## Introduction to Functional Analysis

#### **Chapter 1. Linear Spaces and Operators** 1.3. Linear Operators—Proofs of Theorems



## Table of contents







# **Theorem 1.3.A.** Linear operator $T : X \to Z$ is injective if and only if N(T) = 0.

**Proof.** Suppose N(T) = 0 and Tx = Ty. Then 0 = Tx - Ty = T(x - y) since T is linear. So  $x - y \in N(T)$  and so x - y = 0. Hence x = y. That is, T is injective as claimed.

Suppose T is injective (that is, Tx = Ty implies x = y). We know that T(0) = 0, so if  $z \in N(T)$  then Tz = T(0) = 0 and so z = 0. Hence N(T) = 0, as claimed.

**Theorem 1.3.A.** Linear operator  $T : X \to Z$  is injective if and only if N(T) = 0.

**Proof.** Suppose N(T) = 0 and Tx = Ty. Then 0 = Tx - Ty = T(x - y) since T is linear. So  $x - y \in N(T)$  and so x - y = 0. Hence x = y. That is, T is injective as claimed.

Suppose T is injective (that is, Tx = Ty implies x = y). We know that T(0) = 0, so if  $z \in N(T)$  then Tz = T(0) = 0 and so z = 0. Hence N(T) = 0, as claimed.

### Theorem 1.3.B

**Theorem 1.3.B.** Let  $T : X \to Z$  be linear with N(T) = 0. Then  $T^{-1} : R(T) \to X$  is linear.

**Proof.** Let  $z_1, z_2 \in R(T)$ . Say  $z_1 = Tx_1$  and  $z_2 = Tx_2$ . Then for  $\alpha, \beta \in \mathbb{F}, \alpha z_1 = \alpha T(x_1) = T(\alpha x_1)$  and  $\beta z_2 = \beta T(x_2) = T(\beta x_2)$  since T is linear. So

$$\alpha z_1 + \beta z_2 = T(\alpha x_1) + T(\beta x_2) = T(\alpha x_1 + \beta x_2)$$

and hence

$$T^{-1}(\alpha z_1 + \beta z_2) = \alpha x_1 + \beta x_2 = \alpha T^{-1}(z_1) + \beta T^{-1}(z_2).$$

So  $T^{-1}$  is linear.

### Theorem 1.3.B

**Theorem 1.3.B.** Let  $T : X \to Z$  be linear with N(T) = 0. Then  $T^{-1} : R(T) \to X$  is linear.

**Proof.** Let  $z_1, z_2 \in R(T)$ . Say  $z_1 = Tx_1$  and  $z_2 = Tx_2$ . Then for  $\alpha, \beta \in \mathbb{F}, \alpha z_1 = \alpha T(x_1) = T(\alpha x_1)$  and  $\beta z_2 = \beta T(x_2) = T(\beta x_2)$  since T is linear. So

$$\alpha z_1 + \beta z_2 = T(\alpha x_1) + T(\beta x_2) = T(\alpha x_1 + \beta x_2)$$

and hence

$$T^{-1}(\alpha z_1 + \beta z_2) = \alpha x_1 + \beta x_2 = \alpha T^{-1}(z_1) + \beta T^{-1}(z_2).$$

So  $T^{-1}$  is linear.