Introduction to Functional Analysis

Chapter 2. Normed Linear Spaces: The Basics 2.2. Norms—Proofs of Theorems

Theorem 2.3. Continuity of Operations

Proposition 2.5

Theorem 2.3. Continuity of Operations

Theorem 2.3. Continuity of Operations.

Suppose that (x_n) and (y_n) are sequences in a normed linear space, and (α_n) is a sequence in \mathbb{F} , and that $x = \lim(x_n)$, $y = \lim(y_n)$, and $\alpha = \lim(\alpha_n)$. Then

(a)
$$\lim(x_n + y_n) = \lim(x_n) + \lim(y_n) = x + y$$
.
(b) $\lim(\alpha_n x_n) = \lim(\alpha_n) \lim(x_n) = \alpha x$.
(c) $\lim ||x_n|| = ||x||$.

The proofs of (a) and (c) are to be given in Exercise 2.2.

Theorem 2.3 (continued)

Proof. (b) Since (α_n) is convergent, it is bounded (a standard result from senior level Analysis 1; see Theorem 2.3 in my online notes for Analysis 1 on Section 2.1. Sequences of Real Numbers) and there is $K \in \mathbb{R}^+$ such that $|\alpha_n| \leq K$ for all n.

By hypothesis, $\lim ||x_n - x|| = 0$ and $\lim |\alpha_n - \alpha| = 0$. So

$$\begin{aligned} \lim \|\alpha_n x_n - \alpha x\| &= \lim \|\alpha_n x_n - \alpha_n x + \alpha_n x - \alpha x\| \\ &\leq \lim \|\alpha_n x_n - \alpha_n x\| + \lim \|\alpha_n x - \alpha x\| \\ & \text{ by the Triangle Inequality} \end{aligned}$$
$$= \lim |\alpha_n| \|x_n - x\| + \lim \|x\| |\alpha_n - \alpha| \\ & \text{ by the Scalar Property} \end{aligned}$$
$$\leq K \lim \|x_n - x\| + \|x\| \lim |\alpha_n - \alpha| = 0$$

So $\lim(\alpha_n x_n) = \alpha x$.

Theorem 2.3 (continued)

Proof. (b) Since (α_n) is convergent, it is bounded (a standard result from senior level Analysis 1; see Theorem 2.3 in my online notes for Analysis 1 on Section 2.1. Sequences of Real Numbers) and there is $K \in \mathbb{R}^+$ such that $|\alpha_n| \leq K$ for all n.

By hypothesis, $\lim ||x_n - x|| = 0$ and $\lim |\alpha_n - \alpha| = 0$. So

$$\begin{aligned} \lim \|\alpha_n x_n - \alpha x\| &= \lim \|\alpha_n x_n - \alpha_n x + \alpha_n x - \alpha x\| \\ &\leq \lim \|\alpha_n x_n - \alpha_n x\| + \lim \|\alpha_n x - \alpha x\| \\ & \text{ by the Triangle Inequality} \end{aligned}$$
$$= \lim |\alpha_n| \|x_n - x\| + \lim \|x\| |\alpha_n - \alpha| \\ & \text{ by the Scalar Property} \end{aligned}$$
$$\leq K \lim \|x_n - x\| + \|x\| \lim |\alpha_n - \alpha| = 0$$

So $\lim(\alpha_n x_n) = \alpha x$.

Proposition 2.5

Proposition 2.5.

- (i) B(x; r) is open where r > 0.
- (ii) The closure of B(x; r) is $\overline{B}(x; r)$.

Proof. (i) Let $y \in B(x; r)$. Then ||y - x|| < r, and so there is positive *s* with s < r - ||x - y||:

Proposition 2.5

Proposition 2.5.

- (i) B(x; r) is open where r > 0.
- (ii) The closure of B(x; r) is $\overline{B}(x; r)$.

Proof. (i) Let $y \in B(x; r)$. Then ||y - x|| < r, and so there is positive s with s < r - ||x - y||:

If ||z - y|| < s then

 $||z - x|| = ||z - y + y - x|| \le ||z - y|| + ||y - x|| < s + (r - s) = r.$

So $B(y; s) \subseteq B(x; r)$ and y is an interior point of B(x; r). Therefore B(x; r) is open.

Proposition 2.5

Proposition 2.5.

- (i) B(x; r) is open where r > 0.
- (ii) The closure of B(x; r) is $\overline{B}(x; r)$.

Proof. (i) Let $y \in B(x; r)$. Then ||y - x|| < r, and so there is positive s with s < r - ||x - y||:

If ||z - y|| < s then

 $||z - x|| = ||z - y + y - x|| \le ||z - y|| + ||y - x|| < s + (r - s) = r.$

So $B(y; s) \subseteq B(x; r)$ and y is an interior point of B(x; r). Therefore B(x; r) is open.

Proposition 2.5 (continued 1)

Proposition 2.5.

- (i) B(x; r) is open where r > 0.
- (ii) The closure of B(x; r) is $\overline{B}(x; r)$.

Proof (continued). (ii) Let (z_n) be a sequence in $\overline{B}(x; r)$ that converges to z (so z is a limit point of $\overline{B}(x; r)$). Then the sequence $(z_n - x)$ converges to z - x. By continuity of the norm (Theorem 2.3(c)), we have $||z - x|| \le r$ (since $||z_n - x|| \le r$ for all $n \in \mathbb{N}$); that is, $z \in \overline{B}(x; r)$ and $\overline{B}(x; r)$ contains its limit points. So by Note 2.2.B, $\overline{B}(x; r)$ is closed. Hence, by the definition of closure of a set, $\overline{B}(x; r)$ contains the closure of B(x; r).

Proposition 2.5 (continued 2)

Proposition 2.5.

(i) *B*(*x*; *r*) is open where *r* > 0.
(ii) The closure of *B*(*x*; *r*) is *B*(*x*; *r*).

Proof (continued). Conversely, if ||y - x|| = r then define the sequence $y_n = x + (1 - \frac{1}{n})(y - x)$. Then

$$||y_n - x|| = ||(1 - 1/n)(y - x)|| = |1 - 1/n|||y - x|| < ||y - x|| = r,$$

and so $y_n \in B(x; r)$. Moreover, by the continuity of addition and scalar multiplication (Theorem 2.3(a) and (b)) we have

$$\lim(y_n) = \lim(x + (1 - 1/n)(y - x)) = x + (y - x) = y.$$

So by Theorem 2.2.A(iii), y is in the closure of B(x; r) and hence the closure of B(x; r) contains $\overline{B}(x; r)$. Therefore the closure of B(x; r) is $\overline{B}(x; r)$, as claimed.

Theorem 2.2.B. The Compact Set Theorem

Theorem 2.2.B. The Compact Set Theorem If $K \subseteq X$, X a normed linear space, is compact then K is closed and bounded.

Proof. Suppose K is not bounded. Fix $a \in X$. Then for each $n \in \mathbb{N}$, $B(a; n)^c$ contains some $k_n \in K$. Then sequence (k_n) diverges "to infinity" (recall that convergent sequences are bounded), and so by (ii) of the definition of "compact," K is not compact, a contradiction. So the assumption that K is not bounded is false, and hence K is bounded.

Theorem 2.2.B. The Compact Set Theorem

Theorem 2.2.B. The Compact Set Theorem If $K \subseteq X$, X a normed linear space, is compact then K is closed and bounded.

Proof. Suppose K is not bounded. Fix $a \in X$. Then for each $n \in \mathbb{N}$, $B(a; n)^c$ contains some $k_n \in K$. Then sequence (k_n) diverges "to infinity" (recall that convergent sequences are bounded), and so by (ii) of the definition of "compact," K is not compact, a contradiction. So the assumption that K is not bounded is false, and hence K is bounded.

Next, let $x \in \overline{K}$ and suppose K is compact. Then by Theorem 2.2.A(iii), there is a sequence $(x_n) \subseteq K$ such that $(x_n) \to x$. By the definition of "compact" part (ii) there is a subsequence (x_{n_k}) of (x_n) which converges to a point in K. But (x_{n_k}) must converge to x since a subsequence of a convergent sequence has the same limit as the sequence itself. Therefore $x \in K$. So $K = \overline{K}$ and K is closed.

Theorem 2.2.B. The Compact Set Theorem

Theorem 2.2.B. The Compact Set Theorem If $K \subseteq X$, X a normed linear space, is compact then K is closed and bounded.

Proof. Suppose K is not bounded. Fix $a \in X$. Then for each $n \in \mathbb{N}$, $B(a; n)^c$ contains some $k_n \in K$. Then sequence (k_n) diverges "to infinity" (recall that convergent sequences are bounded), and so by (ii) of the definition of "compact," K is not compact, a contradiction. So the assumption that K is not bounded is false, and hence K is bounded.

Next, let $x \in \overline{K}$ and suppose K is compact. Then by Theorem 2.2.A(iii), there is a sequence $(x_n) \subseteq K$ such that $(x_n) \to x$. By the definition of "compact" part (ii) there is a subsequence (x_{n_k}) of (x_n) which converges to a point in K. But (x_{n_k}) must converge to x since a subsequence of a convergent sequence has the same limit as the sequence itself. Therefore $x \in K$. So $K = \overline{K}$ and K is closed.