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Proposition 2.9

Proposition 2.9

Proposition 2.9. In a normed linear space:
(a) A convergent sequence is Cauchy.

(b) A Cauchy sequence (xp) is bounded. That is, there is a
k > 0 such that ||x,|| < k for all n.

(c) All subsequences of a Cauchy sequence are Cauchy.

(d) If (xn) is Cauchy and some subsequence converges to x, then
(xn) converges to x.
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Proposition 2.9

Proposition 2.9. In a normed linear space:
(a) A convergent sequence is Cauchy.

(b) A Cauchy sequence (xp) is bounded. That is, there is a
k > 0 such that ||x,|| < k for all n.

(c) All subsequences of a Cauchy sequence are Cauchy.

(d) If (xn) is Cauchy and some subsequence converges to x, then
(xn) converges to x.

Proof. (a). Let (x,) be convergent with limit x. Let € > 0. Then there
exists N € N such that for all n > N, we have ||x — x,|| < &/2. So let
m,n> N. Then

ot = all = [l — %+ x = %l < llxim — x|l + o0 — x|} < £/24+2/2 = =.
So (x,) is Cauchy, as claimed.
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Proposition 2.9

Proposition 2.9 (continued 1)

Proposition 2.9(b). In a normed linear space:

(b) A Cauchy sequence (xp) is bounded. That is, there is a
k > 0 such that ||x,|| < k for all n.

Proof (continued). (b). Suppose (x,) is Cauchy. Then there exists
N € N such that for all n,m > N we have ||x, — xm|| <e=1. In
particular, with n = N we have ||xy — xm|| < & =1 and so by the
(Backwards) Triangle Inequality ||xm|| < |[xn|| + 1. Let

k= max{xall, [xalls sl -5 lxw—all, lIxnl + 1}

Then for all n € N, ||x,]| < k and so {x,} is bounded, as claimed.
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Proposition 2.9

Proposition 2.9 (continued 2)

Proposition 2.9(c). In a normed linear space:

(c) All subsequences of a Cauchy sequence are Cauchy.

Proof (continued). (c). Let (x,,) be a subsequence of Cauchy sequence
(xn). Since (x,) is Cauchy then, by definition, for € > 0 there exists N € N
such that for all m,n > N, ||x, — xm|| < e. For all k,¢> N we have

nk > k > N (notice that ny > k) and ny > ¢ > N, so that

|Xn, — Xn, |l < €. Hence {xp,} is Cauchy, as claimed.
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Proposition 2.9 (continued 3)

Proposition 2.9(d). In a normed linear space:

(d) If (xn) is Cauchy and some subsequence converges to x, then
(xn) converges to x.

Proof (continued). (d). Let (x,) be Cauchy. Let € > 0. Then there
exists N € N such that for all n,m > N, we have ||x, — xm| < /2. Let
(xn, ) converge to x. Then there exists J € N (where we take, WLOG,
J > N) such that for all k > J, we have ||x,, — x|| < /2 (notice that
ng > k, so that ny > J). In particular, ||x,, — x| <&/2. So for
n>J> N, we have

(13X = X[| = lIxn = Xn, 4 xn, = X[| < |x0 = X, | + [0, = x[| < /24 /2 =

Therefore (x,) — x, as claimed. O
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Proposition 2.10

Proposition 2.10.
(a) A fast Cauchy sequence is Cauchy.

(b) Any Cauchy sequence contains a fast Cauchy subsequence.
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Proposition 2.10

Proposition 2.10

Proposition 2.10.
(a) A fast Cauchy sequence is Cauchy.

(b) Any Cauchy sequence contains a fast Cauchy subsequence.

Proof. (a). Let (x,) be fast Cauchy and let ¢ > 0. Choose N € N such

that 1/2V=1 < . Then for n > m > N we have

||Xn - Xm” < ||Xm — Xm+1l + Xmyl — " — Xn—1+ Xp—1 — Xn”

n—1 n—1 1 o0 1

< D e = < Z % < Z o
k=m k=m k=m

1/2m R
_= _= £E.
1-1/2 2m1 = N1
So the sequence is Cauchy, as claimed.
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Proposition 2.10 (continued 1)

Proposition 2.10.

(b) Any Cauchy sequence contains a fast Cauchy subsequence.
Proof (continued). (b) Let (x,) be Cauchy.
Choose N; € N such that for all m,n > N; we have ||x, — xp|| < 1/2.

Choose N, such that N> > N; and for all m, n > N> we have

| Xm — xn|| < 1/22.

Now inductively choose Ny > Ny_1 such that for all m, n > N, we have
1 Xm — xa|| < 1/2K.

Now consider the subsequence (xy, ). Then for any k € N we have
l[xXn, 2 — xn, || < 1/2K since Ngj1 > Ni > Ni. Therefore (xp, ) is fast
Cauchy, as claimed. O
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Proposition 2.11

oo oo
Proposition 2.11. If x = Zx,- exists, then ||x|| < Z l|xi]]-
i=1 i=1
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Proposition 2.11

Proposition 2.11

oo oo
Proposition 2.11. If x = Zx,- exists, then ||x|| < Z l|xi]]-
i=1 i=1

Proof. By continuity of the norm (Theorem 2.3(c)) we have (from the
Triangle Inequality)

x|l = H lim sp|| = lim |[|sy|| = lim
n—oo n—oo n—oo

n
>_x
i=1

< lim. (imn) >l

i=1 i=1
U
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Theorem 2.12

Theorem 2.12. A normed linear space X is complete if and only if every
absolutely convergent series is convergent.
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Theorem 2.12

Theorem 2.12. A normed linear space X is complete if and only if every
absolutely convergent series is convergent.

Proof. Suppose X is complete and (x;) yields an absolutely convergent
series. Then > "7, |Ixi|| < co. Let € > 0. Now for N € N sufficiently large,
Y2y lIxill < e. So for n > m > N we have for the partial sums

n n
lIsn — sml| = Z xi|| < Z ||xi|| by Triangle Inequality
i=m+1 i=m+1
[e.@]
< 3 sl <=
i=m+1

So (si) is Cauchy and since X is complete, (s;) is convergent. That is, the
absolutely convergent series Y x; is convergent.
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Theorem 2.12 (continued)

Proof (continued). Now suppose that every absolutely convergent series
is convergent. Let (x,) be a fast Cauchy sequence. The series
Y2 (xi41 — xi) is absolutely convergent:

o0 o] 1 i
Sl =3 () =1

and so is convergent (by hypothesis), say to x. Since the partial sum for
this series is s, = Xp+1 — x1 and s, — x, we have that x,+1 — x + x1, or
(xn) — x + x1. So the fast Cauchy sequence is convergent. Since (xp) is
an arbitrary fast Cauchy sequence, this shows that every fast Cauchy
sequence in X is convergent.
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Theorem 2.12 (continued)

Proof (continued). Now suppose that every absolutely convergent series
is convergent. Let (x,) be a fast Cauchy sequence. The series
Y2 (xi41 — xi) is absolutely convergent:

o0 o] 1 i
Sl =3 () =1

and so is convergent (by hypothesis), say to x. Since the partial sum for
this series is s, = Xp+1 — x1 and s, — x, we have that x,+1 — x + x1, or
(xn) — x + x1. So the fast Cauchy sequence is convergent. Since (xp) is
an arbitrary fast Cauchy sequence, this shows that every fast Cauchy
sequence in X is convergent. Let (x],) be any Cauchy sequence in X. By
Proposition 2.10(b) there is a subsequence (x;, ) of (x;) which is fast
Cauchy. As shown above, (xj, ) converges in X. By Proposition 2.9(d),
(x]) converges in X. Since (x},) is an arbitrary Cauchy sequence in X, then

X is complete. []
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Lemma 2.13

Lemma 2.13

Lemma 2.13. Suppose that X is a subspace of the space of all functions
from set S to field F, F(S), and that || - || is a norm on X for which the
closed unit ball B(1) is closed under pointwise limits. That is, if Cauchy
sequence (f,) C B(1) converges pointwise to f, then f € X and f € B(1).
If a sequence (f,) in X is Cauchy and converges pointwise to f, then

f € X and (f,) converges to f with respect to || - ||.
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Lemma 2.13

Lemma 2.13

Lemma 2.13. Suppose that X is a subspace of the space of all functions
from set S to field F, F(S), and that || - || is a norm on X for which the
closed unit ball B(1) is closed under pointwise limits. That is, if Cauchy
sequence (f,) C B(1) converges pointwise to f, then f € X and f € B(1).
If a sequence (f,) in X is Cauchy and converges pointwise to f, then

f € X and (f,) converges to f with respect to || - ||.

Proof. Let (f,) be a Cauchy sequence in X which converges pointwise to
f. Let £ > 0. Choose N € N such that for all n,m > N we have
|fa — fml| < e. Since B(1) is closed under pointwise limits, then by scaling

f € B(1) to ef /|| f|| € B(e), we see that B(¢) is closed under pointwise
limits.
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Lemma 2.13

Lemma 2.13. Suppose that X is a subspace of the space of all functions
from set S to field F, F(S), and that || - || is a norm on X for which the
closed unit ball B(1) is closed under pointwise limits. That is, if Cauchy
sequence (f,) C B(1) converges pointwise to f, then f € X and f € B(1).
If a sequence (f,) in X is Cauchy and converges pointwise to f, then

f € X and (f,) converges to f with respect to || - ||.

Proof. Let (f,) be a Cauchy sequence in X which converges pointwise to
f. Let € > 0. Choose N € N such that for all n,m > N we have

||fa — fml|| < &. Since B(1) is closed under pointwise limits, then by scaling
f € B(1) to ef /|| f|| € B(e), we see that B(¢) is closed under pointwise
limits. For a given ng > N, the sequence (f, — f,,) C B(e) (so this
sequence is Cauchy) and converges pointwise to f — f,, (since (f,)
converges to f pointwise), so by hypothesis (f — f,)) € X and

f — fn, € B(g). Since X is a subspace, f = fo, + (f — f,,) € X and

||f — fooll < e forany ng > N. Therefore (f,) — f with respect to || -||. [l
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Theorem 2.14

Theorem 2.14. The space of all bounded functions from set S to field F
(taken to be R or C), B(S), is complete with respect to the sup norm.
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Theorem 2.14

Theorem 2.14. The space of all bounded functions from set S to field F
(taken to be R or C), B(S), is complete with respect to the sup norm.

Proof. Let (f,) be a Cauchy sequence in B(S). For any point s € S,

|fin(s) = fa(s)] < sup |fin(s) = fa(s)| = [[fm — fall-

So the sequence (,(s)) is Cauchy in F. Since F is complete, (f,(s))
converges to some point in F, denoted f(s). So f is the pointwise limit of
(f) on S.
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Theorem 2.14

Theorem 2.14. The space of all bounded functions from set S to field F
(taken to be R or C), B(S), is complete with respect to the sup norm.

Proof. Let (f,) be a Cauchy sequence in B(S). For any point s € S,

|fin(s) = fa(s)] < sup |fin(s) = fa(s)| = [[fm — fall-

So the sequence (,(s)) is Cauchy in F. Since F is complete, (f,(s))
converges to some point in F, denoted f(s). So f is the pointwise limit of
(f,) on S. Moreover, if ||f,|| <1 for all n € N (or equivalently, f, € B(1))
then for any s € S we have |f,(s)| < ||fa]] < 1, and so

1£(5)] = [limp—oo fa(s)| = limp—oo |fa(s)| < 1. Therefore f € B(1). So by
Lemma 2.13, (f,) — f with respect to the sup norm. O
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Theorem 2.16

Theorem 2.16. A subspace Y of a Banach space X is itself a Banach
space if and only if Y is closed.
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Theorem 2.16

Theorem 2.16

Theorem 2.16. A subspace Y of a Banach space X is itself a Banach
space if and only if Y is closed.

Proof. First, suppose Y is closed and let (y,) be a Cauchy sequence in Y.
Then (yn) is a Cauchy sequence in X and since X is a Banach space,

(¥n) — x for some x € X. Since Y is closed then, by Theorem 2.2.A(iii),
x € Y and so (y,) is convergent in Y and Y is a Banach space.
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Theorem 2.16

Theorem 2.16. A subspace Y of a Banach space X is itself a Banach
space if and only if Y is closed.

Proof. First, suppose Y is closed and let (y,) be a Cauchy sequence in Y.
Then (yn) is a Cauchy sequence in X and since X is a Banach space,

(¥n) — x for some x € X. Since Y is closed then, by Theorem 2.2.A(iii),
x € Y and so (y,) is convergent in Y and Y is a Banach space.

Conversely, suppose Y is not closed. Then there is x € Y where x ¢ Y.
Choose a sequence (y,) in Y such that (y,) — x (which can be done since
x € Y by Theorem 2.2.A(iii)). Then (y,) is Cauchy (by Proposition

2.9(a)) but (yn) does not converge in Y and so Y is not complete and not
a Banach space. O
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Theorem 2.20

Theorem 2.20. Extension Theorem.

Suppose that Xj is a dense subspace of the normed linear space X such
that Ty € B(Xo, Z) (i.e., To is a bounded linear operator from Xy to Z),
where Z is a Banach space. Then Ty has a unique extension to an
operator T € B(X, Z). Moreover, || T|| = || To||, and if Ty is an isometry,
then sois T.
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Theorem 2.20

Theorem 2.20. Extension Theorem.

Suppose that Xj is a dense subspace of the normed linear space X such
that Ty € B(Xo, Z) (i.e., To is a bounded linear operator from Xy to Z),
where Z is a Banach space. Then Ty has a unique extension to an
operator T € B(X, Z). Moreover, || T| = | Tol|, and if Ty is an isometry,
then sois T.

Proof. Let x € X. Since Xy is dense in X, then there is a Cauchy
sequence (x,) C Xo convergent to x. For all xp,, x, € (x,) we have that

| Toxm — Toxall = || To(xm — xa)|| < || Tol|/[Xm — Xa|| by Note 2.4.A. Since
(xn) is Cauchy, then (Tox,) C Z is Cauchy. Since Z is a Banach space,
then Z is complete and so ( Tox,) converges to some element of Z. Define
this limit to be Tx: Tx = lim Tyx,.

We now complete the proof in 6 steps.
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Theorem 2.20 (continued 1)

Proof (continued).
(i) T is well defined. That is, the definition of Tx is independent of

sequence (x,). Suppose (yn) C Xp is convergent to x. Then
1 Toxn — Toyall < [ Tollllxa = yall

June 20, 2021 16 / 23
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Theorem 2.20 (continued 1)

Proof (continued).
(i) T is well defined. That is, the definition of Tx is independent of
sequence (x,). Suppose (yn) C Xp is convergent to x. Then
| Toxn — Toyall < || Tolll[Xn — ynll- Since (x,) — x and (y,) — x, then for
all € > 0 there exists N € N such that for n > N
€ €

X = yall = lxn = x 4 x = yall < [0 = x[| +[Ix = yall < 5 + 5 =
So (xn — yn) — 0 and hence (Tox, — Toyn) — 0. That is (Tox,) and
(Toyn) have the same limit and so Tx is well defined.
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Theorem 2.20 (continued 2)

Proof (continued).
(i) T extends Ty. (Thatis, Tx = Tox for x € Xp.) For any x € Xp, take
the constant sequence (x) C Xp. Then Tx = lim Tox = Tox.

Introduction to Functional Analysis June 20, 2021 17 / 23



Theorem 2.20 (continued 2)

Proof (continued).
(i) T extends Ty. (Thatis, Tx = Tox for x € Xp.) For any x € Xp, take
the constant sequence (x) C Xp. Then Tx = lim Tox = Tox.

(iii) T is linear. For any x,y € X, let (x»), (¥n) C Xo be sequences
converging to x and y, respectively. Then (x, + yn) — x+ y, so

T(x+y) = limTo(x,+ yn)
= lim(Toxn + Toyn) since Ty is linear
= Iim(Tox,,) + Iim(Toyn)
= Tx+ Ty.

Similarly, for a € R, since Ty is linear, we have
T(ax) = lim To(ax,) = limaTo(xp) = alim To(x,) = aT(x).
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Theorem 2.20 (continued 3)

Proof (continued).

(iv) ITIl = || Toll- Now || T|| > || Tol| since T is defined on X and Ty is
defined on Xy where X D Xy. Next, for x € X where ||x|| = 1, choose
(xn) € Xo convergent to x. Then

7] [Him(Toxy )|

lim || Toxn|| by Theorem 2.3(c)

< lim || Toll[[xn|| by Note 2.4.A
= [ Tolltim [[xa]]

= || Tol|l|x|| by Theorem 2.3(c)
= | Toll-

So || T|| < || Tol| and the result follows.
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Theorem 2.20 (continued 4)

Proof (continued).
(v) If Tp is an isometry, then so is T. Let x € X and (x,) C Xp
convergent to x. Then

ITx|l = [[1im(Tox,)]|
= lim|| Toxn|| by Theorem 2.3(c)
= lim ||x,|| since Ty is an isometry
= ||x|| by Theorem 2.3(c).

So T is an isometry.
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Theorem 2.20 (continued 5)

Proof (continued).

(vi) T is the unique extension of Ty. Suppose Tix = Tx for all x € Xp.
Let x € X'\ Xo. Then some (x,) C Xo is convergent to x since X is dense
in X. Then

Tix = Ti(limxp,)
= lim(T1x,) by Theorem 2.6 since T; is bounded by (iv)
= lim(Tx,)
= T(limx,) by Theorem 2.6 since T is bounded by (iv)
= Tx.

So T1 =T on X and T is unique.
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Theorem 2.20 (continued 6)

Theorem 2.20. Extension Theorem.
Suppose that Xp is a dense subspace of the normed linear space X such
that T € B(Xo, Z) (i.e., To is a bounded linear operator from Xy to Z),
where Z is a Banach space. Then Ty has a unique extension to an
operator T € B(X,Z). Moreover, | T|| = || To||, and if Ty is an isometry,
then sois T.
Proof (conclusion). For x € X, define Tx = lim(Tox,) for a sequence
(xn) € Xp with (x,) — n. We have shown that:

i) T is well defined.

(i) T extends Ty.

(iii) T is linear.

(V) I TIF=1Toll-

(v) If To is an isometry, then sois T.

(vi) T is the unique extension of Ty.
Then T is the unique extension of Tg from Xo to T € B(X, Z),
IIT|| = || Toll, and if Tg is an isometry then so is T, as claimed. O
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Theorem 2.22

Theorem 2.22. Completion Theorem.
For any normed linear space, a completion exists. Moreover, the
completion is unique in the following sense: If (X1, J1) and (X3, J) are

completions of X, there is a surjective (onto) isometry U : X; — Xj such
that U/ = L.
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Theorem 2.22

Theorem 2.22. Completion Theorem.

For any normed linear space, a completion exists. Moreover, the
completion is unique in the following sense: If (X1, J1) and (Xo, Jo) are
completions of X, there is a surjective (onto) isometry U : X1 — X such
that U/ = L.

Proof of Uniqueness. Notice that if J is an isometry and x # y then
[Ix =yl >0and |[Jx — Jy| = [[J(x = y)I| = l[x = y[| # 0. So Jis an
injection (one to one) and J~1 exists. Consider U = J2Jf1 mapping
J1(X) into Xa. Since J; is one to one, J;*(J1(X)) = X, and so Uy maps
J1(X) onto h(X): b

%

X U, an extension of

U, to all of X;
J2

e
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Theorem 2.22

Theorem 2.22. Completion Theorem.

For any normed linear space, a completion exists. Moreover, the
completion is unique in the following sense: If (X1, J1) and (Xo, Jo) are
completions of X, there is a surjective (onto) isometry U : X1 — X such
that U/ = L.

Proof of Uniqueness. Notice that if J is an isometry and x # y then
[Ix =yl >0and |[Jx — Jy| = [[J(x = y)I| = l[x = y[| # 0. So Jis an
injection (one to one) and J~1 exists. Consider U = J2Jf1 mapping
J1(X) into Xa. Since J; is one to one, J;*(J1(X)) = X, and so Uy maps
J1(X) onto h(X): b

%

X U, an extension of

U, to all of X;
J2

e
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Theorem 2.22 (continued)

Theorem 2.22. Completion Theorem.

For any normed linear space, a completion exists. Moreover, the
completion is unique in the following sense: If (X1, 1) and (Xo, Jo) are
completions of X, there is a surjective (onto) isometry U : X1 — X such
that UJ; = Us.

Proof (continued). Since J; and J, are isometries, then Uy = JpJ; "

an isometry. Since J(X) is dense in X5 (by the definition of completlon)
then by Theorem 2.20 Uy extends to an isometry U from X1 to X2 (notice
that Up is bounded since it is an isometry and || Up|| = 1).
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Theorem 2.22 (continued)

Theorem 2.22. Completion Theorem.

For any normed linear space, a completion exists. Moreover, the
completion is unique in the following sense: If ()N(l, J1) and (5(2,.]2) are
completions of X, there is a surjective (onto) isometry U : X1 — X such
that UJ; = Us.

Proof (continued). Since J; and J, are isometries, then Uy = JpJ; "

an isometry. Since J(X) is dense in X5 (by the definition of completlon)
then by Theorem 2.20 Uy extends to an isometry U from X1 to X2 (notice
that Up is bounded since it is an isometry and || Up| = 1). Since X; is
complete, the isometric image U(X) is complete (images of Cauchy
sequences are Cauchy with corresponding limits). So U(X;) is closed in X,
by Theorem 2.16. Since U(X1) contains J(X), U(X1) is dense in Xo. A
dense closed subset must be all of the set. That is, U(X1) = X> where
UJ1 = J> and hence the completion of X is unique. []
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