Introduction to Functional Analysis

Chapter 2. Normed Linear Spaces: The Basics
2.2. Norms—Proofs of Theorems
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Theorem 2.3. Continuity of Operations

Theorem 2.3. Continuity of Operations

Theorem 2.3. Continuity of Operations.
Suppose that (x,) and (y,) are sequences in a normed linear space, and
(aun) is a sequence in I, and that x = lim(x,), y = lim(y,), and
a = lim(a;,). Then
(a) lim(xy + yn) = lim(x,) + lim(yn) = x+y.
(b) lim(anxs) = lim(ap) lim(x,) = ax.
(c) lim [[xal| = [|x[|.

The proofs of (a) and (c) are to be given in Exercise 2.2.
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Theorem 2.3 (continued)

Proof. (b) Since («,) is convergent, it is bounded (a standard result from
senior level Analysis 1; see Theorem 2.3 in my online notes for Analysis 1
on Section 2.1. Sequences of Real Numbers) and there is K € R™ such

that |a,| < K for all n.
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Theorem 2.3 (continued)

Proof. (b) Since («,) is convergent, it is bounded (a standard result from
senior level Analysis 1; see Theorem 2.3 in my online notes for Analysis 1
on Section 2.1. Sequences of Real Numbers) and there is K € R™ such
that |a,| < K for all n.

By hypothesis, lim||x, — x|| = 0 and lim |, — | = 0. So
lim||anx, —ax|| = lim|apxn — anx + apx — ax||

< lim ||apxn — anpx]|| + lim [Ja,x — ax]||

by the Triangle Inequality

lim |oun||xn — x|| + lim || x]||cn —

by the Scalar Property

IN

Klim || x, — x|| + [| x| lim |oty — | = 0.

So lim(apxn) = ax. O
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Proposition 2.5
Proposition 2.5.

(i) B(x;r) is open where r > 0.
(i) The closure of B(x; r) is B(x; r).
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Proposition 2.5

Proposition 2.5.

(i) B(x;r) is open where r > 0.
(i) The closure of B(x; r) is B(x; r).

Proof. (i) Let y € B(x;r). Then ||y — x|| < r, and so there is positive s
with s < r —||x — y|:
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Proposition 2.5

Proposition 2.5

Proposition 2.5.
(i) B(x;r) is open where r > 0.

(i) The closure of B(x;r) is B(x;r).
Proof. (i) Let y € B(x;r). Then ||y — x|| < r, and so there is positive s

with s < r —||x — y|:
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If |z —y|| < s then
lz=xl=llz=y+y—x|<[z=yll+ ]y —=xl]| <s+(r—s)=r.
So B(y;s) C B(x;r) and y is an interior point of B(x; r). Therefore
[

B(x; r) is open.
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Proposition 2.5 (continued 1)

Proposition 2.5.
(i) B(x;r) is open where r > 0.
(i) The closure of B(x;r) is B(x;r).

Proof (continued). (ii) Let (z,) be a sequence in B(x; r) that converges
to z (so z is a limit point of B(x; r)). Then the sequence (z, — x)
converges to z — x. By continuity of the norm (Theorem 2.3(c)), we have
|z — x|| < r (since ||z, — x|| < r for all n € N); that is, z € B(x; r) and
B(x; r) contains its limit points. So by Note 2.2.B, B(x; r) is closed.
Hence, by the definition of closure of a set, §(X; r) contains the closure of
B(x;r).
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Proposition 2.5 (continued 2)

Proposition 2.5.
(i) B(x;r) is open where r > 0.
(i) The closure of B(x; r) is B(x;r).

Proof (continued). Conversely, if ||y — x|| = r then define the sequence
Yo =x+(1—1%)(y —x). Then

lyn =Xl = I(L =1/m)(y =)l = 1 = 1/nllly = x| < [ly = x| = r,

and so y, € B(x; r). Moreover, by the continuity of addition and scalar
multiplication (Theorem 2.3(a) and (b)) we have

lim(yn) =lim(x+ (1=1/n)(y = x))=x+(y —x) =y.

So by Theorem 2.2.A(iii), y is in the closure of B(x;r) and hence the
closure of B(x; r) contains B(x; r). Therefore the closure of B(x; r) is

B(x; r), as claimed. O
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Theorem 2.2.B. The Compact Set Theorem

Theorem 2.2.B. The Compact Set Theorem If K C X, X a normed
linear space, is compact then K is closed and bounded.
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Theorem 2.2.B. The Compact Set Theorem

Theorem 2.2.B. The Compact Set Theorem If K C X, X a normed
linear space, is compact then K is closed and bounded.

Proof. Suppose K is not bounded. Fix a € X. Then for each n € N,
B(a; n)¢ contains some k, € K. Then sequence (k,) diverges “to infinity”
(recall that convergent sequences are bounded), and so by (ii) of the
definition of “compact,” K is not compact, a contradiction. So the
assumption that K is not bounded is false, and hence K is bounded.
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Theorem 2.2.B. The Compact Set Theorem

Theorem 2.2.B. The Compact Set Theorem If K C X, X a normed
linear space, is compact then K is closed and bounded.

Proof. Suppose K is not bounded. Fix a € X. Then for each n € N,
B(a; n)¢ contains some k, € K. Then sequence (k,) diverges “to infinity”
(recall that convergent sequences are bounded), and so by (ii) of the
definition of “compact,” K is not compact, a contradiction. So the
assumption that K is not bounded is false, and hence K is bounded.

Next, let x € K and suppose K is compact. Then by Theorem 2.2.A(jii),
there is a sequence (x,) C K such that (x,) — x. By the definition of
“compact” part (ii) there is a subsequence (xy,) of (x,) which converges
to a point in K. But (x,, ) must converge to x since a subsequence of a
convergent sequence has the same limit as the sequence itself. Therefore
x € K. So K=K and K is closed. O
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