Introduction to Functional Analysis

Chapter 2. Normed Linear Spaces: The Basics 2.7. Quotient Spaces—Proofs of Theorems

Table of contents

Theorem 2.27

Theorem 2.27. Let N be a closed subspace of the normed linear space X.

- (a) The quantity $\|\overline{x}\|$ defines a norm on X/N.
- (b) If X is a Banach space, then X/N is a Banach space.

(c)
$$\|\pi_N\| = 1.$$

(d) If N = N(T) (the nullspace of bounded linear $T : X \to Y$) then the map $\tilde{T} : X/N \to Y$ defined as $\tilde{T}\overline{x} = Tx$ has the same norm as $T : ||\tilde{T}|| = ||T||$.

Proof. Recall that for $\overline{x} \in X/N$, we define the (alleged) norm on X/N as

$$\|\overline{x}\| = \inf\{\|x - z\| \mid z \in N\} = d(x, N).$$

Theorem 2.27

Theorem 2.27. Let N be a closed subspace of the normed linear space X.

- (a) The quantity $\|\overline{x}\|$ defines a norm on X/N.
- (b) If X is a Banach space, then X/N is a Banach space.

(c)
$$\|\pi_N\| = 1.$$

(d) If N = N(T) (the nullspace of bounded linear $T : X \to Y$) then the map $\tilde{T} : X/N \to Y$ defined as $\tilde{T}\overline{x} = Tx$ has the same norm as $T : ||\tilde{T}|| = ||T||$.

Proof. Recall that for $\overline{x} \in X/N$, we define the (alleged) norm on X/N as

$$\|\overline{x}\| = \inf\{\|x - z\| \mid z \in N\} = d(x, N).$$

Theorem 2.27 (continued 1)

(a) The quantity $\|\overline{x}\|$ defines a norm on X/N.

Proof (continued). Given $x_1, x_2 \in X$ and any $\varepsilon > 0$, choose $z_1, z_2 \in N$ so that $||x_1 - z_1|| < ||\overline{x}_1|| + \varepsilon/2$ and $||x_2 - z_2|| < ||\overline{x}_2|| + \varepsilon/2$. Then

$$\begin{aligned} \|\overline{x}_{1} + \overline{x}_{2}\| &= \|\overline{x_{1} + x_{2}}\| \\ &\leq \|(x_{1} + x_{2}) - (z_{1} + z_{2})\| \text{ since } \|\overline{x_{1} + x_{2}}\| \text{ is an infimum} \\ &\leq \|x_{1} - z_{1}\| + \|x_{2} - z_{2}\| \text{ by the Triangle Inequality in } (X, \|\cdot\|) \\ &< \|\overline{x}_{1}\| + \|\overline{x}_{2}\| + \varepsilon. \end{aligned}$$

Since $\varepsilon > 0$ is arbitrary, the Triangle Inequality holds on the X/N "norm."

Theorem 2.27 (continued 1)

(a) The quantity $\|\overline{x}\|$ defines a norm on X/N.

Proof (continued). Given $x_1, x_2 \in X$ and any $\varepsilon > 0$, choose $z_1, z_2 \in N$ so that $||x_1 - z_1|| < ||\overline{x}_1|| + \varepsilon/2$ and $||x_2 - z_2|| < ||\overline{x}_2|| + \varepsilon/2$. Then

$$\begin{aligned} \|\overline{x}_1 + \overline{x}_2\| &= \|\overline{x_1 + x_2}\| \\ &\leq \|(x_1 + x_2) - (z_1 + z_2)\| \text{ since } \|\overline{x_1 + x_2}\| \text{ is an infimum} \\ &\leq \|x_1 - z_1\| + \|x_2 - z_2\| \text{ by the Triangle Inequality in } (X, \|\cdot\|) \\ &< \|\overline{x}_1\| + \|\overline{x}_2\| + \varepsilon. \end{aligned}$$

Since $\varepsilon > 0$ is arbitrary, the Triangle Inequality holds on the X/N "norm." For $x \in X$ and $\alpha \in \mathbb{F}$, $\alpha \neq 0$, fixed and for any $z \in N$, we have

$$\|\alpha x - z\| = |\alpha| \|x - z/\alpha\| \ge |\alpha| \|\overline{x}\|$$
 since $z/\alpha \in N$.

Taking an infimum over all $z \in N$ in the inequality implies that $\|\overline{\alpha x}\| \ge |\alpha| \|\overline{x}\|$ (and this also holds if $\alpha = 0$).

Theorem 2.27 (continued 1)

(a) The quantity $\|\overline{x}\|$ defines a norm on X/N.

Proof (continued). Given $x_1, x_2 \in X$ and any $\varepsilon > 0$, choose $z_1, z_2 \in N$ so that $||x_1 - z_1|| < ||\overline{x}_1|| + \varepsilon/2$ and $||x_2 - z_2|| < ||\overline{x}_2|| + \varepsilon/2$. Then

$$\begin{aligned} \|\overline{x}_1 + \overline{x}_2\| &= \|\overline{x_1 + x_2}\| \\ &\leq \|(x_1 + x_2) - (z_1 + z_2)\| \text{ since } \|\overline{x_1 + x_2}\| \text{ is an infimum} \\ &\leq \|x_1 - z_1\| + \|x_2 - z_2\| \text{ by the Triangle Inequality in } (X, \| \cdot \|) \\ &< \|\overline{x}_1\| + \|\overline{x}_2\| + \varepsilon. \end{aligned}$$

Since $\varepsilon > 0$ is arbitrary, the Triangle Inequality holds on the X/N "norm." For $x \in X$ and $\alpha \in \mathbb{F}$, $\alpha \neq 0$, fixed and for any $z \in N$, we have

$$\|\alpha x - z\| = |\alpha| \|x - z/\alpha\| \ge |\alpha| \|\overline{x}\|$$
 since $z/\alpha \in N$.

Taking an infimum over all $z \in N$ in the inequality implies that $\|\overline{\alpha x}\| \ge |\alpha| \|\overline{x}\|$ (and this also holds if $\alpha = 0$).

Theorem 2.27 (continued 2)

Theorem 2.27. Let N be a closed subspace of the normed linear space X. (a) The quantity $\|\overline{x}\|$ defines a norm on X/N.

Proof (continued). Given r > 1, choose $z_0 \in N$ such that $||x - z_0|| \le r ||\overline{x}||$ (this can be done since $r ||\overline{x}|| > ||\overline{x}||$). Then

$$\begin{aligned} \|\overline{\alpha x}\| &\leq \|\alpha x - \alpha z_0\| \text{ since } \alpha z_0 \in N \\ &= |\alpha| \|x - z_0\| \\ &\leq |\alpha| r \|\overline{x}\| \text{ since } \|x - z_0\| \leq r \|\overline{x}\|. \end{aligned}$$

Since this holds for all r > 1, it holds for r = 1 (taking a limit as $r \to 1^+$) and $\|\overline{\alpha x}\| \le |\alpha| \|\overline{x}\|$. Combining this with the above yields $\|\overline{\alpha x}\| = |\alpha| \|\overline{x}\|$ and the scalar property holds.

Theorem 2.27 (continued 3)

Theorem 2.27. Let N be a closed subspace of the normed linear space X. (a) The quantity $\|\overline{x}\|$ defines a norm on X/N.

Proof. (continued). Notice that $\|\overline{x}\| = 0$ if and only if

$$\inf\{\|x - z\| \mid z \in N\} = 0$$

which, in turn, holds if and only if $x \in N$ (since N is a closed linear space by hypothesis). Since N is the additive identity of X/N then $\|\overline{x}\| = 0$ if and only if $\overline{x} = N = 0$.

So $\|\cdot\|$ satisfies the definition of a norm and hence defines a norm on X/N, as claimed.

Theorem 2.27 (continued 4)

Theorem 2.27. Let N be a closed subspace of the normed linear space X. (b) If X is a Banach space, then X/N is a Banach space.

Proof (continued). Suppose $\sum \overline{x}_i$ is an absolutely convergent series in X/N. For each $i \in \mathbb{N}$, choose $z_i \in N$ such that $||x_i - z_i|| \le ||\overline{x}_i|| + 1/2^i$. Then

$$\sum_{i=1}^{\infty} \|x_i - z_i\| \leq \sum_{i=1}^{\infty} \left(\|\overline{x}_i\| + 1/2^i \right) < \infty.$$

So $\sum (x_i - z_i)$ is absolutely convergent and, since X is a Banach space, then by Theorem 2.12, $\sum (x_i - z_i)$ is convergent. Now π_N is linear and is shown to be bounded in part (c), so is continuous by Theorem 2.6. Now $\pi_N(x_i - z_i) = \overline{x}_i$, so $\pi_N(\sum (x_i - z_i)) = \sum \pi_N(x_i - z_i) = \sum \overline{x}_i$ and $\sum \overline{x}_i$ is convergent (to $\pi_N \sum (x_i - z_i)$). By Theorem 2.12, X/N is a Banach Space, as claimed.

Theorem 2.27 (continued 4)

Theorem 2.27. Let N be a closed subspace of the normed linear space X. (b) If X is a Banach space, then X/N is a Banach space.

Proof (continued). Suppose $\sum \overline{x}_i$ is an absolutely convergent series in X/N. For each $i \in \mathbb{N}$, choose $z_i \in N$ such that $||x_i - z_i|| \le ||\overline{x}_i|| + 1/2^i$. Then

$$\sum_{i=1}^{\infty} \|x_i-z_i\| \leq \sum_{i=1}^{\infty} \left(\|\overline{x}_i\|+1/2^i\right) < \infty.$$

So $\sum (x_i - z_i)$ is absolutely convergent and, since X is a Banach space, then by Theorem 2.12, $\sum (x_i - z_i)$ is convergent. Now π_N is linear and is shown to be bounded in part (c), so is continuous by Theorem 2.6. Now $\pi_N(x_i - z_i) = \overline{x}_i$, so $\pi_N(\sum (x_i - z_i)) = \sum \pi_N(x_i - z_i) = \sum \overline{x}_i$ and $\sum \overline{x}_i$ is convergent (to $\pi_N \sum (x_i - z_i)$). By Theorem 2.12, X/N is a Banach Space, as claimed.

Theorem 2.27 (continued 5)

(c) $\|\pi_N\| = 1.$

Proof (continued). We have by the operator norm definition that

 $\|\pi_N\| = \sup\{\|\pi_N(x)\| \mid x \in X, \|x\| = 1\}.$

Now $\pi_N(x) = \overline{x}$ and $\|\overline{x}\| = \inf\{\|x - z\| \mid z \in N\}$ and since N is a linear subspace, then $0 \in N$ and $\|\overline{x}\| \le \|x\|$. With $\|x\| = 1$ we have $\|\pi_N(x)\| = \|\overline{x}\| \le 1$ and so $\|\pi_N\| \le 1$. Now let $\overline{x} \in X/N$ satisfy $\|\overline{x}\| = 1$. Given r > 1, choose $z \in N$ such that $\|x - z\| \le r$ (this can be done by the definition of $\|\overline{x}\|$ in terms of an infimum). Then by Note 2.4.A,

$$1 = \|\overline{x}\| = \|\pi_N(x - z)\| \text{ since } z \in N$$

$$\leq \|\pi_N\|\|x - z\| \leq \|\pi_N\|r.$$

Since r > 1 is arbitrary, the inequality holds as $r \to 1^+$ and so $1 \le ||\pi_N||$. Therefore $||\pi_N|| = 1$, as claimed.

Theorem 2.27 (continued 5)

(c) $\|\pi_N\| = 1.$

Proof (continued). We have by the operator norm definition that

 $\|\pi_N\| = \sup\{\|\pi_N(x)\| \mid x \in X, \|x\| = 1\}.$

Now $\pi_N(x) = \overline{x}$ and $\|\overline{x}\| = \inf\{\|x - z\| \mid z \in N\}$ and since N is a linear subspace, then $0 \in N$ and $\|\overline{x}\| \le \|x\|$. With $\|x\| = 1$ we have $\|\pi_N(x)\| = \|\overline{x}\| \le 1$ and so $\|\pi_N\| \le 1$. Now let $\overline{x} \in X/N$ satisfy $\|\overline{x}\| = 1$. Given r > 1, choose $z \in N$ such that $\|x - z\| \le r$ (this can be done by the definition of $\|\overline{x}\|$ in terms of an infimum). Then by Note 2.4.A,

$$1 = \|\overline{x}\| = \|\pi_N(x-z)\| \text{ since } z \in N$$

$$\leq \|\pi_N\|\|x-z\| \leq \|\pi_N\|r.$$

Since r > 1 is arbitrary, the inequality holds as $r \to 1^+$ and so $1 \le ||\pi_N||$. Therefore $||\pi_N|| = 1$, as claimed.

Theorem 2.27 (continued 6)

(d) If N = N(T) (the nullspace of bounded linear $T : X \to Y$) then the map $\tilde{T} : X/N \to Y$ defined as $\tilde{T}\overline{x} = Tx$ has the same norm as T: $\|\tilde{T}\| = \|T\|$.

Proof of (d). As in the proof of part (c), if $x \in X$ satisfies ||x|| = 1, then $||\overline{x}|| \le 1$, and by Note 2.4.A

$$\|T\mathbf{x}\| = \|\tilde{T}\overline{\mathbf{x}}\| \le \|\tilde{T}\|\|\overline{\mathbf{x}}\| \le \|\tilde{T}\|.$$

So taking a supremum over all such x implies that $\|T\| = \sup\{\|Tx\| \mid x \in X, \|x\| = 1\} \le \|\tilde{T}\|$. Next, given $\overline{x} \in X/N$ where $\|\overline{x}\| = 1$, for any r > 1 there is $z \in N$ such that $\|x - z\| \le r$ by the definition of $\|\overline{x}\|$ in terms of infimum. Then,

$$\|\tilde{T}\overline{x}\| = \|Tx\| = \|T(x-z)\| \text{ since } z \in N$$

 $\leq \|T\|\|x-z\| \leq \|T\|r.$

Again, letting $r \to 1^+$ (and then taking suprema over all such \overline{x}) we get $\|\tilde{T}\| \leq \|T\|$ and the result follows.

Theorem 2.27 (continued 6)

(d) If N = N(T) (the nullspace of bounded linear $T : X \to Y$) then the map $\tilde{T} : X/N \to Y$ defined as $\tilde{T}\overline{x} = Tx$ has the same norm as T: $\|\tilde{T}\| = \|T\|$.

Proof of (d). As in the proof of part (c), if $x \in X$ satisfies ||x|| = 1, then $||\overline{x}|| \le 1$, and by Note 2.4.A

$$\|T\mathbf{x}\| = \|\tilde{T}\overline{\mathbf{x}}\| \le \|\tilde{T}\|\|\overline{\mathbf{x}}\| \le \|\tilde{T}\|.$$

So taking a supremum over all such x implies that $||T|| = \sup\{||Tx|| \mid x \in X, ||x|| = 1\} \le ||\tilde{T}||$. Next, given $\bar{x} \in X/N$ where $||\bar{x}|| = 1$, for any r > 1 there is $z \in N$ such that $||x - z|| \le r$ by the definition of $||\bar{x}||$ in terms of infimum. Then,

$$\|\widetilde{T}\overline{x}\| = \|Tx\| = \|T(x-z)\| \text{ since } z \in N$$

$$\leq \|T\|\|x-z\| \leq \|T\|r.$$

Again, letting $r \to 1^+$ (and then taking suprema over all such \overline{x}) we get $\|\tilde{T}\| \leq \|T\|$ and the result follows.