Introduction to Functional Analysis

Chapter 2. Normed Linear Spaces: The Basics 2.7. Quotient Spaces—Proofs of Theorems

Table of contents

Theorem 2.27

Theorem 2.27. Let N be a closed subspace of the normed linear space X .

- (a) The quantity $\|\overline{x}\|$ defines a norm on X/N .
- (b) If X is a Banach space, then X/N is a Banach space.

$$
(c) \|\pi_N\|=1.
$$

(d) If $N = N(T)$ (the nullspace of bounded linear $T : X \rightarrow Y$) then the map \tilde{T} : $X/N \rightarrow Y$ defined as $\tilde{T}\overline{x} = Tx$ has the same norm as $T: \|T\| = \|T\|.$

Proof. Recall that for $\overline{x} \in X/N$, we define the (alleged) norm on X/N as

$$
\|\overline{x}\| = \inf\{\|x - z\| \mid z \in N\} = d(x, N).
$$

Theorem 2.27

Theorem 2.27. Let N be a closed subspace of the normed linear space X .

- (a) The quantity $\|\overline{x}\|$ defines a norm on X/N .
- (b) If X is a Banach space, then X/N is a Banach space.

$$
(c) \|\pi_N\|=1.
$$

(d) If $N = N(T)$ (the nullspace of bounded linear $T : X \rightarrow Y$) then the map \tilde{T} : $X/N \rightarrow Y$ defined as $\tilde{T}\overline{x} = Tx$ has the same norm as $T: \|T\| = \|T\|.$

Proof. Recall that for $\overline{x} \in X/N$, we define the (alleged) norm on X/N as

$$
\|\overline{x}\| = \inf\{\|x - z\| \mid z \in N\} = d(x, N).
$$

Theorem 2.27 (continued 1)

(a) The quantity $\|\overline{x}\|$ defines a norm on X/N .

Proof (continued). Given $x_1, x_2 \in X$ and any $\varepsilon > 0$, choose $z_1, z_2 \in N$ so that $||x_1 - z_1|| < ||\overline{x}_1|| + \varepsilon/2$ and $||x_2 - z_2|| < ||\overline{x}_2|| + \varepsilon/2$. Then

$$
\|\overline{x}_1 + \overline{x}_2\| = \|\overline{x}_1 + \overline{x}_2\|
$$

\n
$$
\leq \| (x_1 + x_2) - (z_1 + z_2) \| \text{ since } \| \overline{x}_1 + \overline{x}_2 \| \text{ is an infimum}
$$

\n
$$
\leq \| x_1 - z_1 \| + \| x_2 - z_2 \| \text{ by the Triangle Inequality in } (X, \| \cdot \|)
$$

\n
$$
< \| \overline{x}_1 \| + \| \overline{x}_2 \| + \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, the Triangle Inequality holds on the X/N "norm."

Theorem 2.27 (continued 1)

(a) The quantity $\|\overline{x}\|$ defines a norm on X/N .

Proof (continued). Given $x_1, x_2 \in X$ and any $\varepsilon > 0$, choose $z_1, z_2 \in N$ so that $||x_1 - z_1|| < ||\overline{x}_1|| + \varepsilon/2$ and $||x_2 - z_2|| < ||\overline{x}_2|| + \varepsilon/2$. Then

$$
\|\overline{x}_1 + \overline{x}_2\| = \|\overline{x}_1 + \overline{x}_2\|
$$

\n
$$
\leq \| (x_1 + x_2) - (z_1 + z_2) \| \text{ since } \|\overline{x}_1 + \overline{x}_2\| \text{ is an infimum}
$$

\n
$$
\leq \|x_1 - z_1\| + \|x_2 - z_2\| \text{ by the Triangle Inequality in } (X, \| \cdot \|)
$$

\n
$$
< \| \overline{x}_1 \| + \| \overline{x}_2 \| + \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, the Triangle Inequality holds on the X/N "norm." For $x \in X$ and $\alpha \in \mathbb{F}$, $\alpha \neq 0$, fixed and for any $z \in N$, we have

$$
\|\alpha x - z\| = |\alpha| \|x - z/\alpha\| \ge |\alpha| \|\overline{x}\| \text{ since } z/\alpha \in \mathbb{N}.
$$

Taking an infimum over all $z \in N$ in the inequality implies that $\|\overline{\alpha x}\| \ge |\alpha| \|\overline{x}\|$ (and this also holds if $\alpha = 0$).

Theorem 2.27 (continued 1)

(a) The quantity $\|\overline{x}\|$ defines a norm on X/N .

Proof (continued). Given $x_1, x_2 \in X$ and any $\varepsilon > 0$, choose $z_1, z_2 \in N$ so that $||x_1 - z_1|| < ||\overline{x}_1|| + \varepsilon/2$ and $||x_2 - z_2|| < ||\overline{x}_2|| + \varepsilon/2$. Then

$$
\|\overline{x}_1 + \overline{x}_2\| = \|\overline{x}_1 + \overline{x}_2\|
$$

\n
$$
\leq \| (x_1 + x_2) - (z_1 + z_2) \| \text{ since } \|\overline{x}_1 + \overline{x}_2\| \text{ is an infimum}
$$

\n
$$
\leq \|x_1 - z_1\| + \|x_2 - z_2\| \text{ by the Triangle Inequality in } (X, \|\cdot\|)
$$

\n
$$
< \|\overline{x}_1\| + \|\overline{x}_2\| + \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, the Triangle Inequality holds on the X/N "norm." For $x \in X$ and $\alpha \in \mathbb{F}$, $\alpha \neq 0$, fixed and for any $z \in N$, we have

$$
\|\alpha x - z\| = |\alpha| \|x - z/\alpha\| \ge |\alpha| \|\overline{x}\| \text{ since } z/\alpha \in \mathbb{N}.
$$

Taking an infimum over all $z \in N$ in the inequality implies that $\|\overline{\alpha x}\| \ge |\alpha| \|\overline{x}\|$ (and this also holds if $\alpha = 0$).

Theorem 2.27 (continued 2)

Theorem 2.27. Let N be a closed subspace of the normed linear space X . (a) The quantity $\|\overline{x}\|$ defines a norm on X/N .

Proof (continued). Given $r > 1$, choose $z_0 \in N$ such that $\|x - z_0\| \le r \|\overline{x}\|$ (this can be done since $r\|\overline{x}\| > \|\overline{x}\|$). Then

$$
\|\overline{\alpha x}\| \leq \|\alpha x - \alpha z_0\| \text{ since } \alpha z_0 \in \mathbb{N}
$$

= $|\alpha| \|x - z_0\|$
 $\leq |\alpha| r \|\overline{x}\| \text{ since } \|x - z_0\| \leq r \|\overline{x}\|.$

Since this holds for all $r > 1$, it holds for $r = 1$ (taking a limit as $r \rightarrow 1^+)$ and $\|\overline{\alpha}\overline{x}\| \leq |\alpha| \|\overline{x}\|$. Combining this with the above yields $\|\overline{\alpha}\overline{x}\| = |\alpha|\|\overline{x}\|$ and the scalar property holds.

Theorem 2.27 (continued 3)

Theorem 2.27. Let N be a closed subspace of the normed linear space X . (a) The quantity $\|\overline{x}\|$ defines a norm on X/N .

Proof. (continued). Notice that $\|\overline{x}\| = 0$ if and only if

 $\inf\{\|x - z\| \mid z \in N\} = 0$

which, in turn, holds if and only if $x \in N$ (since N is a closed linear space by hypothesis). Since N is the additive identity of X/N then $\|\overline{x}\| = 0$ if and only if $\overline{x} = N = 0$.

So $\|\cdot\|$ satisfies the definition of a norm and hence defines a norm on X/N , as claimed.

Theorem 2.27 (continued 4)

Theorem 2.27. Let N be a closed subspace of the normed linear space X . **(b)** If X is a Banach space, then X/N is a Banach space.

Proof (continued). Suppose $\sum \overline{\mathsf{x}}_i$ is an absolutely convergent series in X/N . For each $i \in \mathbb{N}$, choose $z_i \in N$ such that $||x_i - z_i|| \le ||\overline{x}_i|| + 1/2^i$. Then

$$
\sum_{i=1}^{\infty}||x_i-z_i||\leq \sum_{i=1}^{\infty}\left(||\overline{x}_i||+1/2^i\right)<\infty.
$$

So $\sum (x_i - z_i)$ is absolutely convergent and, since X is a Banach space, then by Theorem 2.12, $\sum (x_i - z_i)$ is convergent. Now π_N is linear and is shown to be bounded in part (c) , so is continuous by Theorem 2.6. Now $\pi_N(x_i-z_i)=\overline{x}_i$, so $\pi_N(\sum (x_i-z_i))=\sum \pi_N(x_i-z_i)=\sum \overline{x}_i$ and $\sum \overline{x}_i$ is convergent (to $\pi_N\sum(\mathsf{x}_i-\mathsf{z}_i)$). By Theorem 2.12, X/N is a Banach Space, as claimed.

Theorem 2.27 (continued 4)

Theorem 2.27. Let N be a closed subspace of the normed linear space X . **(b)** If X is a Banach space, then X/N is a Banach space.

Proof (continued). Suppose $\sum \overline{\mathsf{x}}_i$ is an absolutely convergent series in X/N . For each $i \in \mathbb{N}$, choose $z_i \in N$ such that $||x_i - z_i|| \le ||\overline{x}_i|| + 1/2^i$. Then

$$
\sum_{i=1}^{\infty}||x_i-z_i||\leq \sum_{i=1}^{\infty}\left(||\overline{x}_i||+1/2^i\right)<\infty.
$$

So $\sum (x_i - z_i)$ is absolutely convergent and, since X is a Banach space, then by Theorem 2.12, $\sum (x_i - z_i)$ is convergent. Now π_N is linear and is shown to be bounded in part (c), so is continuous by Theorem 2.6. Now $\pi_N(x_i-z_i)=\overline{x}_i$, so $\pi_N(\sum (x_i-z_i))=\sum \pi_N(x_i-z_i)=\sum \overline{x}_i$ and $\sum \overline{x}_i$ is convergent (to $\pi_N\sum(\mathsf{x}_i-\mathsf{z}_i)$). By Theorem 2.12, X/N is a Banach Space, as claimed.

Theorem 2.27 (continued 5)

(c) $\|\pi_N\| = 1$.

Proof (continued). We have by the operator norm definition that

 $\|\pi_N\| = \sup\{\|\pi_N(x)\| \mid x \in X, \|x\| = 1\}.$

Now $\pi_N(x) = \overline{x}$ and $\|\overline{x}\| = \inf\{\|x - z\| \mid z \in N\}$ and since N is a linear subspace, then $0 \in N$ and $\|\overline{x}\| \leq \|x\|$. With $\|x\| = 1$ we have $\|\pi_N(x)\| = \|\overline{x}\| \leq 1$ and so $\|\pi_N\| \leq 1$. Now let $\overline{x} \in X/N$ satisfy $\|\overline{x}\| = 1$. Given $r > 1$, choose $z \in N$ such that $||x - z|| \le r$ (this can be done by the definition of $\|\overline{x}\|$ in terms of an infimum). Then by Note 2.4.A,

$$
1 = ||\overline{x}|| = ||\pi_N(x - z)|| \text{ since } z \in N
$$

$$
\leq ||\pi_N|| ||x - z|| \leq ||\pi_N||r.
$$

Since $r>1$ is arbitrary, the inequality holds as $r\rightarrow 1^+$ and so $1\leq \|\pi_N\|.$ Therefore $\|\pi_N\| = 1$, as claimed.

Theorem 2.27 (continued 5)

(c) $\|\pi_N\| = 1$.

Proof (continued). We have by the operator norm definition that

$$
\|\pi_N\| = \sup\{\|\pi_N(x)\| \mid x \in X, \|x\| = 1\}.
$$

Now $\pi_N(x) = \overline{x}$ and $\|\overline{x}\| = \inf\{\|x - z\| \mid z \in N\}$ and since N is a linear subspace, then $0 \in N$ and $\|\overline{x}\| \leq \|x\|$. With $\|x\| = 1$ we have $\|\pi_N(x)\| = \|\overline{x}\| \leq 1$ and so $\|\pi_N\| \leq 1$. Now let $\overline{x} \in X/N$ satisfy $\|\overline{x}\| = 1$. Given $r > 1$, choose $z \in N$ such that $||x - z|| \le r$ (this can be done by the definition of $\|\overline{x}\|$ in terms of an infimum). Then by Note 2.4.A,

$$
1 = \|\overline{x}\| = \|\pi_N(x - z)\| \text{ since } z \in N
$$

$$
\leq \|\pi_N\| \|x - z\| \leq \|\pi_N\| r.
$$

Since $r>1$ is arbitrary, the inequality holds as $r\rightarrow 1^+$ and so $1\leq \|\pi_N\|.$ Therefore $\|\pi_N\| = 1$, as claimed.

Theorem 2.27 (continued 6)

(d) If $N = N(T)$ (the nullspace of bounded linear $T : X \rightarrow Y$) then the map \tilde{T} : $X/N \rightarrow Y$ defined as $\tilde{T}\overline{x} = Tx$ has the same norm as T: $\|\tilde{\tau}\|=\|\tau\|.$

Proof of (d). As in the proof of part (c), if $x \in X$ satisfies $||x|| = 1$, then $\|\overline{x}\|$ < 1, and by Note 2.4.A

$$
\|Tx\|=\|\tilde{T}\overline{x}\|\leq \|\tilde{T}\|\|\overline{x}\|\leq \|\tilde{T}\|.
$$

So taking a supremum over all such x implies that $\|T\| = \sup\{\|Tx\| \mid x \in X, \|x\| = 1\} \le \|\tilde{T}\|$. Next, given $\overline{x} \in X/N$ where $\|\overline{x}\| = 1$, for any $r > 1$ there is $z \in N$ such that $\|x - z\| \le r$ by the definition of $\|\overline{x}\|$ in terms of infimum. Then,

$$
\|\tilde{T}\overline{x}\| = \|Tx\| = \|T(x - z)\| \text{ since } z \in N
$$

$$
\leq \|T\| \|x - z\| \leq \|T\| |r|.
$$

Again, letting $r\rightarrow 1^{+}$ (and then taking suprema over all such $\overline{\mathsf{x}})$ we get $||T|| < ||T||$ and the result follows.

Theorem 2.27 (continued 6)

(d) If $N = N(T)$ (the nullspace of bounded linear $T : X \rightarrow Y$) then the map \tilde{T} : $X/N \rightarrow Y$ defined as $\tilde{T}\overline{x} = Tx$ has the same norm as T: $\|\tilde{T}\| = \|T\|.$

Proof of (d). As in the proof of part (c), if $x \in X$ satisfies $||x|| = 1$, then $\|\overline{x}\|$ < 1, and by Note 2.4.A

$$
\|Tx\|=\|\tilde{T}\overline{x}\|\leq \|\tilde{T}\|\|\overline{x}\|\leq \|\tilde{T}\|.
$$

So taking a supremum over all such x implies that $||T|| = \sup{||Tx|| | x \in X, ||x|| = 1} \le ||T||$. Next, given $\overline{x} \in X/N$ where $\|\overline{x}\| = 1$, for any $r > 1$ there is $z \in N$ such that $\|x - z\| \le r$ by the definition of $\|\overline{x}\|$ in terms of infimum. Then,

$$
\|\tilde{T}\overline{x}\| = \|Tx\| = \|T(x-z)\| \text{ since } z \in N
$$

$$
\leq \|T\| \|x-z\| \leq \|T\| |r.
$$

Again, letting $r\rightarrow 1^{+}$ (and then taking suprema over all such $\overline{\mathsf{x}})$ we get $||T|| \le ||T||$ and the result follows.