Introduction to Functional Analysis

Chapter 1. Linear Spaces and Operators 1.3. Linear Operators—Proofs of Theorems

Table of contents

Theorem 1.3.A. Linear operator $T : X \rightarrow Z$ is injective if and only if $N(T) = 0.$

Proof. Suppose $N(T) = 0$ and $Tx = Ty$. Then $0 = Tx - Ty = T(x - y)$ since T is linear. So $x - y \in N(T)$ and so $x - y = 0$. Hence $x = y$. That is, T is injective as claimed.

Suppose T is injective (that is, $Tx = Ty$ implies $x = y$). We know that $T(0) = 0$, so if $z \in N(T)$ then $Tz = T(0) = 0$ and so $z = 0$. Hence $N(T) = 0$, as claimed.

Theorem 1.3.A. Linear operator $T : X \rightarrow Z$ is injective if and only if $N(T) = 0.$

Proof. Suppose $N(T) = 0$ and $Tx = Ty$. Then $0 = Tx - Ty = T(x - y)$ since T is linear. So $x - y \in N(T)$ and so $x - y = 0$. Hence $x = y$. That is, T is injective as claimed.

Suppose T is injective (that is, $Tx = Ty$ implies $x = y$). We know that $T(0) = 0$, so if $z \in N(T)$ then $Tz = T(0) = 0$ and so $z = 0$. Hence $N(T) = 0$, as claimed.

Theorem 1.3.B

Theorem 1.3.B. Let $T: X \rightarrow Z$ be linear with $N(T) = 0$. Then $\mathcal{T}^{-1}: R(\mathcal{T}) \rightarrow X$ is linear.

Proof. Let $z_1, z_2 \in R(T)$. Say $z_1 = Tx_1$ and $z_2 = Tx_2$. Then for $\alpha, \beta \in \mathbb{F}$, $\alpha z_1 = \alpha \mathcal{T}(x_1) = \mathcal{T}(\alpha x_1)$ and $\beta z_2 = \beta \mathcal{T}(x_2) = \mathcal{T}(\beta x_2)$ since \mathcal{T} is linear. So

$$
\alpha z_1 + \beta z_2 = \mathcal{T}(\alpha x_1) + \mathcal{T}(\beta x_2) = \mathcal{T}(\alpha x_1 + \beta x_2)
$$

and hence

$$
T^{-1}(\alpha z_1 + \beta z_2) = \alpha x_1 + \beta x_2 = \alpha T^{-1}(z_1) + \beta T^{-1}(z_2).
$$

So T^{-1} is linear.

Theorem 1.3.B

Theorem 1.3.B. Let $T: X \rightarrow Z$ be linear with $N(T) = 0$. Then $\mathcal{T}^{-1}: R(\mathcal{T}) \rightarrow X$ is linear.

Proof. Let $z_1, z_2 \in R(T)$. Say $z_1 = Tx_1$ and $z_2 = Tx_2$. Then for $\alpha, \beta \in \mathbb{F}$, $\alpha z_1 = \alpha \mathcal{T}(x_1) = \mathcal{T}(\alpha x_1)$ and $\beta z_2 = \beta \mathcal{T}(x_2) = \mathcal{T}(\beta x_2)$ since \mathcal{T} is linear. So

$$
\alpha z_1 + \beta z_2 = \mathcal{T}(\alpha x_1) + \mathcal{T}(\beta x_2) = \mathcal{T}(\alpha x_1 + \beta x_2)
$$

and hence

$$
T^{-1}(\alpha z_1 + \beta z_2) = \alpha x_1 + \beta x_2 = \alpha T^{-1}(z_1) + \beta T^{-1}(z_2).
$$

So \mathcal{T}^{-1} is linear.