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Proposition 2.28

Proposition 2.28

Proposition 2.28. For any normed linear space Z , all elements of
L(B(F ),Z ) (the set of linear operators from B(F ) to Z ) are bounded.

Proof. For any T ∈ L(B(F ),Z ), let K = max{‖T δi‖} (notice δi ∈ B(F )
and T δi ∈ Z , so the norm here is the norm in Z ). If f ∈ B(F ) and
‖f ‖∞ = 1, then f =

∑N
i=1 f (i)δi and

‖Tf ‖ =

∥∥∥∥∥
N∑

i=1

T (f (i)δi )

∥∥∥∥∥ ≤
N∑

i=1

‖T (f (i)δi )‖ by the Triangle Inequality

=
N∑

i=1

‖f (i)T (δi )‖ since T is linear

=
N∑

i=1

|f (i)|‖T (δi )‖ by the Scalar Property
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Proposition 2.28

Proposition 2.28 (continued)

(Continued).

‖Tf ‖ =
N∑

i=1

|f (i)|‖T (δi )‖ by the Scalar Property

≤
N∑

i=1

1‖T (δi )‖ since ‖f ‖∞ = 1

≤
N∑

i=1

K by the definition of K

= KN.

Since N and K are fixed, then ‖T‖ ≤ KN and T is bounded, as
claimed.
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Theorem 2.29

Theorem 2.29

Theorem 2.29. Closed and bounded subsets of B(F ) are compact.

Proof. Let A ⊆ B(F ) be closed and bounded and let (fn) be a sequence in
A. We construct a subsequence of (fn) which converges. For each i (think
of i as a position in an N-tuple) we have (fn(i))

∞
n=1 is a bounded sequence

(of the ith position terms) since A is bounded. Since a bounded sequence
in F (the scalar field; taken to be R or C) has a convergent subsequence
(this follows from Weierstrass’s Theorem; see Theorem 2.14 in my
Analysis 1 [MATH 4217/5217] notes on Section 2.3. Bolzano-Weierstrass
Theorem), then there is a subsequence (fn1(1))∞n1=1 of (fn(1))∞n=1 which is
convergent. Denote the limit as f (1).

Next, since (fn1(i))
∞
n1=1 is bounded,

then there is a subsequence (fn2(2))∞n2=1 of (fn1(2))∞n1=1 which converges,
say to f (2). Similarly, we iteratively construct subsequences
(fn3(3)), (fn4(4)), . . . , (fnN

(N)) which converge to f (3), f (4), . . . , f (N)
respectively. So for each i ∈ {1, 2, . . . ,N} we have (fnN

(i))∞nN=1 a
subsequence of (fn(i)) which converges to (f (i)), and so (fnN

)∞nN=1

converges to f .
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Theorem 2.29

Theorem 2.29 (continued)

Theorem 2.29. Closed and bounded subsets of B(F ) are compact.

Proof (continued). Since F = {1, 2, . . . ,N} is a finite set, this
convergence for each i implies uniform convergence over set F . But
uniform convergence is equivalent to sup norm convergence by Note 2.3.A,
so sequence (fnN

(i))∞nN=1 converges to f (i) in B(F ) (with respect to the
sup norm). Now, since A is closed, it must be that

(f (i))Ni=1 = (f (1), f (2), . . . , f (N)) ∈ A.

So set A is “sequentially compact” and so (by the definition of compact)
set A is compact, as claimed.
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Proposition 2.30

Proposition 2.30

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F ), then T is bounded.

Proof. ASSUME T is unbounded. Then from the definition of the
operator norm, for each n ∈ N there exists a unit vector zn ∈ X such that
‖Tzn‖ ≥ n. For each such zn define xn = zn/‖Tzn‖.

Then (xn) is a
sequence in X and (xn) → 0 since

‖xn‖ = ‖zn‖/‖Tzn‖ = 1/‖Tzn‖ ≤ 1/n for all n ∈ N.

But T (xn) = T (zn/‖Tzn‖) = T (zn)/‖Tzn‖ is a unit vector for each
n ∈ N. The set of all unit vectors in B(F ) has as its complement two open
sets: B(0; 1) (the open ball centered at 0 with radius 1) and B(0; 1)c . So
the complement is open and the set of all unit vectors in B(F ) is closed
(and, of course, bounded). By Proposition 2.29, this set is compact and so
is “sequentially compact.” Hence there is a subsequence of (Txn), say
(Txnk

), which converges to some y in the set of unit vectors in B(F ).

() Introduction to Functional Analysis July 2, 2021 7 / 19



Proposition 2.30

Proposition 2.30

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F ), then T is bounded.

Proof. ASSUME T is unbounded. Then from the definition of the
operator norm, for each n ∈ N there exists a unit vector zn ∈ X such that
‖Tzn‖ ≥ n. For each such zn define xn = zn/‖Tzn‖. Then (xn) is a
sequence in X and (xn) → 0 since

‖xn‖ = ‖zn‖/‖Tzn‖ = 1/‖Tzn‖ ≤ 1/n for all n ∈ N.

But T (xn) = T (zn/‖Tzn‖) = T (zn)/‖Tzn‖ is a unit vector for each
n ∈ N. The set of all unit vectors in B(F ) has as its complement two open
sets: B(0; 1) (the open ball centered at 0 with radius 1) and B(0; 1)c .

So
the complement is open and the set of all unit vectors in B(F ) is closed
(and, of course, bounded). By Proposition 2.29, this set is compact and so
is “sequentially compact.” Hence there is a subsequence of (Txn), say
(Txnk

), which converges to some y in the set of unit vectors in B(F ).

() Introduction to Functional Analysis July 2, 2021 7 / 19



Proposition 2.30

Proposition 2.30

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F ), then T is bounded.

Proof. ASSUME T is unbounded. Then from the definition of the
operator norm, for each n ∈ N there exists a unit vector zn ∈ X such that
‖Tzn‖ ≥ n. For each such zn define xn = zn/‖Tzn‖. Then (xn) is a
sequence in X and (xn) → 0 since

‖xn‖ = ‖zn‖/‖Tzn‖ = 1/‖Tzn‖ ≤ 1/n for all n ∈ N.

But T (xn) = T (zn/‖Tzn‖) = T (zn)/‖Tzn‖ is a unit vector for each
n ∈ N. The set of all unit vectors in B(F ) has as its complement two open
sets: B(0; 1) (the open ball centered at 0 with radius 1) and B(0; 1)c . So
the complement is open and the set of all unit vectors in B(F ) is closed
(and, of course, bounded). By Proposition 2.29, this set is compact and so
is “sequentially compact.” Hence there is a subsequence of (Txn), say
(Txnk

), which converges to some y in the set of unit vectors in B(F ).
() Introduction to Functional Analysis July 2, 2021 7 / 19



Proposition 2.30

Proposition 2.30

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F ), then T is bounded.

Proof. ASSUME T is unbounded. Then from the definition of the
operator norm, for each n ∈ N there exists a unit vector zn ∈ X such that
‖Tzn‖ ≥ n. For each such zn define xn = zn/‖Tzn‖. Then (xn) is a
sequence in X and (xn) → 0 since

‖xn‖ = ‖zn‖/‖Tzn‖ = 1/‖Tzn‖ ≤ 1/n for all n ∈ N.

But T (xn) = T (zn/‖Tzn‖) = T (zn)/‖Tzn‖ is a unit vector for each
n ∈ N. The set of all unit vectors in B(F ) has as its complement two open
sets: B(0; 1) (the open ball centered at 0 with radius 1) and B(0; 1)c . So
the complement is open and the set of all unit vectors in B(F ) is closed
(and, of course, bounded). By Proposition 2.29, this set is compact and so
is “sequentially compact.” Hence there is a subsequence of (Txn), say
(Txnk

), which converges to some y in the set of unit vectors in B(F ).
() Introduction to Functional Analysis July 2, 2021 7 / 19



Proposition 2.30

Proposition 2.30 (continued)

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F ), then T is bounded.

Proof (continued). Since T : X → B(F ) is bijective (one to one and
onto) and T is linear, then there exists T−1 : B(F ) → X that is bijective
and linear. That is, T−1 ∈ L(B(F ),X ). So by Proposition 2.28, T−1 is
bounded. Hence, by Theorem 2.6, T−1 is uniformly continuous on B(F )
and

T−1y = T−1 (lim Txnk
) = lim(T−1Txnk

) = lim xnk
= 0.

But y is a unit vector and so y 6= 0, a CONTRADICTION to the original
assumption of unboundedness of T . Therefore, T is bounded.
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Theorem 2.31

Theorem 2.31

Theorem 2.31.

(a) Any linear operator T : X → Z , where X is finite
dimensional, is bounded.

(b) All norms on a finite dimensional space are equivalent and all
finite dimensional normed linear spaces over field F (where F
is R or C) are complete.

(c) Any finite-dimensional subspace of a normed linear space is
closed.
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Theorem 2.31

Theorem 2.31 (continued 1)

Theorem 2.31. (a) Any linear operator T : X → Z , where X is finite
dimensional, is bounded.

Proof. (a) Suppose {e1, e2, . . . , en} is a basis for X . Since we know some
properties of linear operators to and from B(F ) by Propositions 2.28 and
2.30, we introduce J : X → B(F ) as Jei = δi where δi is the ith standard
basis element of B(F ). Then J is a linear bijection from X to B(F ) (recall
from Linear Algebra that a bijection from the basis of one vector space to
the basis of another vector space is in fact a bijection between the vector
spaces themselves—this is how the proof of the Fundamental Theorem of
Finite Dimensional Vector Spaces goes; see Theorem 3.3.A in my online
Linear Algebra [MATH 2010] notes on Section 3.3. Coordinatization of
Vectors).

So J−1 : B(F ) → X exists (and is linear) and we have
TJ−1 : B(F ) → Z is linear (a composition of linear operators is linear) and
so by Proposition 2.28, TJ−1 is bounded. By Proposition 2.30, J is
bounded. Next, T = (TJ−1)J and so by Proposition 2.8,
‖T‖ ≤ ‖TJ−1‖‖J‖ and so T is bounded, as claimed.
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Theorem 2.31

Theorem 2.31 (continued 2)

Theorem 2.31. (b) All norms on a finite dimensional space are equivalent
and all finite dimensional normed linear spaces over field F (where F is R
or C) are complete.

Proof (continued). (b) Consider ‖ · ‖1 and ‖ · ‖2 on finite dimensional
normed linear space X . Define T : (X , ‖ · ‖1) → (X , ‖ · ‖2) as the identity
map. By part (a), T is bounded. Let (xn) → x with respect to ‖ · ‖1.
Then for all ε > 0, there exists N ∈ N such that for all n ≥ N we have
‖xn − x‖1 < ε/‖T‖. But then for n ≥ N we have, by Note 2.4.A,

‖xn − x‖2 = ‖Txn − Tx‖2 = ‖T (xn − x)‖2 ≤ ‖T‖‖xn − x‖1 < ε

and so (xn) → x with respect to ‖ · ‖2. So ‖ · ‖2 is weaker than ‖ · ‖1.
Similarly, taking T : (X , ‖ · ‖2) → (X , ‖ · ‖1) as the identity we can show
that ‖ · ‖1 is weaker than ‖ · ‖2. So ‖ · ‖1 and ‖ · ‖2 are equivalent.
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Theorem 2.31

Theorem 2.31 (continued 3)

Theorem 2.31. (b) All norms on a finite dimensional space are equivalent
and all finite dimensional normed linear spaces over field F (where F is R
or C) are complete.

Proof (continued). For completeness, (remember these are all normed
linear spaces with scalars from a field F where F is either R or C), we
know that B(F ) is complete under ‖ · ‖sup = ‖ · ‖∞ by Theorem 2.14. Let
(X , ‖ · ‖) be a finite dimensional space and let (xn) be Cauchy in (X , ‖ · ‖).
Define J : X → B(F ) as in part (a). Then J is bijective and bounded by
part (a) and so uniformly continuous by Theorem 2.6. So (Jxn) is a
Cauchy sequence in B(F ) since (by Note 2.4.A)

‖Jxm − Jxn‖∞ = ‖J(xm − xn)‖∞ ≤ ‖J‖‖xm − xn‖

and so (Jxn) → y for some y ∈ B(F ) since B(F ) is complete.
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Theorem 2.31

Theorem 2.31 (continued 4)

Theorem 2.31. (b) All norms on a finite dimensional space are equivalent
and all finite dimensional normed linear spaces over field F (where F is R
or C) are complete.

Proof (continued). Since J is bijective and linear then J−1 : B(F ) → X
is bijective and linear and so bounded by Proposition 2.30. So

‖xn − J−1y‖ = ‖J−1Jxn − J−1y‖ = ‖J−1(Jxn − y)‖ ≤ ‖J−1‖‖Jxn − y‖∞

and since ‖Jxn − y‖∞ → 0 and J−1 is bounded, then (xn) → J−1y and
(xn) converges. Since (xn) is an arbitrary Cauchy sequence, then (X , ‖ · ‖)
is complete, as claimed.
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Theorem 2.31

Theorem 2.31 (continued 5).

Theorem 2.31. (c) Any finite-dimensional subspace of a normed linear
space is closed.

Proof (continued). (c) Let (X , ‖ · ‖) be a finite dimensional subspace of
a given space. By part (b) the space (X , ‖ · ‖) is complete and so is a
Banach space. Since (X , ‖ · ‖) is a subspace of itself, then by Theorem
2.16, (X , ‖ · ‖) is closed.
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Theorem 2.32

Theorem 2.32

Theorem 2.32. A linear operator T : X → Y , where Y is
finite-dimensional, is bounded if and only if N(T ) (the nullspace of T ) is
closed.

Proof. Suppose T is bounded. Then T is continuous by Proposition 2.6.
Now N(T ) is the inverse image of the closed set {0}. Continuous
mappings have inverse images of closed sets closed (as seen in Analysis 1
[MATH 4217/5217]; see my online notes on Section 4.1. Limits and
Continuity), so N(T ) is closed. Notice that we did not use the
finite-dimensional hypothesis here.

Suppose N(T ) is closed. Consider the quotient space X/N(T ). The
mapping T̃ : X/N(T ) → Y defined T̃ x = Tx is one to one (injective); see
Note 2.7.A. Since Y is hypothesized to be finite dimensional, then
X/N(T ) must be finite dimensional (an infinite dimensional space cannot
be mapped injectively to a finite dimensional space; consider how the basis
is mapped). So by Theorem 2.31(a), T̃ is bounded.
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finite-dimensional, is bounded if and only if N(T ) (the nullspace of T ) is
closed.

Proof. Suppose T is bounded. Then T is continuous by Proposition 2.6.
Now N(T ) is the inverse image of the closed set {0}. Continuous
mappings have inverse images of closed sets closed (as seen in Analysis 1
[MATH 4217/5217]; see my online notes on Section 4.1. Limits and
Continuity), so N(T ) is closed. Notice that we did not use the
finite-dimensional hypothesis here.

Suppose N(T ) is closed. Consider the quotient space X/N(T ). The
mapping T̃ : X/N(T ) → Y defined T̃ x = Tx is one to one (injective); see
Note 2.7.A. Since Y is hypothesized to be finite dimensional, then
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is mapped). So by Theorem 2.31(a), T̃ is bounded.

() Introduction to Functional Analysis July 2, 2021 15 / 19

https://faculty.etsu.edu/gardnerr/4217/notes/4-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/4-1.pdf


Theorem 2.32

Theorem 2.32

Theorem 2.32. A linear operator T : X → Y , where Y is
finite-dimensional, is bounded if and only if N(T ) (the nullspace of T ) is
closed.

Proof. Suppose T is bounded. Then T is continuous by Proposition 2.6.
Now N(T ) is the inverse image of the closed set {0}. Continuous
mappings have inverse images of closed sets closed (as seen in Analysis 1
[MATH 4217/5217]; see my online notes on Section 4.1. Limits and
Continuity), so N(T ) is closed. Notice that we did not use the
finite-dimensional hypothesis here.

Suppose N(T ) is closed. Consider the quotient space X/N(T ). The
mapping T̃ : X/N(T ) → Y defined T̃ x = Tx is one to one (injective); see
Note 2.7.A. Since Y is hypothesized to be finite dimensional, then
X/N(T ) must be finite dimensional (an infinite dimensional space cannot
be mapped injectively to a finite dimensional space; consider how the basis
is mapped). So by Theorem 2.31(a), T̃ is bounded.

() Introduction to Functional Analysis July 2, 2021 15 / 19

https://faculty.etsu.edu/gardnerr/4217/notes/4-1.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/4-1.pdf


Theorem 2.32

Theorem 2.32 (continued)

Theorem 2.32. A linear operator T : X → Y , where Y is
finite-dimensional, is bounded if and only if N(T ) (the nullspace of T ) is
closed.

Proof (continued). Now T = T̃πN(T ), where πN(T ) : X → X/N(T ) is

the canonical projection with respect to N(T ) and x 7→ x . Since T̃ is
bounded and ‖πN(T )‖ = 1 by Theorem 2.27(c) then, by Proposition 2.8,

‖T‖ = ‖T̃πN(T )‖ ≤ ‖T̃‖‖πN(T )‖ = ‖T̃‖.

So T is bounded, as claimed.
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Theorem 2.33

Theorem 2.33. Riesz’s Lemma.
Given a closed, proper subspace M of a normed linear space (X , ‖ · ‖) and
given ε > 0, there is a unit vector x ∈ X such that d(x ,M) ≥ 1− ε.
Proof. Let ε > 0 (and less than 1). Let y ∈ X , y 6∈ M, and define
r = d(y ,M). Since M is closed then r > 0. Since
d(y ,M) = inf{‖y −m‖ | m ∈ M}, then there is z ∈ M such that
‖y − z‖ ≤ r/(1− ε) since r/(1− ε) > r . For any v ∈ M, we have that
z + v ∈ M since M is a subspace. So ‖y − (z + v)‖ ≥ r and so
d(y − z ,M) ≥ r ≥ (1− ε)‖y − z‖ (by the restriction ‖y − z‖ ≤ r/(1− ε)
from above).

Define x = (y − z)/‖y − z‖. Then x ∈ X is a unit vector and

d(x ,M) = d((y − z)/‖y − z‖,M) = (1/‖y − z‖)d(y − z ,M)

since d(αw ,M) = |α|d(w ,M) for all w ∈ X

≥
(

1

‖y − z‖

)
((1− ε)‖y − z‖) = 1− ε.

So x a vector with the desired properties.
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Theorem 2.34. Riesz’s Theorem

Theorem 2.34. Reisz’s Theorem

Theorem 2.34. Riesz’s Theorem. A normed linear space (X , ‖ · ‖) is
finite-dimensional if and only if the closed unit ball B(0; 1) is compact.

Proof. First, suppose that X is infinite-dimensional. We create a sequence
of unit vectors, (xn), as follows. Let x1 be any unit vector in X . With
{x1, x2, . . . , xn} chosen, define Mn = span{x1, x2, . . . , xn}. Then Mn is a
finite dimensional subspace of X , and so it is closed (by Theorem 2.31(c))
and so not equal to X (since X is infinite dimensional).

So by Riesz’s
Lemma, there is a unit vector xn+1 such that d(xn+1,Mn) ≥ 1/2 (with
ε = 1/2). Then the sequence (xn) has the property that any two elements
of the sequence are at least distance 1/2 apart. So there cannot be a
convergent subsequence of the sequence. Since (xn) ⊂ B(0; 1), then
B(0; 1) is not “sequentially compact” and so is not compact. That is, if
B(0; 1) is compact then X is finite-dimensional.
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Theorem 2.34. Riesz’s Theorem

Theorem 2.34. Riesz’s Theorem (continued)

Theorem 2.34. Riesz’s Theorem. A normed linear space (X , ‖ · ‖) is
finite-dimensional if and only if the closed unit ball B(0; 1) is compact.

Proof (continued). Suppose X is finite dimensional. Then by Theorem
2.31(b), all norms on X are equivalent (and so the properties of closed and
boundedness are the same with respect to any norm on X ), so we can
assume the norm is the sup norm. By the Fundamental Theorem of Finite
Dimensional Vector Spaces (see Theorem 3.3.A of my online Linear
Algebra [MATH 2010] notes on Section 3.3. Coordinatization of Vectors),
X and B(F ) are isomorphic (where F = {1, 2, . . . ,N} and N is the
dimension of X ). Since B(0; 1) is closed and bounded then, by Theorem
2.29, B(0; 1) is compact in B(F ) and hence in X .

() Introduction to Functional Analysis July 2, 2021 19 / 19

https://faculty.etsu.edu/gardnerr/2010/c3s3.pdf

	Proposition 2.28
	Theorem 2.29
	Proposition 2.30
	Theorem 2.31
	Theorem 2.32
	Theorem 2.33, Riesz's Lemma
	Theorem 2.34. Riesz's Theorem

