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Theorem 2.3. Continuity of Operations

Theorem 2.3. Continuity of Operations

Theorem 2.3. Continuity of Operations.
Suppose that (xn) and (yn) are sequences in a normed linear space, and
(αn) is a sequence in F, and that x = lim(xn), y = lim(yn), and
α = lim(αn). Then

(a) lim(xn + yn) = lim(xn) + lim(yn) = x + y .

(b) lim(αnxn) = lim(αn) lim(xn) = αx .

(c) lim ‖xn‖ = ‖x‖.
The proofs of (a) and (c) are to be given in Exercise 2.2.
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Theorem 2.3. Continuity of Operations

Theorem 2.3 (continued)

Proof. (b) Since (αn) is convergent, it is bounded (a standard result from
senior level Analysis 1; see Theorem 2.3 in my online notes for Analysis 1
on Section 2.1. Sequences of Real Numbers) and there is K ∈ R+ such
that |αn| ≤ K for all n.

By hypothesis, lim ‖xn − x‖ = 0 and lim |αn − α| = 0. So

lim ‖αnxn − αx‖ = lim ‖αnxn − αnx + αnx − αx‖
≤ lim ‖αnxn − αnx‖+ lim ‖αnx − αx‖

by the Triangle Inequality

= lim |αn|‖xn − x‖+ lim ‖x‖|αn − α|
by the Scalar Property

≤ K lim ‖xn − x‖+ ‖x‖ lim |αn − α| = 0.

So lim(αnxn) = αx .
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Proposition 2.5

Proposition 2.5.

(i) B(x ; r) is open where r > 0.
(ii) The closure of B(x ; r) is B(x ; r).

Proof. (i) Let y ∈ B(x ; r). Then ‖y − x‖ < r , and so there is positive s
with s < r − ‖x − y‖:

If ‖z − y‖ < s then

‖z − x‖ = ‖z − y + y − x‖ ≤ ‖z − y‖+ ‖y − x‖ < s + (r − s) = r .

So B(y ; s) ⊆ B(x ; r) and y is an interior point of B(x ; r). Therefore
B(x ; r) is open.
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Proposition 2.5

Proposition 2.5 (continued 1)

Proposition 2.5.

(i) B(x ; r) is open where r > 0.

(ii) The closure of B(x ; r) is B(x ; r).

Proof (continued). (ii) Let (zn) be a sequence in B(x ; r) that converges
to z (so z is a limit point of B(x ; r)). Then the sequence (zn − x)
converges to z − x . By continuity of the norm (Theorem 2.3(c)), we have
‖z − x‖ ≤ r (since ‖zn − x‖ ≤ r for all n ∈ N); that is, z ∈ B(x ; r) and
B(x ; r) contains its limit points. So by Note 2.2.B, B(x ; r) is closed.
Hence, by the definition of closure of a set, B(x ; r) contains the closure of
B(x ; r).
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Proposition 2.5

Proposition 2.5 (continued 2)

Proposition 2.5.

(i) B(x ; r) is open where r > 0.

(ii) The closure of B(x ; r) is B(x ; r).

Proof (continued). Conversely, if ‖y − x‖ = r then define the sequence
yn = x + (1− 1

n )(y − x). Then

‖yn − x‖ = ‖(1− 1/n)(y − x)‖ = |1− 1/n|‖y − x‖ < ‖y − x‖ = r ,

and so yn ∈ B(x ; r). Moreover, by the continuity of addition and scalar
multiplication (Theorem 2.3(a) and (b)) we have

lim(yn) = lim(x + (1− 1/n)(y − x)) = x + (y − x) = y .

So by Theorem 2.2.A(iii), y is in the closure of B(x ; r) and hence the
closure of B(x ; r) contains B(x ; r). Therefore the closure of B(x ; r) is
B(x ; r), as claimed.

() Introduction to Functional Analysis May 10, 2021 7 / 8



Theorem 2.2.B. The Compact Set Theorem

Theorem 2.2.B. The Compact Set Theorem

Theorem 2.2.B. The Compact Set Theorem If K ⊆ X , X a normed
linear space, is compact then K is closed and bounded.

Proof. Suppose K is not bounded. Fix a ∈ X . Then for each n ∈ N,
B(a; n)c contains some kn ∈ K . Then sequence (kn) diverges “to infinity”
(recall that convergent sequences are bounded), and so by (ii) of the
definition of “compact,” K is not compact, a contradiction. So the
assumption that K is not bounded is false, and hence K is bounded.

Next, let x ∈ K and suppose K is compact. Then by Theorem 2.2.A(iii),
there is a sequence (xn) ⊆ K such that (xn) → x . By the definition of
“compact” part (ii) there is a subsequence (xnk

) of (xn) which converges
to a point in K . But (xnk

) must converge to x since a subsequence of a
convergent sequence has the same limit as the sequence itself. Therefore
x ∈ K . So K = K and K is closed.
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