Chapter 2. Normed Linear Spaces: The Basics

2.8. Finite Dimensional Normed Linear Spaces—Proofs of Theorems
<table>
<thead>
<tr>
<th></th>
<th>Proposition 2.28</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Theorem 2.29</td>
</tr>
<tr>
<td>3</td>
<td>Proposition 2.30</td>
</tr>
<tr>
<td>4</td>
<td>Theorem 2.31</td>
</tr>
<tr>
<td>5</td>
<td>Theorem 2.32</td>
</tr>
<tr>
<td>6</td>
<td>Theorem 2.33, Riesz’s Lemma</td>
</tr>
<tr>
<td>7</td>
<td>Theorem 2.34. Riesz’s Theorem</td>
</tr>
</tbody>
</table>
Proposition 2.28

For any normed linear space Z, all elements of $\mathcal{L}(B(F), Z)$ (the set of linear operators from $B(F)$ to Z) are bounded.

Proof. For any $T \in \mathcal{L}(B(F), Z)$, let $K = \max\{\|T\delta_i\|\}$ (notice $\delta_i \in F$ and $T\delta_i \in Z$, so the norm here is the norm in Z).
Proposition 2.28

Proposition 2.28. For any normed linear space Z, all elements of $\mathcal{L}(B(F), Z)$ (the set of linear operators from $B(F)$ to Z) are bounded.

Proof. For any $T \in \mathcal{L}(B(F), Z)$, let $K = \max\{\|T\delta_i\|\}$ (notice $\delta_i \in F$ and $T\delta_i \in Z$, so the norm here is the norm in Z). If $f \in B(F)$ and $\|f\|_\infty = 1$, then $f = \sum_{i=1}^{N} f(i)\delta_i$ and

$$
\|Tf\| = \left\| \sum_{i=1}^{N} T(f(i)\delta_i) \right\| \leq \sum_{i=1}^{N} \|T(f(i)\delta_i)\| \text{ by the Triangle Inequality}
$$

$$
= \sum_{i=1}^{N} \|f(i)T(\delta_i)\| \text{ since } T \text{ is linear}
$$

$$
= \sum_{i=1}^{N} |f(i)|\|T(\delta_i)\| \text{ by the Scalar Property}
$$
Proposition 2.28

Proposition 2.28. For any normed linear space Z, all elements of $\mathcal{L}(B(F), Z)$ (the set of linear operators from $B(F)$ to Z) are bounded.

Proof. For any $T \in \mathcal{L}(B(F), Z)$, let $K = \max\{\|T\delta_i\|\}$ (notice $\delta_i \in F$ and $T\delta_i \in Z$, so the norm here is the norm in Z). If $f \in B(F)$ and $\|f\|_\infty = 1$, then $f = \sum_{i=1}^{N} f(i)\delta_i$ and

$$
\|Tf\| = \left\| \sum_{i=1}^{N} T(f(i)\delta_i) \right\| \leq \sum_{i=1}^{N} \|T(f(i)\delta_i)\| \text{ by the Triangle Inequality}
$$

$$
= \sum_{i=1}^{N} \|f(i)T(\delta_i)\| \text{ since } T \text{ is linear}
$$

$$
= \sum_{i=1}^{N} |f(i)| \|T(\delta_i)\| \text{ by the Scalar Property}
$$
(Continued).

\[\| Tf \| = \sum_{i=1}^{N} |f(i)| \| T(\delta_i) \| \text{ by the Scalar Property} \]

\[\leq \sum_{i=1}^{N} 1 \| T(\delta_i) \| \text{ since } \| f \| = 1 \]

\[\leq \sum_{i=1}^{N} K \text{ by the definition of } K \]

\[= KN. \]

Since \(N \) and \(K \) are fixed, \(T \) is bounded.
Theorem 2.29. Closed and bounded subsets of $B(F)$ are compact.

Proof. Let $A \subseteq B(f)$ be closed and bounded and let (f_n) be a sequence in A. We construct a subsequence of (f_n) which converges. For each i (think of i as a position in an n-tuple) we have $\|f_n(i)\| \leq \|f_n\|_{\text{sup}}$, so $(f_n(i))_{n=1}^{\infty}$ is a bounded sequence (of the ith position terms).
Theorem 2.29. Closed and bounded subsets of $B(F)$ are compact.

Proof. Let $A \subseteq B(f)$ be closed and bounded and let (f_n) be a sequence in A. We construct a subsequence of (f_n) which converges. For each i (think of i as a position in an n-tuple) we have $\|f_n(i)\| \leq \|f_n\|_{\text{sup}}$, so $(f_n(i))_{n=1}^{\infty}$ is a bounded sequence (of the ith position terms). Since a bounded sequence in F (the scalar field; taken to be \mathbb{R} or \mathbb{C}) has a convergent subsequence (this follows from Weierstrass's Theorem), then there is a subsequence $(f_{n_1}(1))_{n_1=1}^{\infty}$ of $(f_n(1))_{n=1}^{\infty}$ which is convergent. Denote the limit as $f(1)$.
Theorem 2.29. Closed and bounded subsets of $B(F)$ are compact.

Proof. Let $A \subseteq B(f)$ be closed and bounded and let (f_n) be a sequence in A. We construct a subsequence of (f_n) which converges. For each i (think of i as a position in an n-tuple) we have $\|f_n(i)\| \leq \|f_n\|_{\text{sup}}$, so $(f_n(i))_{n=1}^{\infty}$ is a bounded sequence (of the ith position terms). Since a bounded sequence in \mathbb{F} (the scalar field; taken to be \mathbb{R} or \mathbb{C}) has a convergent subsequence (this follows from Weierstrass’s Theorem), then there is a subsequence $(f_{n_1}(1))_{n_1=1}^{\infty}$ of $(f_n(1))_{n=1}^{\infty}$ which is convergent. Denote the limit as $f(1)$. Next, since $(f_{n_1}(i))_{n_1=1}^{\infty}$ is bounded, then there is a subsequence $(f_{n_2}(2))_{n_2=1}^{\infty}$ of $(f_{n_1}(2))_{n_2=1}^{\infty}$ which converges, say to $f(2)$. Similarly, we iteratively construct subsequences $(f_{n_3}(3))$, $(f_{n_4}(4))$, \ldots, $(f_{n_N}(N))$ which converge to $f(3)$, $f(4)$, \ldots, $f(N)$ respectively. So for each $i \in \{1, 2, \ldots, N\}$ we have $(f_{n_N}(i))_{n_N=1}^{\infty}$ a subsequence of (f_n) which converges to $(f(i))$.
Theorem 2.29. Closed and bounded subsets of $B(F)$ are compact.

Proof. Let $A \subseteq B(f)$ be closed and bounded and let (f_n) be a sequence in A. We construct a subsequence of (f_n) which converges. For each i (think of i as a position in an n-tuple) we have $\|f_n(i)\| \leq \|f_n\|_{\text{sup}}$, so $(f_n(i))_{n=1}^{\infty}$ is a bounded sequence (of the ith position terms). Since a bounded sequence in \mathbb{F} (the scalar field; taken to be \mathbb{R} or \mathbb{C}) has a convergent subsequence (this follows from Weierstrass’s Theorem), then there is a subsequence $(f_{n_1}(1))_{n_1=1}^{\infty}$ of $(f_n(1))_{n=1}^{\infty}$ which is convergent. Denote the limit as $f(1)$. Next, since $(f_{n_1}(i))_{n_1=1}^{\infty}$ is bounded, then there is a subsequence $(f_{n_2}(2))_{n_2=1}^{\infty}$ of $(f_{n_1}(2))_{n_2=1}^{\infty}$ which converges, say to $f(2)$. Similarly, we iteratively construct subsequences $(f_{n_3}(3))$, $(f_{n_4}(4))$, \ldots, $(f_{n_N}(N))$ which converge to $f(3), f(4), \ldots, f(N)$ respectively. So for each $i \in \{1, 2, \ldots, N\}$ we have $(f_{n_N}(i))_{n_N=1}^{\infty}$ a subsequence of (f_n) which converges to $(f(i))$.
Theorem 2.29 (continued)

Theorem 2.29. Closed and bounded subsets of $B(F)$ are compact.

Proof (continued). Since $F = \{1, 2, \ldots, N\}$ is a finite set, this convergence for each i implies uniform convergence over set F. But uniform convergence is equivalent to sup norm convergence (see page 19), so sequence $f_{n_N}(i))_{n=1}^{\infty}$ converges to $f(i)$ in $B(F)$ (with respect to the sup norm).
Theorem 2.29. Closed and bounded subsets of $B(F)$ are compact.

Proof (continued). Since $F = \{1, 2, \ldots, N\}$ is a finite set, this convergence for each i implies uniform convergence over set F. But uniform convergence is equivalent to sup norm convergence (see page 19), so sequence $f_{nN}(i))_{n_{N-1}}^\infty$ converges to $f(i)$ in $B(F)$ (with respect to the sup norm). Now, since A is closed, it must be that

$$f(i)_{i=1}^N = (f(1), f(2), \ldots, f(N)) \in A.$$

So, by the second form of the definition of compact (see page 17), set A is compact.
Theorem 2.29 (continued)

Theorem 2.29. Closed and bounded subsets of $B(F)$ are compact.

Proof (continued). Since $F = \{1, 2, \ldots, N\}$ is a finite set, this convergence for each i implies uniform convergence over set F. But uniform convergence is equivalent to sup norm convergence (see page 19), so sequence $f_{nN}(i))_{n=1}^\infty$ converges to $f(i)$ in $B(F)$ (with respect to the sup norm). Now, since A is closed, it must be that

$$f(i)_{i=1}^N = (f(1), f(2), \ldots, f(N)) \in A.$$

So, by the second form of the definition of compact (see page 17), set A is compact.
Proposition 2.30

Proposition 2.30. If T is a bijective, linear operator from the normed linear space X to $B(F)$, then T is bounded.

Proof. ASSUME not; suppose T is not bounded. Then from the definition of the operator norm, for each $n \in \mathbb{N}$ there exists a unit vector $z_n \in X$ such that $\|Tz_n\| \geq n$. For each such z_n define $x_n = x_n/\|Tz_n\|$.
Proposition 2.30

Proposition 2.30. If T is a bijective, linear operator from the normed linear space X to $B(F)$, then T is bounded.

Proof. Assume not; suppose T is not bounded. Then from the definition of the operator norm, for each $n \in \mathbb{N}$ there exists a unit vector $z_n \in X$ such that $\| Tz_n \| \geq n$. For each such z_n define $x_n = x_n / \| Tz_n \|$. Then (x_n) is a sequence in X and $(x_n) \to 0$ since

$$\| x_n \| = \| z_n / \| Tz_n \| \| = 1 / \| Tz_n \| \leq 1 / n$$

for all $n \in \mathbb{N}$.

But $T(x_n) = T(z_n / \| Tz_n \|) = T(z_n) / \| Tz_n \|$ is a unit vector for each $n \in \mathbb{N}$. The set of all unit vectors in $B(F)$ has as its complement two open sets: $B(0; 1)$ (the open ball centered at 0 with radius 1) and $\overline{B}(0; 1)^c$.
Proposition 2.30

Proposition 2.30. If T is a bijective, linear operator from the normed linear space X to $B(F)$, then T is bounded.

Proof. Assume not; suppose T is not bounded. Then from the definition of the operator norm, for each $n \in \mathbb{N}$ there exists a unit vector $z_n \in X$ such that $\|Tz_n\| \geq n$. For each such z_n define $x_n = x_n/\|Tz_n\|$. Then (x_n) is a sequence in X and $(x_n) \to 0$ since

$$\|x_n\| = \|z_n\|/\|Tz_n\| = 1/\|Tz_n\| \leq 1/n$$

for all $n \in \mathbb{N}$.

But $T(x_n) = T(z_n/\|Tz_n\|) = T(z_n)/\|Tz_n\|$ is a unit vector for each $n \in \mathbb{N}$. The set of all unit vectors in $B(F)$ has as its complement two open sets: $B(0;1)$ (the open ball centered at 0 with radius 1) and $\overline{B}(0;1)^c$. So the complement is open and the set of all unit vectors in $B(F)$ is closed (and, of course, bounded). By Proposition 2.29, this set is compact. So, by the second definition of compact, there is a subsequence of (Tx_n), say (Tx_{n_k}), which converges to some y in the set of unit vectors in $B(F)$.

Proposition 2.30. If T is a bijective, linear operator from the normed linear space X to $B(F)$, then T is bounded.

Proof. ASSUME not; suppose T is not bounded. Then from the definition of the operator norm, for each $n \in \mathbb{N}$ there exists a unit vector $z_n \in X$ such that $\|Tz_n\| \geq n$. For each such z_n define $x_n = x_n/\|Tz_n\|$. Then (x_n) is a sequence in X and $(x_n) \to 0$ since

$$
\|x_n\| = \|z_n\|/\|Tz_n\| = 1/\|Tz_n\| \leq 1/n \text{ for all } n \in \mathbb{N}.
$$

But $T(x_n) = T(z_n/\|Tz_n\|) = T(z_n)/\|Tz_n\|$ is a unit vector for each $n \in \mathbb{N}$. The set of all unit vectors in $B(F)$ has as its complement two open sets: $B(0; 1)$ (the open ball centered at 0 with radius 1) and $\overline{B}(0; 1)^c$. So the complement is open and the set of all unit vectors in $B(F)$ is closed (and, of course, bounded). By Proposition 2.29, this set is compact. So, by the second definition of compact, there is a subsequence of (Tx_n), say (Tx_{n_k}), which converges to some y in the set of unit vectors in $B(F)$.
Proposition 2.30. If T is a bijective, linear operator from the normed linear space X to $B(F)$, then T is bounded.

Proof (continued). Since $T : X \rightarrow B(F)$ is bijective (one to one and onto) and T is linear, then there exists $T^{-1} : B(F) \rightarrow X$ that is bijective and linear. That is, $T^{-1} \in \mathcal{L}(B(F), X)$. So by Proposition 2.28, T^{-1} is bounded. Hence, by Theorem 2.6, T^{-1} is uniformly continuous on $B(F)$ and

$$T^{-1}y = T^{-1}\left(\lim Tx_{n_k}\right) = \lim\left(T^{-1}Tx_{n_k}\right) = \lim x_{n_k} = 0.$$ But y is a unit vector and so $y \neq 0$, a CONTRADICTION to the original assumption of unboundedness of T. Therefore, T is bounded.
Proposition 2.30. If T is a bijective, linear operator from the normed linear space X to $B(F)$, then T is bounded.

Proof (continued). Since $T : X \rightarrow B(F)$ is bijective (one to one and onto) and T is linear, then there exists $T^{-1} : B(F) \rightarrow X$ that is bijective and linear. That is, $T^{-1} \in \mathcal{L}(B(F), X)$. So by Proposition 2.28, T^{-1} is bounded. Hence, by Theorem 2.6, T^{-1} is uniformly continuous on $B(F)$ and

$$T^{-1}y = T^{-1}(\lim Tx_{n_k}) = \lim(T^{-1}Tx_{n_k}) = \lim x_{n_k} = 0.$$

But y is a unit vector and so $y \neq 0$, a CONTRADICTION to the original assumption of unboundedness of T. Therefore, T is bounded. \qed
Theorem 2.31.

(a) Any linear operator $T : X \to Z$, where X is finite dimensional, is bounded.

(b) All norms on a finite dimensional space are equivalent and all finite dimensional normed linear spaces over field \mathbb{F} (where \mathbb{F} is \mathbb{R} or \mathbb{C}) are complete.

(c) Any finite-dimensional subspace of a normed linear space is closed.
Theorem 2.31(a)

(a) Any linear operator $T : X \rightarrow Z$, where X is finite dimensional, is bounded.

Proof of (a). Suppose \(\{ e_1, e_2, \ldots, e_n \} \) is a basis for X. Since we know some properties of linear operators to and from $B(F)$ by Propositions 2.28 and 2.30, we introduce $J : X \rightarrow B(F)$ as $Je_i = \delta_i$ where δ_i is the ith standard basis element of $B(F)$.
Theorem 2.31(a)

(a) Any linear operator $T : X \to Z$, where X is finite dimensional, is bounded.

Proof of (a). Suppose \(\{e_1, e_2, \ldots, e_n\}\) is a basis for X. Since we know some properties of linear operators to and from $B(F)$ by Propositions 2.28 and 2.30, we introduce $J : X \to B(F)$ as $Je_i = \delta_i$ where δ_i is the ith standard basis element of $B(F)$. Then J is a linear bijection from X to $B(F)$ (recall from Linear Algebra that a bijection from the basis of one vector space to the basis of another vector space is in fact a bijection between the vector spaces themselves—this is how the proof of the Fundamental Theorem of Finite Dimensional Vector Spaces goes).
Theorem 2.31(a)

(a) Any linear operator \(T : X \to Z \), where \(X \) is finite dimensional, is bounded.

Proof of (a). Suppose \(\{e_1, e_2, \ldots, e_n\} \) is a basis for \(X \). Since we know some properties of linear operators to and from \(B(F) \) by Propositions 2.28 and 2.30, we introduce \(J : X \to B(F) \) as \(Je_i = \delta_i \) where \(\delta_i \) is the \(i \)th standard basis element of \(B(F) \). Then \(J \) is a linear bijection from \(X \) to \(B(F) \) (recall from Linear Algebra that a bijection from the basis of one vector space to the basis of another vector space is in fact a bijection between the vector spaces themselves—this is how the proof of the Fundamental Theorem of Finite Dimensional Vector Spaces goes). So \(J^{-1} : B(F) \to X \) exists (and is linear) and we have \(TJ^{-1} : B(F) \to Z \) is linear (a composition of linear operators is linear) and so by Proposition 2.28, \(TJ^{-1} \) is bounded. By Proposition 2.30, \(J \) is bounded. Next, \(T = (TJ^{-1})J \) and so by Proposition 2.8, \(\|T\| \leq \|TJ^{-1}\|||J|| \) and so \(T \) is bounded.
Theorem 2.31(a)

(a) Any linear operator \(T : X \to Z \), where \(X \) is finite dimensional, is bounded.

Proof of (a). Suppose \(\{ e_1, e_2, \ldots, e_n \} \) is a basis for \(X \). Since we know some properties of linear operators to and from \(B(F) \) by Propositions 2.28 and 2.30, we introduce \(J : X \to B(F) \) as \(Je_i = \delta_i \) where \(\delta_i \) is the \(i \)th standard basis element of \(B(F) \). Then \(J \) is a linear bijection from \(X \) to \(B(F) \) (recall from Linear Algebra that a bijection from the basis of one vector space to the basis of another vector space is in fact a bijection between the vector spaces themselves—this is how the proof of the Fundamental Theorem of Finite Dimensional Vector Spaces goes). So \(J^{-1} : B(F) \to X \) exists (and is linear) and we have \(TJ^{-1} : B(F) \to Z \) is linear (a composition of linear operators is linear) and so by Proposition 2.28, \(TJ^{-1} \) is bounded. By Proposition 2.30, \(J \) is bounded. Next, \(T = (TJ^{-1})J \) and so by Proposition 2.8, \(\| T \| \leq \| TJ^{-1} \| \| J \| \) and so \(T \) is bounded.
(b) All norms on a finite dimensional space are equivalent and all finite dimensional normed linear spaces over field F (where F is \mathbb{R} or \mathbb{C}) are complete.

Proof of (b). Consider $\| \cdot \|_1$ and $\| \cdot \|_2$ on finite dimensional normed linear space X. Define $T : (X, \| \cdot \|_1) \to (X, \| \cdot \|_2)$ as the identity map. By part (a), T is bounded. Let $(x_n) \to x$ with respect to $\| \cdot \|_1$.
Theorem 2.31(b)

(b) All norms on a finite dimensional space are equivalent and all finite dimensional normed linear spaces over field \mathbb{F} (where \mathbb{F} is \mathbb{R} or \mathbb{C}) are complete.

Proof of (b). Consider $\| \cdot \|_1$ and $\| \cdot \|_2$ on finite dimensional normed linear space X. Define $T : (X, \| \cdot \|_1) \rightarrow (X, \| \cdot \|_2)$ as the identity map. By part (a), T is bounded. Let $(x_n) \rightarrow x$ with respect to $\| \cdot \|_1$. Then for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\|x_n - x\|_1 < \varepsilon/\|T\|$. But then for $n \geq N$ we have

$$\|x_n - x\|_2 = \|Tx_n - Tx\|_2 = \|T(x_n - x)\|_2 \leq \|T\| \|x_n - x\|_1 \leq \varepsilon$$

and so $(x_n) \rightarrow x$ with respect to $\| \cdot \|_2$. So $\| \cdot \|_2$ is weaker than $\| \cdot \|_1$.
Theorem 2.31(b)

(b) All norms on a finite dimensional space are equivalent and all finite dimensional normed linear spaces over field \mathbb{F} (where \mathbb{F} is \mathbb{R} or \mathbb{C}) are complete.

Proof of (b). Consider $\| \cdot \|_1$ and $\| \cdot \|_2$ on finite dimensional normed linear space X. Define $T : (X, \| \cdot \|_1) \rightarrow (X, \| \cdot \|_2)$ as the identity map. By part (a), T is bounded. Let $(x_n) \rightarrow x$ with respect to $\| \cdot \|_1$. Then for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\|x_n - x\|_1 < \varepsilon / \|T\|$. But then for $n \geq N$ we have

$$\|x_n - x\|_2 = \|Tx_n - Tx\|_2 = \|T(x_n - x)\|_2 \leq \|T\|\|x_n - x\|_1 \leq \varepsilon$$

and so $(x_n) \rightarrow x$ with respect to $\| \cdot \|_2$. So $\| \cdot \|_2$ is weaker than $\| \cdot \|_1$. Similarly, taking $T : (X, \| \cdot \|_2) \rightarrow (X, \| \cdot \|_1)$ as the identity we can show that $\| \cdot \|_1$ is weaker than $\| \cdot \|_2$. So $\| \cdot \|_1$ and $\| \cdot \|_2$ are equivalent.
(b) All norms on a finite dimensional space are equivalent and all finite dimensional normed linear spaces over field \(F \) (where \(F \) is \(\mathbb{R} \) or \(\mathbb{C} \)) are complete.

Proof of (b). Consider \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) on finite dimensional normed linear space \(X \). Define \(T : (X, \| \cdot \|_1) \to (X, \| \cdot \|_2) \) as the identity map. By part (a), \(T \) is bounded. Let \((x_n) \to x \) with respect to \(\| \cdot \|_1 \). Then for all \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that for all \(n \geq N \) we have \(\| x_n - x \|_1 < \varepsilon / \| T \| \). But then for \(n \geq N \) we have

\[
\| x_n - x \|_2 = \| Tx_n - Tx \|_2 = \| T(x_n - x) \|_2 \leq \| T \| \| x_n - x \|_1 \leq \varepsilon
\]

and so \((x_n) \to x \) with respect to \(\| \cdot \|_2 \). So \(\| \cdot \|_2 \) is weaker than \(\| \cdot \|_1 \). Similarly, taking \(T : (X, \| \cdot \|_2) \to (X, \| \cdot \|_1) \) as the identity we can show that \(\| \cdot \|_1 \) is weaker than \(\| \cdot \|_2 \). So \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) are equivalent.
Theorem 2.31(b) (continued)

(b) All norms on a finite dimensional space are equivalent and all finite dimensional normed linear spaces over field F (where F is \mathbb{R} or \mathbb{C}) are complete.

Proof of (b) (continued). For completeness, (remember these are all normed linear spaces with scalars from a field F where F is either \mathbb{R} or \mathbb{C}), we know that $B(F)$ is complete under $\| \cdot \|_{\sup} = \| \cdot \|_{\infty}$ by Theorem 2.14. Let $(X, \| \cdot \|)$ be a finite dimensional space and let (x_n) be Cauchy in $(X, \| \cdot \|)$. Define $J : X \to B(F)$ as in part (a). Then J is bijective and bounded by (a) and so uniformly continuous by Theorem 2.6.
(b) All norms on a finite dimensional space are equivalent and all finite dimensional normed linear spaces over field F (where F is \mathbb{R} or \mathbb{C}) are complete.

Proof of (b) (continued). For completeness, (remember these are all normed linear spaces with scalars from a field F where F is either \mathbb{R} or \mathbb{C}), we know that $B(F)$ is complete under $\| \cdot \|_{\sup} = \| \cdot \|_{\infty}$ by Theorem 2.14. Let $(X, \| \cdot \|)$ be a finite dimensional space and let (x_n) be Cauchy in $(X, \| \cdot \|)$. Define $J : X \to B(F)$ as in part (a). Then J is bijective and bounded by (a) and so uniformly continuous by Theorem 2.6. So (Jx_n) is a Cauchy sequence in $B(F)$ since

$$\|Jx_m - Jx_n\|_{\infty} = \|J(x_m - x_n)\|_{\infty} \leq \|J\| \|x_m - x_n\|$$

and so $(Jx_n) \to y$ for some $y \in B(F)$ since $B(F)$ is complete.
Theorem 2.31(b) (continued)

(b) All norms on a finite dimensional space are equivalent and all finite dimensional normed linear spaces over field F (where F is \mathbb{R} or \mathbb{C}) are complete.

Proof of (b) (continued). For completeness, (remember these are all normed linear spaces with scalars from a field F where F is either \mathbb{R} or \mathbb{C}), we know that $B(F)$ is complete under $\| \cdot \|_{\text{sup}} = \| \cdot \|_{\infty}$ by Theorem 2.14. Let $(X, \| \cdot \|)$ be a finite dimensional space and let (x_n) be Cauchy in $(X, \| \cdot \|)$. Define $J : X \to B(F)$ as in part (a). Then J is bijective and bounded by (a) and so uniformly continuous by Theorem 2.6. So (Jx_n) is a Cauchy sequence in $B(F)$ since

$$\| Jx_m - Jx_n \|_{\infty} = \| J(x_m - x_n) \|_{\infty} \leq \| J \| \| x_m - x_n \|$$

and so $(Jx_n) \to y$ for some $y \in B(F)$ since $B(F)$ is complete.
(b) All norms on a finite dimensional space are equivalent and all finite dimensional normed linear spaces over field F (where F is \mathbb{R} or \mathbb{C}) are complete.

Proof of (b) (further continued). Since T is bijective and linear then $J^{-1} : B(F) \to X$ is bijective and linear and so bounded by Proposition 2.30. So

$$\|x_n - J^{-1}y\| = \|J^{-1}Jx_n - J^{-1}y\| = \|J^{-1}(Jx_n - y)\| \leq \|J^{-1}\| \|Jx_n - y\|_\infty$$

and since $\|Jx_n - y\|_\infty \to 0$ and J^{-1} is bounded, then $(x_n) \to J^{-1}y$ and (x_n) converges. That is, $(X, \| \cdot \|)$ is complete. \qed
(b) All norms on a finite dimensional space are equivalent and all finite dimensional normed linear spaces over field \mathbb{F} (where \mathbb{F} is \mathbb{R} or \mathbb{C}) are complete.

Proof of (b) (further continued). Since T is bijective and linear then $J^{-1} : B(F) \rightarrow X$ is bijective and linear and so bounded by Proposition 2.30. So

$$
\|x_n - J^{-1}y\| = \|J^{-1}Jx_n - J^{-1}y\| = \|J^{-1}(Jx_n - y)\| \leq \|J^{-1}\| \|Jx_n - y\|_{\infty}
$$

and since $\|Jx_n - y\|_{\infty} \to 0$ and J^{-1} is bounded, then $(x_n) \to J^{-1}y$ and (x_n) converges. That is, $(X, \| \cdot \|)$ is complete. \qed
Theorem 2.31(c).

(c) Any finite-dimensional subspace of a normed linear space is closed.

Proof of (c). Let \((X, \| \cdot \|)\) be a finite dimensional subspace of a given space. By part (b) the space \((X, \| \cdot \|)\) is complete and so is a Banach space. Since \((X, \| \cdot \|)\) is a subspace of itself, then by Theorem 2.16, \((X, \| \cdot \|)\) is closed.
(c) Any finite-dimensional subspace of a normed linear space is closed.

Proof of (c). Let \((X, \| \cdot \|)\) be a finite dimensional subspace of a given space. By part (b) the space \((X, \| \cdot \|)\) is complete and so is a Banach space. Since \((X, \| \cdot \|)\) is a subspace of itself, then by Theorem 2.16, \((X, \| \cdot \|)\) is closed.
Theorem 2.32

Theorem 2.32. A linear operator $T : X \to Y$, where Y is finite-dimensional, is bounded if and only if $N(T)$ (the nullspace of T) is closed.

Proof. Suppose T is bounded. Then T is continuous by Proposition 2.6. Now $N(T)$ is the inverse image of the closed set $\{0\}$. Continuous mappings have inverse images of closed sets closed (as seen in senior level analysis), so $N(T)$ is closed. Notice that we did not use the finite-dimensional hypothesis here.
Theorem 2.32. A linear operator $T : X \to Y$, where Y is finite-dimensional, is bounded if and only if $N(T)$ (the nullspace of T) is closed.

Proof. Suppose T is bounded. Then T is continuous by Proposition 2.6. Now $N(T)$ is the inverse image of the closed set $\{0\}$. Continuous mappings have inverse images of closed sets closed (as seen in senior level analysis), so $N(T)$ is closed. Notice that we did not use the finite-dimensional hypothesis here.

Suppose $N(T)$ is closed. Consider the quotient space $X/N(T)$. The mapping $\tilde{T} : X/N(T) \to Y$ defined $\tilde{T}x = Tx$ is one to one (injective); see section 2.7.
Theorem 2.32

Theorem 2.32. A linear operator $T : X \to Y$, where Y is finite-dimensional, is bounded if and only if $N(T)$ (the nullspace of T) is closed.

Proof. Suppose T is bounded. Then T is continuous by Proposition 2.6. Now $N(T)$ is the inverse image of the closed set $\{0\}$. Continuous mappings have inverse images of closed sets closed (as seen in senior level analysis), so $N(T)$ is closed. Notice that we did not use the finite-dimensional hypothesis here.

Suppose $N(T)$ is closed. Consider the quotient space $X/N(T)$. The mapping $\tilde{T} : X/N(T) \to Y$ defined $\tilde{T}x = Tx$ is one to one (injective); see section 2.7. Since Y is hypothesized to be finite dimensional, then $X/N(T)$ must be finite dimensional (a finite dimensional space cannot be mapped onto an infinite dimensional space). So by Theorem 2.31(a), \tilde{T} is bounded.
Theorem 2.32. A linear operator $T : X \rightarrow Y$, where Y is finite-dimensional, is bounded if and only if $N(T)$ (the nullspace of T) is closed.

Proof. Suppose T is bounded. Then T is continuous by Proposition 2.6. Now $N(T)$ is the inverse image of the closed set $\{0\}$. Continuous mappings have inverse images of closed sets closed (as seen in senior level analysis), so $N(T)$ is closed. Notice that we did not use the finite-dimensional hypothesis here.

Suppose $N(T)$ is closed. Consider the quotient space $X/N(T)$. The mapping $\tilde{T} : X/N(T) \rightarrow Y$ defined $\tilde{T}\overline{x} = Tx$ is one to one (injective); see section 2.7. Since Y is hypothesized to be finite dimensional, then $X/N(T)$ must be finite dimensional (a finite dimensional space cannot be mapped onto an infinite dimensional space). So by Theorem 2.31(a), \tilde{T} is bounded.
Theorem 2.32. A linear operator $T : X \to Y$, where Y is finite-dimensional, is bounded if and only if $N(T)$ (the nullspace of T) is closed.

Proof (continued). Now $T = \tilde{T} \pi_{N(T)}$, where $\pi_{N(T)}$ is the canonical projection with respect to $N(T)$ (see Section 2.7). Since \tilde{T} is bounded and $\pi_{N(T)} = 1$ by Theorem 2.27(c) then, by Proposition 2.8,

$$\| T \| = \| \tilde{T} \pi_{N(T)} \| \leq \| \tilde{T} \| \| \pi_{N(T)} \| = \| \tilde{T} \| .$$

So T is bounded, as claimed.
Theorem 2.32. A linear operator $T : X \to Y$, where Y is finite-dimensional, is bounded if and only if $N(T)$ (the nullspace of T) is closed.

Proof (continued). Now $T = \tilde{T} \pi_{N(T)}$, where $\pi_{N(T)}$ is the canonical projection with respect to $N(T)$ (see Section 2.7). Since \tilde{T} is bounded and $\pi_{N(T)} = 1$ by Theorem 2.27(c) then, by Proposition 2.8,

$$\|T\| = \|\tilde{T} \pi_{N(T)}\| \leq \|\tilde{T}\| \|\pi_{N(T)}\| = \|\tilde{T}\|.$$

So T is bounded, as claimed.
Theorem 2.33. Riesz’s Lemma.
Given a closed, proper subspace M of a normed linear space $(X, \| \cdot \|)$ and given $\varepsilon > 0$, there is a unit vector $x \in X$ such that $d(x, M) \geq 1 - \varepsilon$.

Proof. Let $\varepsilon > 0$ (and less than 1). Let $y \in X$, $y \notin M$, and define $r = d(y, M)$. Since M is closed, $r > 0$. Define $x = \frac{y}{\|y - z\|}$. Then x is a unit vector and $d(x, M) = d(y - z, M) / \|y - z\| = \varepsilon$. So x is a vector with the desired properties.
Theorem 2.33

Theorem 2.33. Riesz’s Lemma.
Given a closed, proper subspace M of a normed linear space $(X, \| \cdot \|)$ and given $\varepsilon > 0$, there is a unit vector $x \in X$ such that $d(x, M) \geq 1 - \varepsilon$.

Proof. Let $\varepsilon > 0$ (and less than 1). Let $y \in X$, $y \notin M$, and define $r = d(y, M)$. Since M is closed, $r > 0$. Since $d(y, M) = \inf \{ \| y - m \| \mid m \in M \}$, then there is $z \in M$ such that $\| y - z \| \leq r/(1 - \varepsilon)$ since $r/(1 - \varepsilon) > r$. For any $v \in M$, we have that $z + v \in M$ since M is a subspace. So $\| y - (z + v) \| \geq r$ and so $d(y - z, M) \geq r \geq (1 - \varepsilon)\| y - z \|$ (by the restriction $\| y - z \| \leq r/(1 - \varepsilon)$ from above).
Theorem 2.33

Theorem 2.33. Riesz’s Lemma.
Given a closed, proper subspace M of a normed linear space $(X, \| \cdot \|)$ and given $\varepsilon > 0$, there is a unit vector $x \in X$ such that $d(x, M) \geq 1 - \varepsilon$.

Proof. Let $\varepsilon > 0$ (and less than 1). Let $y \in X$, $y \notin M$, and define $r = d(y, M)$. Since M is closed, $r > 0$. Since $d(y, M) = \inf\{\|y - m\| \mid m \in M\}$, then there is $z \in M$ such that $\|y - z\| \leq r/(1 - \varepsilon)$ since $r/(1 - \varepsilon) > r$. For any $v \in M$, we have that $z + v \in M$ since M is a subspace. So $\|y - (z + v)\| \geq r$ and so $d(y - z, M) \geq r \geq (1 - \varepsilon)\|y - z\|$ (by the restriction $\|y - z\| \leq r/(1 - \varepsilon)$ from above). Define $x = (y - z)/\|y - z\|$. Then $x \in X$ is a unit vector and

$$d(x, M) = d((y - z)/\|y - z\|, M) = d(y - z, M)/\|y - z\|$$

since $d(\alpha w, M) = \alpha d(w, M)$ for all $w \in X$

$$\geq \frac{1}{\|y - z\|}(1 - \varepsilon)\|y - z\| = 1 - \varepsilon.$$

So x a vector with the desired properties.
Theorem 2.33

Theorem 2.33. Riesz’s Lemma.

Given a closed, proper subspace \(M \) of a normed linear space \((X, \| \cdot \|)\) and given \(\varepsilon > 0 \), there is a unit vector \(x \in X \) such that \(d(x, M) \geq 1 - \varepsilon \).

Proof. Let \(\varepsilon > 0 \) (and less than 1). Let \(y \in X, y \not\in M \), and define \(r = d(y, M) \). Since \(M \) is closed, \(r > 0 \). Since \(d(y, M) = \inf \{ \| y - m \| \mid m \in M \} \), then there is \(z \in M \) such that \(\| y - z \| \leq r/(1 - \varepsilon) \) since \(r/(1 - \varepsilon) > r \). For any \(v \in M \), we have that \(z + v \in M \) since \(M \) is a subspace. So \(\| y - (z + v) \| \geq r \) and so \(d(y - z, M) \geq r \geq (1 - \varepsilon) \| y - z \| \) (by the restriction \(\| y - z \| \leq r/(1 - \varepsilon) \) from above). Define \(x = (y - z)/\| y - z \| \). Then \(x \in X \) is a unit vector and

\[
 d(x, M) = d((y - z)/\| y - z \|, M) = d(y - z, M)/\| y - z \|
\]

since \(d(\alpha w, M) = \alpha d(w, M) \) for all \(w \in X \)

\[
\geq \frac{1}{\| y - z \|}(1 - \varepsilon)\| y - z \| = 1 - \varepsilon.
\]

So \(x \) a vector with the desired properties.
Theorem 2.34. Reisz’s Theorem

Theorem 2.34. Reisz’s Theorem. A normed linear space \((X, \| \cdot \|)\) is finite-dimensional if and only if the closed unit ball \(\overline{B}(0; 1)\) is compact.

Proof. First, suppose that \(X\) is infinite-dimensional. We create a sequence of unit vectors, \((x_n)\), as follows. Let \(x_1\) be any unit vector in \(X\). With \(\{x_1, x_2, \ldots, x_n\}\) chosen, define \(M_n = \text{span}\{x_1, x_2, \ldots, x_n\}\).
Theorem 2.34. Riesz’s Theorem. A normed linear space \((X, \| \cdot \|)\) is finite-dimensional if and only if the closed unit ball \(\overline{B}(0; 1)\) is compact.

Proof. First, suppose that \(X\) is infinite-dimensional. We create a sequence of unit vectors, \((x_n)\), as follows. Let \(x_1\) be any unit vector in \(X\). With \(\{x_1, x_2, \ldots, x_n\}\) chosen, define \(M_n = \text{span}\{x_1, x_2, \ldots, x_n\}\). Then \(M_n\) is a finite dimensional subspace of \(X\), and so it is closed (by Theorem 2.31(c)) and so not equal to \(X\) (since \(X\) is infinite dimensional). So by Riesz’s Lemma, there is a unit vector \(x_{n+1}\) such that \(d(x_{n+1}, M_n) \geq 1/2\) (with \(\varepsilon = 1/2\)). Then the sequence \((x_n)\) has the property that any two elements of the sequence are at least distance 1/2 apart. So there cannot be a convergent subsequence of the sequence. Since \((x_n) \subset \overline{B}(0; 1)\), then \(\overline{B}(0; 1)\) is not compact by the second definition of compact.
Theorem 2.34. Riesz’s Theorem. A normed linear space \((X, \| \cdot \|)\) is finite-dimensional if and only if the closed unit ball \(\overline{B}(0; 1)\) is compact.

Proof. First, suppose that \(X\) is infinite-dimensional. We create a sequence of unit vectors, \((x_n)\), as follows. Let \(x_1\) be any unit vector in \(X\). With \(\{x_1, x_2, \ldots, x_n\}\) chosen, define \(M_n = \text{span}\{x_1, x_2, \ldots, x_n\}\). Then \(M_n\) is a finite dimensional subspace of \(X\), and so it is closed (by Theorem 2.31(c)) and so not equal to \(X\) (since \(X\) is infinite dimensional). So by Riesz’s Lemma, there is a unit vector \(x_{n+1}\) such that \(d(x_{n+1}, M_n) \geq 1/2\) (with \(\varepsilon = 1/2\)). Then the sequence \((x_n)\) has the property that any two elements of the sequence are at least distance 1/2 apart. So there cannot be a convergent subsequence of the sequence. Since \((x_n) \subset \overline{B}(0; 1)\), then \(\overline{B}(0; 1)\) is not compact by the second definition of compact.
Theorem 2.34. Riesz’s Theorem. A normed linear space \((X, \| \cdot \|)\) is finite-dimensional if and only if the closed unit ball \(\overline{B}(0; 1)\) is compact.

Proof (continued). Second, \(\overline{B}(1)\) is closed and bounded and so in finite dimensional \((X, \| \cdot \|)\) we have that \(\overline{B}(1)\) is compact by the Heine Borel Theorem. (The text gives a “proof” based on Theorems 2.29 and 2.31(b)).