}-R_{2} \notin\{0,1,2, \ldots\}$ then the DE has two nontrivial independent solutions y_{1} and y_{2} of the forms:

$$
y_{1}(x)=\left|x-x_{0}\right|^{R_{1}} \sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right) \text { and } y_{2}(x)=\left|x-x_{0}\right|^{R_{2}} \sum_{n=0}^{\infty} c_{n}^{*}\left(x-x_{0}\right)^{n}
$$

where $c_{0} \neq 0$ and $c_{0}^{*} \neq 0$.
2. If $R_{1}-R_{2} \in\{1,2,3, \ldots\}$ then the DE has two nontrivial linearly independent solutions y_{1} and y_{2} of the forms:

$$
\begin{gathered}
y_{1}(x)=\left|x-x_{0}\right|^{R_{1}} \sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right) \text { and } \\
y_{2}(x)=\left|x-x_{0}\right|^{R_{2}} \sum_{n=0}^{\infty} c_{n}^{*}\left(x-x_{0}\right)^{n}+c y_{1}(x) \ln \left|x-x_{0}\right|
\end{gathered}
$$

where $c_{0} \neq 0, c_{0}^{*}=0$, an $\mathrm{d} c$ is a constant (possibly 0).
3. If $R_{1}=R_{2}$ then the DE has two nontrivial linearly independent solutions y_{1} and y_{2} of the forms

$$
\begin{gathered}
y_{1}(x)=\left|x-x_{0}\right|^{R_{1}} \sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right) \text { and } \\
y_{2}(x)=\left|x-x_{0}\right|^{R_{1}+1} \sum_{n=0}^{\infty} c_{n}^{*}\left(x-x_{0}\right)^{n}+y_{1}(x) \ln \left|x-x_{0}\right|
\end{gathered}
$$

where $c_{0} \neq 0$.
In each of these cases, the solutions are valid for $0<\left|x-x_{0}\right|<R$ for some $R>0$.

Example. Page 270 Number 16. Find solutions of

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0
$$

in some deleted interval $0<x<R$.

Solution. Notice that $x_{0}=0$ is a regular singular point. So suppose $y=$ $\sum_{n=0}^{\infty} c_{n} x^{n+R}$. Then calculating derivatives and plugging them into the DE gives

$$
\left(R(R-1)+R-\frac{1}{4}\right) c_{0} x^{R}+\left((1+R)^{2}-\frac{1}{4}\right) c_{1} x^{1+R}
$$

$$
+\sum_{n=2}^{\infty}\left(\left((n+R)(n+R-1)+(n+R)-\frac{1}{4}\right) c_{n}+c_{n-2}\right) x^{n+R}=0
$$

So from the indicial equation:

$$
R(R-1)+R-\frac{1}{4}=0 \text { and } R_{1}=\frac{1}{2}, R_{2}=\frac{-1}{2} .
$$

Notice that $R_{1}-R_{2}=1$ and Case 2 of Theorem 6.3 applies. Using $R=1 / 2$, we find that (as in the previous example):

$$
y_{1}(x)=c_{1} x^{1 / 2}\left(1-\frac{x^{2}}{6}+\frac{x^{5}}{120}-\cdots\right) .
$$

Now, we hope that for $R=-1 / 2$, we get $y_{2}(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$. If this leads to a contradiction, we will have to use reduction of order using $y_{1}(x)$. With $R=-1 / 2$ we have $c_{0}=c_{0}, c_{1}=c_{1}$ (that is, c_{0} and c_{1} are arbitrary), and

$$
c_{n}=\frac{-c_{n-2}}{n^{2}-n} \text { for } n \geq 2 \text {. }
$$

We get

$$
y_{2}(x)=c_{0} x^{-1 / 2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\cdots\right)+c_{1} x^{1 / 2}\left(1-\frac{x^{2}}{6}+\frac{x^{5}}{120}-\cdots\right) .
$$

Notice that the second part of $y_{2}(x)$ is $y_{1}(x)$. In fact, $y_{2}(x)$ is the general solution of the given DE .

Note. The previous example illustrates the fact that when $R_{1}-R_{2}$ is a positive integer, it may be the case that the smaller root R_{2} may generate the general solution. Therefore, it is a good habit to always use the smaller root first.

