Chapter 2. Normed Linear Spaces: The Basics

2.6. Comparisons of Norms—Proofs of Theorems
Table of contents

1. Theorem 2.23

2. Proposition 2.24

3. Proposition 2.26
Proposition 2.23. \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \) if and only if there is \(K > 0 \) such that \(\| x \|_1 \leq K \| x \|_2 \) for all \(x \in X \).

Proof. Suppose such a \(K \) exists and let \((x_n) \) be a sequence converging to \(x \) with respect to \(\| \cdot \|_2 \). Then for all \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that for \(n \geq N \) we have \(\| x_n - x \|_2 < \varepsilon / K \).
Proposition 2.23. \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \) if and only if there is \(K > 0 \) such that \(\|x\|_1 \leq K \|x\|_2 \) for all \(x \in X \).

Proof. Suppose such a \(K \) exists and let \((x_n)\) be a sequence converging to \(x \) with respect to \(\| \cdot \|_2 \). Then for all \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that for \(n \geq N \) we have \(\|x_n - x\|_2 < \varepsilon/K \). So for all \(n \geq N \) we also have

\[
\|x_n - x\|_1 \leq K \|x_n - x\|_2 < K \left(\frac{\varepsilon}{K} \right) = \varepsilon.
\]

So \((x_n) \to x\) with respect to \(\| \cdot \|_1 \) and \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \).
Proposition 2.23. \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \) if and only if there is \(K > 0 \) such that \(\| x \|_1 \leq K \| x \|_2 \) for all \(x \in X \).

Proof. Suppose such a \(K \) exists and let \((x_n) \) be a sequence converging to \(x \) with respect to \(\| \cdot \|_2 \). Then for all \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that for \(n \geq N \) we have \(\| x_n - x \|_2 < \varepsilon / K \). So for all \(n \geq N \) we also have

\[
\| x_n - x \|_1 \leq K \| x_n - x \|_2 < K \left(\frac{\varepsilon}{K} \right) = \varepsilon.
\]

So \((x_n) \rightarrow x \) with respect to \(\| \cdot \|_1 \) and \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \).
Proposition 2.23. \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \) if and only if there is \(K > 0 \) such that \(\| x \|_1 \leq K \| x \|_2 \) for all \(x \in X \).

Proof (continued). Suppose \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \). Define \(T : (X, \| \cdot \|_2) \to (X, \| \cdot \|_1) \) as \(Tx = x \) for all \(x \in X \).
Proposition 2.23. \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \) if and only if there is \(K > 0 \) such that \(\| x \|_1 \leq K \| x \|_2 \) for all \(x \in X \).

Proof (continued). Suppose \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \). Define \(T : (X, \| \cdot \|_2) \rightarrow (X, \| \cdot \|_1) \) as \(Tx = x \) for all \(x \in X \). Then for \((x_n) \rightarrow x \) in \((X, \| \cdot \|_2) \), since \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \), we have \((x_n) \rightarrow x \) in \((X, \| \cdot \|_1) \); that is, \((T x_n) \rightarrow T x \) in \((X, \| \cdot \|_1) \). Since \((x_n) \) is an arbitrary convergent sequence in \((X, \| \cdot \|_2) \) then, by Theorem 2.1.A, \(T \) is continuous.
Theorem 2.23 (continued)

Proposition 2.23. \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \) if and only if there is \(K > 0 \) such that \(\| x \|_1 \leq K \| x \|_2 \) for all \(x \in X \).

Proof (continued). Suppose \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \). Define \(T : (X, \| \cdot \|_2) \to (X, \| \cdot \|_1) \) as \(Tx = x \) for all \(x \in X \). Then for \((x_n) \to x \) in \((X, \| \cdot \|_2) \), since \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \), we have \((x_n) \to x \) in \((X, \| \cdot \|_1) \); that is, \((Tx_n) \to Tx \) in \((X, \| \cdot \|_1) \). Since \((x_n) \) is an arbitrary convergent sequence in \((X, \| \cdot \|_2) \) then, by Theorem 2.1.A, \(T \) is continuous. Since \(T \) is continuous, by Theorem 2.6, \(T \) is bounded. Let \(K = \| T \| \). We then have, for all \(x \in X \),

\[
\| x \|_1 = \| Tx \|_1 \leq \| T \| \| x \|_2 = K \| x \|_2,
\]

as claimed.
Proposition 2.23. \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \) if and only if there is \(K > 0 \) such that \(\| x \|_1 \leq K \| x \|_2 \) for all \(x \in X \).

Proof (continued). Suppose \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \). Define \(T : (X, \| \cdot \|_2) \to (X, \| \cdot \|_1) \) as \(Tx = x \) for all \(x \in X \). Then for \((x_n) \to x \) in \((X, \| \cdot \|_2) \), since \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \), we have \((x_n) \to x \) in \((X, \| \cdot \|_1) \); that is, \((Tx_n) \to Tx \) in \((X, \| \cdot \|_1) \). Since \((x_n) \) is an arbitrary convergent sequence in \((X, \| \cdot \|_2) \) then, by Theorem 2.1.A, \(T \) is continuous. Since \(T \) is continuous, by Theorem 2.6, \(T \) is bounded. Let \(K = \| T \| \). We then have, for all \(x \in X \),

\[
\| x \|_1 = \| Tx \|_1 \leq \| T \| \| x \|_2 = K \| x \|_2,
\]

as claimed.
Proposition 2.24. $\| \cdot \|_1$ is weaker than $\| \cdot \|_2$ if and only if every $\| \cdot \|_1$ open ball contains a $\| \cdot \|_2$ open ball.

Proof of “only if” part. Suppose $\| \cdot \|_1$ is weaker than $\| \cdot \|_2$. Then by Proposition 2.23, there exists $K > 0$ such that $\|x\|_1 \leq K \|x\|_2$ for all $x \in X$.
Theorem 2.24

Proposition 2.24. \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \) if and only if every \(\| \cdot \|_1 \) open ball contains a \(\| \cdot \|_2 \) open ball.

Proof of “only if” part. Suppose \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \). Then by Proposition 2.23, there exists \(K > 0 \) such that \(\| x \|_1 \leq K \| x \|_2 \) for all \(x \in X \). Then \(B(x; r) = \{ y \in X \mid \| x - y \|_1 < r \} \) contains

\[
B(x; r/K) = \{ y \in X \mid \| x - y \|_2 < r/K \},
\]

since \(\| x - y \|_2 < r/K \) implies that

\[
\| x - y \|_1 \leq K \| x - y \|_2 < K \left(\frac{r}{K} \right) = r.
\]
Proposition 2.24. \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \) if and only if every \(\| \cdot \|_1 \) open ball contains a \(\| \cdot \|_2 \) open ball.

Proof of “only if” part. Suppose \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \). Then by Proposition 2.23, there exists \(K > 0 \) such that \(\| x \|_1 \leq K \| x \|_2 \) for all \(x \in X \). Then \(B(x; r) = \{ y \in X \mid \| x - y \|_1 < r \} \) contains

\[
B(x; r/K) = \{ y \in X \mid \| x - y \|_2 < r/K \},
\]

since \(\| x - y \|_2 < r/K \) implies that

\[
\| x - y \|_1 \leq K \| x - y \|_2 < K \left(\frac{r}{K} \right) = r.
\]
Theorem 2.26. If X is a Banach space with respect to a norm $\| \cdot \|_1$, it is also a Banach space with respect to any equivalent norm.

Proof. We need only show that a Cauchy sequence convergent under $\| \cdot \|_1$ is convergent under an equivalent norm, say $\| \cdot \|_2$.
Proposition 2.26

Theorem 2.26. If X is a Banach space with respect to a norm $\| \cdot \|_1$, it is also a Banach space with respect to any equivalent norm.

Proof. We need only show that a Cauchy sequence convergent under $\| \cdot \|_1$ is convergent under an equivalent norm, say $\| \cdot \|_2$. Let (x_n) be Cauchy with respect to $\| \cdot \|_2$. By Proposition 2.23, there is $K \geq 0$ such that $\| x \|_1 \leq K \| x \|_2$ for all $x \in X$. So (x_n) is Cauchy with respect to $\| \cdot \|_1$ (use $K \varepsilon$ in the definition of Cauchy with respect to $\| \cdot \|_2$).
Theorem 2.26. If X is a Banach space with respect to a norm $\| \cdot \|_1$, it is also a Banach space with respect to any equivalent norm.

Proof. We need only show that a Cauchy sequence convergent under $\| \cdot \|_1$ is convergent under an equivalent norm, say $\| \cdot \|_2$. Let (x_n) be Cauchy with respect to $\| \cdot \|_2$. By Proposition 2.23, there is $K \geq 0$ such that $\| x \|_1 \leq K \| x \|_2$ for all $x \in X$. So (x_n) is Cauchy with respect to $\| \cdot \|_1$ (use $K\varepsilon$ in the definition of Cauchy with respect to $\| \cdot \|_2$). Since $(X, \| \cdot \|_1)$ is a Banach space, then (x_n) converges to some x. Since $\| \cdot \|_2$ weaker than $\| \cdot \|_1$ (equivalent, actually), then (x_n) also converges with respect to $\| \cdot \|_2$. Therefore $(X, \| \cdot \|_2)$ is a Banach space. \qed
Theorem 2.26. If X is a Banach space with respect to a norm $\| \cdot \|_1$, it is also a Banach space with respect to any equivalent norm.

Proof. We need only show that a Cauchy sequence convergent under $\| \cdot \|_1$ is convergent under an equivalent norm, say $\| \cdot \|_2$. Let (x_n) be Cauchy with respect to $\| \cdot \|_2$. By Proposition 2.23, there is $K \geq 0$ such that $\|x\|_1 \leq K \|x\|_2$ for all $x \in X$. So (x_n) is Cauchy with respect to $\| \cdot \|_1$ (use $K \varepsilon$ in the definition of Cauchy with respect to $\| \cdot \|_2$). Since $(X, \| \cdot \|_1)$ is a Banach space, then (x_n) converges to some x. Since $\| \cdot \|_2$ weaker than $\| \cdot \|_1$ (equivalent, actually), then (x_n) also converges with respect to $\| \cdot \|_2$. Therefore $(X, \| \cdot \|_2)$ is a Banach space. \qed