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Theorem 2.27

Theorem 2.27. Let N be a closed subspace of the normed linear space X .

(a) The quantity ‖x‖ defines a norm on X/N.

(b) If X is a Banach space, then X/N is a Banach space.

(c) ‖πN‖ = 1.

(d) If N = N(T ) (the nullspace of bounded linear T : X → Y )
then the map T̃ : X/N → Y defined as T̃ x = Tx has the
same norm as T : ‖T̃‖ = ‖T‖.

Proof. Recall that for x ∈ X/N, we define the (alleged) norm on X/N as

‖x‖ = inf{‖x − z‖ | z ∈ N} = d(x ,N).
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Theorem 2.27

Theorem 2.27 (continued 1)

(a) The quantity ‖x‖ defines a norm on X/N.

Proof (continued). Given x1, x2 ∈ X and any ε > 0, choose z1, z2 ∈ N so
that ‖x1 − z1‖ < ‖x1‖+ ε/2 and ‖x2 − z2‖ < ‖x2‖+ ε/2. Then

‖x1 + x2‖ = ‖x1 + x2‖
≤ ‖(x1 + x2)− (z1 + z2)‖ since ‖x1 + x2‖ is an infimum

≤ ‖x1 − z1‖+ ‖x2 − z2‖ by the Triangle Inequality in (X , ‖ · ‖)
< ‖x1‖+ ‖x2‖+ ε.

Since ε > 0 is arbitrary, the Triangle Inequality holds on the X/N “norm.”

For x ∈ X and α ∈ F, α 6= 0, fixed and for any z ∈ N, we have

‖αx − z‖ = |α|‖x − z/α‖ ≥ |α|‖x‖ since z/α ∈ N.

Taking an infimum over all z ∈ N in the inequality implies that
‖αx‖ ≥ |α|‖x‖ (and this also holds if α = 0).
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Theorem 2.27 (continued 2)

Theorem 2.27. Let N be a closed subspace of the normed linear space X .
(a) The quantity ‖x‖ defines a norm on X/N.

Proof (continued). Given r > 1, choose z0 ∈ N such that
‖x − z0‖ ≤ r‖x‖ (this can be done since r‖x‖ > ‖x‖). Then

‖αx‖ ≤ ‖αx − αz0‖ since αz0 ∈ N

= |α|‖x − z0‖
≤ |α|r‖x‖ since ‖x − z0‖ ≤ r‖x‖.

Since this holds for all r > 1, it holds for r = 1 (taking a limit as r → 1+)
and ‖αx‖ ≤ |α|‖x‖. Combining this with the above yields ‖αx‖ = |α|‖x‖
and the scalar property holds.
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Theorem 2.27 (continued 3)

Theorem 2.27. Let N be a closed subspace of the normed linear space X .
(a) The quantity ‖x‖ defines a norm on X/N.

Proof. (continued). Notice that ‖x‖ = 0 if and only if

inf{‖x − z‖ | z ∈ N} = 0

which, in turn, holds if and only if x ∈ N (since N is a closed linear space
by hypothesis). Since N is the additive identity of X/N then ‖x‖ = 0 if
and only if x = N = 0.

So ‖ · ‖ satisfies the definition of a norm and hence defines a norm on
X/N, as claimed.
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Theorem 2.27 (continued 4)

Theorem 2.27. Let N be a closed subspace of the normed linear space X .
(b) If X is a Banach space, then X/N is a Banach space.

Proof (continued). Suppose
∑

x i is an absolutely convergent series in
X/N. For each i ∈ N, choose zi ∈ N such that ‖xi − zi‖ ≤ ‖x i‖+ 1/2i .
Then

∞∑
i=1

‖xi − zi‖ ≤
∞∑
i=1

(
‖x i‖+ 1/2i

)
< ∞.

So
∑

(xi − zi ) is absolutely convergent and, since X is a Banach space,
then by Theorem 2.12,

∑
(xi − zi ) is convergent. Now πN is linear and is

shown to be bounded in part (c), so is continuous by Theorem 2.6. Now
πN(xi − zi ) = x i , so πN(

∑
(xi − zi )) =

∑
πN(xi − zi ) =

∑
x i and

∑
x i is

convergent (to πN
∑

(xi − zi )). By Theorem 2.12, X/N is a Banach
Space, as claimed.

() Introduction to Functional Analysis July 2, 2021 7 / 9



Theorem 2.27

Theorem 2.27 (continued 4)

Theorem 2.27. Let N be a closed subspace of the normed linear space X .
(b) If X is a Banach space, then X/N is a Banach space.

Proof (continued). Suppose
∑

x i is an absolutely convergent series in
X/N. For each i ∈ N, choose zi ∈ N such that ‖xi − zi‖ ≤ ‖x i‖+ 1/2i .
Then

∞∑
i=1

‖xi − zi‖ ≤
∞∑
i=1

(
‖x i‖+ 1/2i

)
< ∞.

So
∑

(xi − zi ) is absolutely convergent and, since X is a Banach space,
then by Theorem 2.12,

∑
(xi − zi ) is convergent. Now πN is linear and is

shown to be bounded in part (c), so is continuous by Theorem 2.6. Now
πN(xi − zi ) = x i , so πN(

∑
(xi − zi )) =

∑
πN(xi − zi ) =

∑
x i and

∑
x i is

convergent (to πN
∑

(xi − zi )). By Theorem 2.12, X/N is a Banach
Space, as claimed.

() Introduction to Functional Analysis July 2, 2021 7 / 9



Theorem 2.27

Theorem 2.27 (continued 5)

(c) ‖πN‖ = 1.

Proof (continued). We have by the operator norm definition that

‖πN‖ = sup{‖πN(x)‖ | x ∈ X , ‖x‖ = 1}.

Now πN(x) = x and ‖x‖ = inf{‖x − z‖ | z ∈ N} and since N is a linear
subspace, then 0 ∈ N and ‖x‖ ≤ ‖x‖. With ‖x‖ = 1 we have
‖πN(x)‖ = ‖x‖ ≤ 1 and so ‖πN‖ ≤ 1. Now let x ∈ X/N satisfy ‖x‖ = 1.
Given r > 1, choose z ∈ N such that ‖x − z‖ ≤ r (this can be done by the
definition of ‖x‖ in terms of an infimum). Then by Note 2.4.A,

1 = ‖x‖ = ‖πN(x − z)‖ since z ∈ N

≤ ‖πN‖‖x − z‖ ≤ ‖πN‖r .

Since r > 1 is arbitrary, the inequality holds as r → 1+ and so 1 ≤ ‖πN‖.
Therefore ‖πN‖ = 1, as claimed.
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Theorem 2.27

Theorem 2.27 (continued 6)

(d) If N = N(T ) (the nullspace of bounded linear T : X → Y ) then the
map T̃ : X/N → Y defined as T̃ x = Tx has the same norm as T :
‖T̃‖ = ‖T‖.

Proof of (d). As in the proof of part (c), if x ∈ X satisfies ‖x‖ = 1, then
‖x‖ ≤ 1, and by Note 2.4.A

‖Tx‖ = ‖T̃ x‖ ≤ ‖T̃‖‖x‖ ≤ ‖T̃‖.
So taking a supremum over all such x implies that
‖T‖ = sup{‖Tx‖ | x ∈ X , ‖x‖ = 1} ≤ ‖T̃‖. Next, given x ∈ X/N where
‖x‖ = 1, for any r > 1 there is z ∈ N such that ‖x − z‖ ≤ r by the
definition of ‖x‖ in terms of infimum. Then,

‖T̃ x‖ = ‖Tx‖ = ‖T (x − z)‖ since z ∈ N

≤ ‖T‖‖x − z‖ ≤ ‖T‖r .
Again, letting r → 1+ (and then taking suprema over all such x) we get
‖T̃‖ ≤ ‖T‖ and the result follows.
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