Introduction to Functional Analysis

Chapter 1. Linear Spaces and Operators
1.3. Linear Operators—Proofs of Theorems
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Theorem 1.3.A

Theorem 1.3.A. Linear operator T : X — Z is injective if and only if
N(T)=0.
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Theorem 1.3.A

Theorem 1.3.A. Linear operator T : X — Z is injective if and only if
N(T)=0.

Proof. Suppose N(T)=0and Tx=Ty. Then0=Tx— Ty = T(x — y)
since T is linear. So x —y € N(T) and so x —y = 0. Hence x = y. That
is, T is injective as claimed.

Suppose T is injective (that is, Tx = Ty implies x = y). We know that
T(0)=0,soif ze€ N(T) then Tz= T(0) =0 and so z = 0. Hence
N(T) =0, as claimed. O
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Theorem 1.3.B

Theorem 1.3.B. Let T : X — Z be linear with N(T7) = 0. Then
T1:R(T)— X is linear.
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Theorem 1.3.B

Theorem 1.3.B. Let T : X — Z be linear with N(T7) = 0. Then
T1:R(T)— X is linear.

Proof. Let z;,z, € R(T). Say z; = Tx; and zo = Txy. Then for
a,B€F, azi =aT(x1) = T(axy) and Bz = fT(x2) = T(fx2) since T
is linear. So
az1 + Bz = T(ax)) + T(Bx2) = T(ax1 + Bxz)
and hence
T_l(azl + Bz) = axy + Bxo = aT_l(zl) + ﬁT_l(zz).

So T 1is linear. ]
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