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Proposition 2.9

Proposition 2.9

Proposition 2.9. In a normed linear space:

(a) A convergent sequence is Cauchy.

(b) A Cauchy sequence (xn) is bounded. That is, there is a
k > 0 such that ‖xn‖ < k for all n.

(c) All subsequences of a Cauchy sequence are Cauchy.

(d) If (xn) is Cauchy and some subsequence converges to x , then
(xn) converges to x .

Proof. (a). Let (xn) be convergent with limit x . Let ε > 0. Then there
exists N ∈ N such that for all n ≥ N, we have ‖x − xn‖ < ε/2. So let
m, n ≥ N. Then

‖xm − xn‖ = ‖xm − x + x − xn‖ ≤ ‖xm − x‖+ ‖xn − x‖ < ε/2 + ε/2 = ε.

So (xn) is Cauchy, as claimed.
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Proposition 2.9

Proposition 2.9 (continued 1)

Proposition 2.9(b). In a normed linear space:

(b) A Cauchy sequence (xn) is bounded. That is, there is a
k > 0 such that ‖xn‖ < k for all n.

Proof (continued). (b). Suppose (xn) is Cauchy. Then there exists
N ∈ N such that for all n,m ≥ N we have ‖xn − xm‖ < ε = 1. In
particular, with n = N we have ‖xN − xm‖ < ε = 1 and so by the
(Backwards) Triangle Inequality ‖xm‖ < ‖xN‖+ 1. Let

k = max{‖x1‖, ‖x2‖, ‖x3‖, . . . , ‖xN−1‖, ‖xN‖+ 1}.

Then for all n ∈ N, ‖xn‖ ≤ k and so {xn} is bounded, as claimed.
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Proposition 2.9

Proposition 2.9 (continued 2)

Proposition 2.9(c). In a normed linear space:

(c) All subsequences of a Cauchy sequence are Cauchy.

Proof (continued). (c). Let (xnk
) be a subsequence of Cauchy sequence

(xn). Since (xn) is Cauchy then, by definition, for ε > 0 there exists N ∈ N
such that for all m, n ≥ N, ‖xn − xm‖ < ε. For all k, ` ≥ N we have
nk ≥ k ≥ N (notice that nk ≥ k) and n` ≥ ` ≥ N, so that
‖xnk

− xn`
‖ < ε. Hence {xnk

} is Cauchy, as claimed.
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Proposition 2.9

Proposition 2.9 (continued 3)

Proposition 2.9(d). In a normed linear space:

(d) If (xn) is Cauchy and some subsequence converges to x , then
(xn) converges to x .

Proof (continued). (d). Let (xn) be Cauchy. Let ε > 0. Then there
exists N ∈ N such that for all n,m ≥ N, we have ‖xn − xm‖ < ε/2. Let
(xnk

) converge to x . Then there exists J ∈ N (where we take, WLOG,
J ≥ N) such that for all k ≥ J, we have ‖xnk

− x‖ ≤ ε/2 (notice that
nk ≥ k, so that nJ ≥ J). In particular, ‖xnJ

− x‖ ≤ ε/2. So for
n ≥ J ≥ N, we have

‖xn− x‖ = ‖xn− xnJ
+ xnJ

− x‖ ≤ ‖xn− xnJ
‖+ ‖xnJ

− x‖ < ε/2+ ε/2 = ε.

Therefore (xn) → x , as claimed.
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Proposition 2.10

Proposition 2.10

Proposition 2.10.

(a) A fast Cauchy sequence is Cauchy.

(b) Any Cauchy sequence contains a fast Cauchy subsequence.

Proof. (a). Let (xn) be fast Cauchy and let ε > 0. Choose N ∈ N such
that 1/2N−1 < ε. Then for n > m ≥ N we have

‖xn − xm‖ ≤ ‖xm − xm+1 + xm+1 − · · · − xn−1 + xn−1 − xn‖

≤
n−1∑
k=m

‖xk+1 − xk‖ ≤
n−1∑
k=m

1

2k
<

∞∑
k=m

1

2k

=
1/2m

1− 1/2
=

1

2m−1
≤ 1

2N−1
< ε.

So the sequence is Cauchy, as claimed.
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Proposition 2.10

Proposition 2.10 (continued 1)

Proposition 2.10.

(b) Any Cauchy sequence contains a fast Cauchy subsequence.

Proof (continued). (b) Let (xn) be Cauchy.

Choose N1 ∈ N such that for all m, n ≥ N1 we have ‖xm − xn‖ < 1/2.

Choose N2 such that N2 > N1 and for all m, n ≥ N2 we have
‖xm − xn‖ < 1/22.

Now inductively choose Nk > Nk−1 such that for all m, n ≥ Nk we have
‖xm − xn‖ < 1/2k .

Now consider the subsequence (xNk
). Then for any k ∈ N we have

‖xNk+1
− xNk

‖ ≤ 1/2k since Nk+1 > Nk ≥ Nk . Therefore (xNk
) is fast

Cauchy, as claimed.
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Proposition 2.11

Proposition 2.11

Proposition 2.11. If x =
∞∑
i=1

xi exists, then ‖x‖ ≤
∞∑
i=1

‖xi‖.

Proof. By continuity of the norm (Theorem 2.3(c)) we have (from the
Triangle Inequality)

‖x‖ =
∥∥∥ lim

n→∞
sn

∥∥∥ = lim
n→∞

‖sn‖ = lim
n→∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
≤ lim

n→∞

(
n∑

i=1

‖xi‖

)
=

∞∑
i=1

‖xi‖.
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Theorem 2.12

Theorem 2.12

Theorem 2.12. A normed linear space X is complete if and only if every
absolutely convergent series is convergent.

Proof. Suppose X is complete and (xi ) yields an absolutely convergent
series. Then

∑∞
i=1 ‖xi‖ < ∞. Let ε > 0. Now for N ∈ N sufficiently large,∑∞

i=N ‖xi‖ < ε. So for n > m ≥ N we have for the partial sums

‖sn − sm‖ =

∥∥∥∥∥
n∑

i=m+1

xi

∥∥∥∥∥ ≤
n∑

i=m+1

‖xi‖ by Triangle Inequality

≤
∞∑

i=m+1

‖xi‖ < ε.

So (si ) is Cauchy and since X is complete, (si ) is convergent. That is, the
absolutely convergent series

∑
xi is convergent.
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Theorem 2.12

Theorem 2.12 (continued)

Proof (continued). Now suppose that every absolutely convergent series
is convergent. Let (xn) be a fast Cauchy sequence. The series∑∞

i=1(xi+1 − xi ) is absolutely convergent:

∞∑
i=1

‖xi+1 − xi‖ ≤
∞∑
i=1

(
1

2

)i

= 1,

and so is convergent (by hypothesis), say to x . Since the partial sum for
this series is sn = xn+1 − x1 and sn → x , we have that xn+1 → x + x1, or
(xn) → x + x1. So the fast Cauchy sequence is convergent. Since (xn) is
an arbitrary fast Cauchy sequence, this shows that every fast Cauchy
sequence in X is convergent. Let (x ′n) be any Cauchy sequence in X . By
Proposition 2.10(b) there is a subsequence (x ′nk

) of (x ′n) which is fast
Cauchy. As shown above, (x ′nk

) converges in X . By Proposition 2.9(d),
(x ′n) converges in X . Since (x ′n) is an arbitrary Cauchy sequence in X , then
X is complete.
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Lemma 2.13

Lemma 2.13

Lemma 2.13. Suppose that X is a subspace of the space of all functions
from set S to field F, F (S), and that ‖ · ‖ is a norm on X for which the
closed unit ball B(1) is closed under pointwise limits. That is, if Cauchy
sequence (fn) ⊂ B(1) converges pointwise to f , then f ∈ X and f ∈ B(1).
If a sequence (fn) in X is Cauchy and converges pointwise to f , then
f ∈ X and (fn) converges to f with respect to ‖ · ‖.

Proof. Let (fn) be a Cauchy sequence in X which converges pointwise to
f . Let ε > 0. Choose N ∈ N such that for all n,m ≥ N we have
‖fn − fm‖ ≤ ε. Since B(1) is closed under pointwise limits, then by scaling
f ∈ B(1) to εf /‖f ‖ ∈ B(ε), we see that B(ε) is closed under pointwise
limits.

For a given n0 ≥ N, the sequence (fn − fn0) ⊂ B(ε) (so this
sequence is Cauchy) and converges pointwise to f − fn0 (since (fn)
converges to f pointwise), so by hypothesis (f − fn0) ∈ X and
f − fn0 ∈ B(ε). Since X is a subspace, f = fn0 + (f − fn0) ∈ X and
‖f − fn0‖ ≤ ε for any n0 ≥ N. Therefore (fn) → f with respect to ‖ · ‖.
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Theorem 2.14

Theorem 2.14

Theorem 2.14. The space of all bounded functions from set S to field F
(taken to be R or C), B(S), is complete with respect to the sup norm.

Proof. Let (fn) be a Cauchy sequence in B(S). For any point s ∈ S ,

|fm(s)− fn(s)| ≤ sup
s∈S

|fm(s)− fn(s)| = ‖fm − fn‖.

So the sequence (fn(s)) is Cauchy in F. Since F is complete, (fn(s))
converges to some point in F, denoted f (s). So f is the pointwise limit of
(fn) on S .

Moreover, if ‖fn‖ ≤ 1 for all n ∈ N (or equivalently, fn ∈ B(1))
then for any s ∈ S we have |fn(s)| ≤ ‖fn‖ ≤ 1, and so
|f (s)| = |limn→∞ fn(s)| = limn→∞ |fn(s)| ≤ 1. Therefore f ∈ B(1). So by
Lemma 2.13, (fn) → f with respect to the sup norm.
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Theorem 2.16

Theorem 2.16

Theorem 2.16. A subspace Y of a Banach space X is itself a Banach
space if and only if Y is closed.

Proof. First, suppose Y is closed and let (yn) be a Cauchy sequence in Y .
Then (yn) is a Cauchy sequence in X and since X is a Banach space,
(yn) → x for some x ∈ X . Since Y is closed then, by Theorem 2.2.A(iii),
x ∈ Y and so (yn) is convergent in Y and Y is a Banach space.

Conversely, suppose Y is not closed. Then there is x ∈ Y where x 6∈ Y .
Choose a sequence (yn) in Y such that (yn) → x (which can be done since
x ∈ Y by Theorem 2.2.A(iii)). Then (yn) is Cauchy (by Proposition
2.9(a)) but (yn) does not converge in Y and so Y is not complete and not
a Banach space.
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Theorem 2.20. Extension Theorem.

Theorem 2.20

Theorem 2.20. Extension Theorem.
Suppose that X0 is a dense subspace of the normed linear space X such
that T0 ∈ B(X0,Z ) (i.e., T0 is a bounded linear operator from X0 to Z ),
where Z is a Banach space. Then T0 has a unique extension to an
operator T ∈ B(X ,Z ). Moreover, ‖T‖ = ‖T0‖, and if T0 is an isometry,
then so is T .

Proof. Let x ∈ X . Since X0 is dense in X , then there is a Cauchy
sequence (xn) ⊆ X0 convergent to x . For all xm, xn ∈ (xn) we have that
‖T0xm − T0xn‖ = ‖T0(xm − xn)‖ ≤ ‖T0‖‖xm − xn‖ by Note 2.4.A. Since
(xn) is Cauchy, then (T0xn) ⊆ Z is Cauchy. Since Z is a Banach space,
then Z is complete and so (T0xn) converges to some element of Z . Define
this limit to be Tx : Tx = lim T0xn.

We now complete the proof in 6 steps.
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Theorem 2.20. Extension Theorem.

Theorem 2.20 (continued 1)

Proof (continued).
(i) T is well defined. That is, the definition of Tx is independent of
sequence (xn). Suppose (yn) ⊆ X0 is convergent to x . Then
‖T0xn − T0yn‖ ≤ ‖T0‖‖xn − yn‖. Since (xn) → x and (yn) → x , then for
all ε > 0 there exists N ∈ N such that for n ≥ N

‖xn − yn‖ = ‖xn − x + x − yn‖ ≤ ‖xn − x‖+ ‖x − yn‖ <
ε

2
+

ε

2
= ε.

So (xn − yn) → 0 and hence (T0xn − T0yn) → 0. That is (T0xn) and
(T0yn) have the same limit and so Tx is well defined.
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Theorem 2.20. Extension Theorem.

Theorem 2.20 (continued 2)

Proof (continued).
(ii) T extends T0. (That is, Tx = T0x for x ∈ X0.) For any x ∈ X0, take
the constant sequence (x) ⊂ X0. Then Tx = lim T0x = T0x .

(iii) T is linear. For any x , y ∈ X , let (xn), (yn) ⊆ X0 be sequences
converging to x and y , respectively. Then (xn + yn) → x + y , so

T (x + y) = lim T0(xn + yn)

= lim(T0xn + T0yn) since T0 is linear

= lim(T0xn) + lim(T0yn)

= Tx + Ty .

Similarly, for α ∈ R, since T0 is linear, we have

T (αx) = lim T0(αxn) = lim αT0(xn) = α lim T0(xn) = αT (x).
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Theorem 2.20. Extension Theorem.

Theorem 2.20 (continued 3)

Proof (continued).
(iv) ‖T‖ = ‖T0‖. Now ‖T‖ ≥ ‖T0‖ since T is defined on X and T0 is
defined on X0 where X ⊃ X0. Next, for x ∈ X where ‖x‖ = 1, choose
(xn) ⊆ X0 convergent to x . Then

‖Tx‖ = ‖ lim(T0xn)‖
= lim ‖T0xn‖ by Theorem 2.3(c)

≤ lim ‖T0‖‖xn‖ by Note 2.4.A

= ‖T0‖ lim ‖xn‖
= ‖T0‖‖x‖ by Theorem 2.3(c)

= ‖T0‖.

So ‖T‖ ≤ ‖T0‖ and the result follows.
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Theorem 2.20. Extension Theorem.

Theorem 2.20 (continued 4)

Proof (continued).
(v) If T0 is an isometry, then so is T . Let x ∈ X and (xn) ⊆ X0

convergent to x . Then

‖Tx‖ = ‖ lim(T0xn)‖
= lim ‖T0xn‖ by Theorem 2.3(c)

= lim ‖xn‖ since T0 is an isometry

= ‖x‖ by Theorem 2.3(c).

So T is an isometry.
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Theorem 2.20. Extension Theorem.

Theorem 2.20 (continued 5)

Proof (continued).
(vi) T is the unique extension of T0. Suppose T1x = Tx for all x ∈ X0.
Let x ∈ X \ X0. Then some (xn) ⊆ X0 is convergent to x since X0 is dense
in X . Then

T1x = T1(lim xn)

= lim(T1xn) by Theorem 2.6 since T1 is bounded by (iv)

= lim(Txn)

= T (lim xn) by Theorem 2.6 since T is bounded by (iv)

= Tx .

So T1 = T on X and T is unique.
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Theorem 2.20. Extension Theorem.

Theorem 2.20 (continued 6)

Theorem 2.20. Extension Theorem.
Suppose that X0 is a dense subspace of the normed linear space X such
that T0 ∈ B(X0,Z ) (i.e., T0 is a bounded linear operator from X0 to Z ),
where Z is a Banach space. Then T0 has a unique extension to an
operator T ∈ B(X ,Z ). Moreover, ‖T‖ = ‖T0‖, and if T0 is an isometry,
then so is T .
Proof (conclusion). For x ∈ X , define Tx = lim(T0xn) for a sequence
(xn) ⊆ X0 with (xn) → n. We have shown that:

(i) T is well defined.
(ii) T extends T0.
(iii) T is linear.
(iv) ‖T‖ = ‖T0‖.
(v) If T0 is an isometry, then so is T .
(vi) T is the unique extension of T0.

Then T is the unique extension of T0 from X0 to T ∈ B(X ,Z ),
‖T‖ = ‖T0‖, and if T0 is an isometry then so is T , as claimed.
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Theorem 2.22. Completion Theorem

Theorem 2.22

Theorem 2.22. Completion Theorem.
For any normed linear space, a completion exists. Moreover, the
completion is unique in the following sense: If (X̃1, J1) and (X̃2, J2) are
completions of X , there is a surjective (onto) isometry U : X̃1 → X̃2 such
that UJ1 = J2.

Proof of Uniqueness. Notice that if J is an isometry and x 6= y then
‖x − y‖ > 0 and ‖Jx − Jy‖ = ‖J(x − y)‖ = ‖x − y‖ 6= 0. So J is an
injection (one to one) and J−1 exists. Consider U0 = J2J

−1
1 mapping

J1(X ) into X2. Since J1 is one to one, J−1
1 (J1(X )) = X , and so U0 maps

J1(X ) onto J2(X ):
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Theorem 2.22. Completion Theorem

Theorem 2.22 (continued)

Theorem 2.22. Completion Theorem.
For any normed linear space, a completion exists. Moreover, the
completion is unique in the following sense: If (X̃1, J1) and (X̃2, J2) are
completions of X , there is a surjective (onto) isometry U : X̃1 → X̃2 such
that UJ1 = J2.

Proof (continued). Since J1 and J2 are isometries, then U0 = J2J
−1
1 is

an isometry. Since J2(X ) is dense in X̃2 (by the definition of completion),
then by Theorem 2.20 U0 extends to an isometry U from X̃1 to X̃2 (notice
that U0 is bounded since it is an isometry and ‖U0‖ = 1). Since X̃1 is
complete, the isometric image U(X̃1) is complete (images of Cauchy
sequences are Cauchy with corresponding limits). So U(X̃1) is closed in X̃2

by Theorem 2.16. Since U(X̃1) contains J2(X ), U(X̃1) is dense in X̃2. A
dense closed subset must be all of the set. That is, U(X̃1) = X̃2 where
UJ1 = J2 and hence the completion of X is unique.
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Theorem 2.22 (continued)
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