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Proposition 2.28

Proposition 2.28. For any normed linear space Z, all elements of
L(B(F), Z) (the set of linear operators from B(F) to Z) are bounded.
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Proposition 2.28

Proposition 2.28. For any normed linear space Z, all elements of
L(B(F), Z) (the set of linear operators from B(F) to Z) are bounded.

Proof. For any T € L(B(F), Z), let K = max{|| To;||} (notice §; € B(F)
and TJ; € Z, so the norm here is the norm in Z). If f € B(F) and
| flloe = 1, then £ = SN £(i)6; and

N
| TFIl = < Z I T(f(i)d;)|| by the Triangle Inequality

i=1

N
= Z 07)|| since T is linear
N
Z ||| T(d;)] by the Scalar Property
=1
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Proposition 2.28 (continued)

(Continued).
ITf|| = Z\f (DI T(6)|l by the Scalar Property

N

< ) 1YT(6)] since [|ffloo =1
i=1
N

< Z K by the definition of K
i=1

= KN.

Since N and K are fixed, then | T|| < KN and T is bounded, as
claimed.
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Theorem 2.29

Theorem 2.29. Closed and bounded subsets of B(F) are compact.
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Theorem 2.29

Theorem 2.29. Closed and bounded subsets of B(F) are compact.

Proof. Let A C B(F) be closed and bounded and let (f,) be a sequence in
A. We construct a subsequence of (f,) which converges. For each i (think
of i as a position in an N-tuple) we have (f,(i))7 is a bounded sequence
(of the ith position terms) since A is bounded. Since a bounded sequence
in F (the scalar field; taken to be R or C) has a convergent subsequence
(this follows from Weierstrass's Theorem; see Theorem 2.14 in my
Analysis 1 [MATH 4217/5217] notes on Section 2.3. Bolzano-Weierstrass
Theorem), then there is a subsequence (fn,(1))50—; of (fa(1))52; which is

n=1
convergent. Denote the limit as 7(1).
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Theorem 2.29

Theorem 2.29. Closed and bounded subsets of B(F) are compact.

Proof. Let A C B(F) be closed and bounded and let (f,) be a sequence in
A. We construct a subsequence of (f,) which converges. For each i (think
of i as a position in an N-tuple) we have (f,(i))7 is a bounded sequence
(of the ith position terms) since A is bounded. Since a bounded sequence
in F (the scalar field; taken to be R or C) has a convergent subsequence
(this follows from Weierstrass's Theorem; see Theorem 2.14 in my
Analysis 1 [MATH 4217/5217] notes on Section 2.3. Bolzano-Weierstrass
Theorem), then there is a subsequence (fn,(1))50—; of (fa(1))52; which is
convergent. Denote the limit as f(1). Next, since (f;,(i))5—; is bounded,
then there is a subsequence (f,,(2))50—; of (f5,(2))5—; which converges,
say to f(2). Similarly, we iteratively construct subsequences

(fn5(3)), (£a,(4)), - - -, (fay (N)) which converge to f(3),f(4),...,f(N)
respectively. So for each i € {1,2,..., N} we have (f,,(i))5_; a
subsequence of (f,()) which converges to (f(i)), and so (fn, )7 —1
converges to f.
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Theorem 2.29 (continued)

Theorem 2.29. Closed and bounded subsets of B(F) are compact.

Proof (continued). Since F = {1,2,..., N} is a finite set, this
convergence for each i implies uniform convergence over set F. But
uniform convergence is equivalent to sup norm convergence by Note 2.3.A,
so sequence (fy (i), —; converges to f(i) in B(F) (with respect to the
sup norm). Now, since A is closed, it must be that

(FINM = (F(1), F(2),.... F(N)) € A

So set A is “sequentially compact” and so (by the definition of compact)
set A is compact, as claimed. O
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Proposition 2.30

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F), then T is bounded.
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Proposition 2.30

Proposition 2.30

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F), then T is bounded.

Proof. ASSUME T is unbounded. Then from the definition of the

operator norm, for each n € N there exists a unit vector z, € X such that
|| Tzn|| > n. For each such z, define x, = z,/|| Tz,||.
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Proposition 2.30

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F), then T is bounded.

Proof. ASSUME T is unbounded. Then from the definition of the
operator norm, for each n € N there exists a unit vector z, € X such that
|| Tzn|| > n. For each such z, define x, = z,/|| Tz,||. Then (x,) is a
sequence in X and (x,) — 0 since

Ixnll = llzall /|| Tzn|| = 1/|| Tzal| < 1/n for all n € N.

But T(x,) = T(za/||Tzn||) = T(za)/|| Tzn|| is a unit vector for each
n € N. The set of all unit vectors in B(F) has as its complement two open
sets: B(0;1) (the open ball centered at 0 with radius 1) and B(0;1)¢.
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Proposition 2.30

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F), then T is bounded.

Proof. ASSUME T is unbounded. Then from the definition of the
operator norm, for each n € N there exists a unit vector z, € X such that
|| Tzn|| > n. For each such z, define x, = z,/|| Tz,||. Then (x,) is a
sequence in X and (x,) — 0 since

Ixnll = llzall /|| Tzn|| = 1/|| Tzal| < 1/n for all n € N.

But T(x,) = T(za/||Tzn||) = T(za)/|| Tzn|| is a unit vector for each

n € N. The set of all unit vectors in B(F) has as its complement two open
sets: B(0;1) (the open ball centered at 0 with radius 1) and B(0;1)¢. So
the complement is open and the set of all unit vectors in B(F) is closed
(and, of course, bounded). By Proposition 2.29, this set is compact and so
is “sequentially compact.” Hence there is a subsequence of (Tx,), say
(Txn, ), which converges to some y in the set of unit vectors in B(F).
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Proposition 2.30

Proposition 2.30 (continued)

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F), then T is bounded.

Proof (continued). Since T : X — B(F) is bijective (one to one and

onto) and T is linear, then there exists T~!: B(F) — X that is bijective
and linear. Thatis, T~! € £L(B(F), X).
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Proposition 2.30 (continued)

Proposition 2.30. If T is a bijective linear operator from the normed
linear space X to B(F), then T is bounded.

Proof (continued). Since T : X — B(F) is bijective (one to one and
onto) and T is linear, then there exists T~!: B(F) — X that is bijective
and linear. Thatis, T~! € £(B(F), X). So by Proposition 2.28, T~ is
bounded. Hence, by Theorem 2.6, T~1 is uniformly continuous on B(F)

and
Tty = T71(lim Txp,) = lim(T 1 Tx,, ) = limx,, = 0.

But y is a unit vector and so y # 0, a CONTRADICTION to the original
assumption of unboundedness of T. Therefore, T is bounded. O
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Theorem 2.31

Theorem 2.31.

(a) Any linear operator T : X — Z, where X is finite
dimensional, is bounded.

(b) All norms on a finite dimensional space are equivalent and all
finite dimensional normed linear spaces over field F (where F
is R or C) are complete.

(c) Any finite-dimensional subspace of a normed linear space is
closed.
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Theorem 2.31 (continued 1)

Theorem 2.31. (a) Any linear operator T : X — Z, where X is finite
dimensional, is bounded.

Proof. (a) Suppose {e1, e,..., ey} is a basis for X. Since we know some
properties of linear operators to and from B(F) by Propositions 2.28 and

2.30, we introduce J : X — B(F) as Je; = §; where §; is the ith standard

basis element of B(F).
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Theorem 2.31 (continued 1)

Theorem 2.31. (a) Any linear operator T : X — Z, where X is finite
dimensional, is bounded.

Proof. (a) Suppose {e1, e,..., ey} is a basis for X. Since we know some
properties of linear operators to and from B(F) by Propositions 2.28 and
2.30, we introduce J : X — B(F) as Je; = §; where §; is the ith standard
basis element of B(F). Then J is a linear bijection from X to B(F) (recall
from Linear Algebra that a bijection from the basis of one vector space to
the basis of another vector space is in fact a bijection between the vector
spaces themselves—this is how the proof of the Fundamental Theorem of
Finite Dimensional Vector Spaces goes; see Theorem 3.3.A in my online
Linear Algebra [MATH 2010] notes on Section 3.3. Coordinatization of
Vectors).
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Theorem 2.31 (continued 1)

Theorem 2.31. (a) Any linear operator T : X — Z, where X is finite
dimensional, is bounded.

Proof. (a) Suppose {e1, e,..., ey} is a basis for X. Since we know some
properties of linear operators to and from B(F) by Propositions 2.28 and
2.30, we introduce J : X — B(F) as Je; = §; where §; is the ith standard
basis element of B(F). Then J is a linear bijection from X to B(F) (recall
from Linear Algebra that a bijection from the basis of one vector space to
the basis of another vector space is in fact a bijection between the vector
spaces themselves—this is how the proof of the Fundamental Theorem of
Finite Dimensional Vector Spaces goes; see Theorem 3.3.A in my online
Linear Algebra [MATH 2010] notes on Section 3.3. Coordinatization of
Vectors). So J71: B(F) — X exists (and is linear) and we have

TJ~1: B(F) — Z is linear (a composition of linear operators is linear) and
so by Proposition 2.28, TJ~1is bounded. By Proposition 2.30, J is
bounded. Next, T = (TJ~1)J and so by Proposition 2.8,

| TI| < || TJ7|||/]| and so T is bounded, as claimed.
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Theorem 2.31

Theorem 2.31 (continued 2)

Theorem 2.31. (b) All norms on a finite dimensional space are equivalent

and all finite dimensional normed linear spaces over field ' (where F is R
or C) are complete.

Proof (continued). (b) Consider || - ||1 and || - ||2 on finite dimensional
normed linear space X. Define T : (X, |- ]l1) — (X, || - ||2) as the identity
map. By part (a), T is bounded. Let (x,) — x with respect to || - ||1.
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Theorem 2.31 (continued 2)

Theorem 2.31. (b) All norms on a finite dimensional space are equivalent
and all finite dimensional normed linear spaces over field ' (where F is R
or C) are complete.

Proof (continued). (b) Consider || - ||1 and || - ||2 on finite dimensional
normed linear space X. Define T : (X, |- ]l1) — (X, || - ||2) as the identity
map. By part (a), T is bounded. Let (x,) — x with respect to || - ||1.
Then for all € > 0, there exists N € N such that for all n > N we have
lIxn — x||1 < &/|| T||. But then for n > N we have, by Note 2.4.A,

1% = xll2 = [ Txa = Txll2 = [ T(xn = X)ll2 < [ Tlllxa — xll1 <€

and so (x,) — x with respect to || - ||2. So || - ||2 is weaker than || - ||1.
Similarly, taking T : (X, - |l2) — (X, ]| - ||1) as the identity we can show
that || - ||1 is weaker than || - ||2. So || - ||z and || - ||2 are equivalent.
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Theorem 2.31 (continued 3)

Theorem 2.31. (b) All norms on a finite dimensional space are equivalent
and all finite dimensional normed linear spaces over field ' (where F is R
or C) are complete.

Proof (continued). For completeness, (remember these are all normed
linear spaces with scalars from a field F where F is either R or C), we
know that B(F) is complete under || - ||sup = || - [|[oc by Theorem 2.14. Let
(X, |l -]]) be a finite dimensional space and let (x,) be Cauchy in (X, || - ||).
Define J : X — B(F) as in part (a). Then J is bijective and bounded by
part (a) and so uniformly continuous by Theorem 2.6.
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Theorem 2.31 (continued 3)

Theorem 2.31. (b) All norms on a finite dimensional space are equivalent
and all finite dimensional normed linear spaces over field ' (where F is R
or C) are complete.

Proof (continued). For completeness, (remember these are all normed
linear spaces with scalars from a field F where F is either R or C), we
know that B(F) is complete under || - ||sup = || - [|[oc by Theorem 2.14. Let
(X, |l -]]) be a finite dimensional space and let (x,) be Cauchy in (X, || - ||).
Define J : X — B(F) as in part (a). Then J is bijective and bounded by
part (a) and so uniformly continuous by Theorem 2.6. So (Jx,) is a
Cauchy sequence in B(F) since (by Note 2.4.A)

[ Ixm — Ixnlloo = [J(Xm — Xn)lloo < [[I[I[[Xm — Xall

and so (Jx,) — y for some y € B(F) since B(F) is complete.
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Theorem 2.31 (continued 4)

Theorem 2.31. (b) All norms on a finite dimensional space are equivalent
and all finite dimensional normed linear spaces over field F (where F is R
or C) are complete.

Proof (continued). Since J is bijective and linear then J~1 : B(F) — X
is bijective and linear and so bounded by Proposition 2.30. So

Ixo = Syl = 197 xo = S0yl = (1970 (xa = ) < 9740 =yl
and since ||Jx, — y||oo — 0 and J~! is bounded, then (x,) — J~1y and

(xn) converges. Since (xp) is an arbitrary Cauchy sequence, then (X, || - ||)
is complete, as claimed. O
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Theorem 2.31 (continued 5).

Theorem 2.31. (c) Any finite-dimensional subspace of a normed linear
space is closed.

Proof (continued). (c) Let (X, | -||) be a finite dimensional subspace of
a given space. By part (b) the space (X, || - ||) is complete and so is a
Banach space. Since (X, || - ||) is a subspace of itself, then by Theorem
2.16, (X, - ) is closed. O
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Theorem 2.32

Theorem 2.32. A linear operator T : X — Y, where Y is
finite-dimensional, is bounded if and only if N(T) (the nullspace of T) is
closed.
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Theorem 2.32

Theorem 2.32. A linear operator T : X — Y, where Y is

finite-dimensional, is bounded if and only if N(T) (the nullspace of T) is
closed.

Proof. Suppose T is bounded. Then T is continuous by Proposition 2.6.
Now N(T) is the inverse image of the closed set {0}. Continuous
mappings have inverse images of closed sets closed (as seen in Analysis 1
[MATH 4217/5217]; see my online notes on Section 4.1. Limits and
Continuity), so N(T) is closed. Notice that we did not use the
finite-dimensional hypothesis here.
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Theorem 2.32

Theorem 2.32. A linear operator T : X — Y, where Y is
finite-dimensional, is bounded if and only if N(T) (the nullspace of T) is
closed.

Proof. Suppose T is bounded. Then T is continuous by Proposition 2.6.
Now N(T) is the inverse image of the closed set {0}. Continuous
mappings have inverse images of closed sets closed (as seen in Analysis 1
[MATH 4217/5217]; see my online notes on Section 4.1. Limits and
Continuity), so N(T) is closed. Notice that we did not use the
finite-dimensional hypothesis here.

Suppose N(T) is closed. Consider the quotient space X/N(T). The
mapping T : X/N(T) — Y defined Tx = Tx is one to one (injective); see
Note 2.7.A. Since Y is hypothesized to be finite dimensional, then

X /N(T) must be finite dimensional (an infinite dimensional space cannot
be mapped injectively to a finite dimensional space; consider how the basis
is mapped). So by Theorem 2.31(a), T is bounded.
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Theorem 2.32 (continued)

Theorem 2.32. A linear operator T : X — Y, where Y is
finite-dimensional, is bounded if and only if N(T) (the nullspace of T) is
closed.

Proof (continued). Now T = Tmy(7, where my(7y : X — X/N(T) is
the canonical projection with respect to N(T) and x — X. Since Tis
bounded and ||y (7y|| = 1 by Theorem 2.27(c) then, by Proposition 2.8,

TN = I Taneryll < I Tyl = 171

So T is bounded, as claimed. O
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Theorem 2.33

Theorem 2.33. Riesz’s Lemma.
Given a closed, proper subspace M of a normed linear space (X, || -||) and
given € > 0, there is a unit vector x € X such that d(x,M) > 1 —e.
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Theorem 2.33

Theorem 2.33. Riesz's Lemma.

Given a closed, proper subspace M of a normed linear space (X, || -||) and
given € > 0, there is a unit vector x € X such that d(x,M) > 1 —e.
Proof. Let € > 0 (and less than 1). Let y € X, y ¢ M, and define
r=d(y, M). Since M is closed then r > 0. Since

d(y, M) = inf{|ly — m|| | m € M}, then there is z € M such that

lly —z|]| <r/(1 —¢)since r/(1 —€) > r. For any v € M, we have that
z+ v € M since M is a subspace. So ||y — (z+ v)|| > r and so

dly —z,M) >r > (1—¢)|ly — z|| (by the restriction ||y — z|| < r/(1 —¢)
from above).
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Theorem 2.33

Theorem 2.33. Riesz's Lemma.
Given a closed, proper subspace M of a normed linear space (X, || -||) and
given € > 0, there is a unit vector x € X such that d(x,M) > 1 —e.
Proof. Let € > 0 (and less than 1). Let y € X, y ¢ M, and define
r=d(y, M). Since M is closed then r > 0. Since
d(y, M) = inf{|ly — m|| | m € M}, then there is z € M such that
lly —z|| <r/(1—¢)since r/(1 —¢) > r. For any v € M, we have that
z+ v € M since M is a subspace. So ||y — (z+ v)|| > r and so
dly —z,M) >r > (1—¢)|ly — z|| (by the restriction ||y — z|| < r/(1 —¢)
from above). Define x = (y — z)/|ly — z||. Then x € X is a unit vector and
dix,M) = d((y —2)/lly —zll, M) = (1/lly — zl[)d(y — z, M)
since d(aw, M) = |a|d(w, M) for all w € X
1
> (2g) @y -2 =1-<

So x a vector with the desired properties. O
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Theorem 2.34. Reisz's Theorem

Theorem 2.34. Riesz’s Theorem. A normed linear space (X, || - ||) is
finite-dimensional if and only if the closed unit ball B(0; 1) is compact.
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Theorem 2.34. Reisz's Theorem

Theorem 2.34. Riesz’s Theorem. A normed linear space (X, || - ||) is
finite-dimensional if and only if the closed unit ball B(0; 1) is compact.

Proof. First, suppose that X is infinite-dimensional. We create a sequence
of unit vectors, (x,), as follows. Let x; be any unit vector in X. With
{x1,X2,...,xn} chosen, define M, = span{xy, x2,...,xp}. Then M, is a
finite dimensional subspace of X, and so it is closed (by Theorem 2.31(c))
and so not equal to X (since X is infinite dimensional).
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Theorem 2.34. Reisz's Theorem

Theorem 2.34. Riesz’s Theorem. A normed linear space (X, || - ||) is
finite-dimensional if and only if the closed unit ball B(0; 1) is compact.

Proof. First, suppose that X is infinite-dimensional. We create a sequence
of unit vectors, (x,), as follows. Let x; be any unit vector in X. With
{x1,X2,...,xn} chosen, define M, = span{xy, x2,...,xp}. Then M, is a
finite dimensional subspace of X, and so it is closed (by Theorem 2.31(c))
and so not equal to X (since X is infinite dimensional). So by Riesz's
Lemma, there is a unit vector xp+1 such that d(xp4+1, M,) > 1/2 (with

e = 1/2). Then the sequence (x,) has the property that any two elements
of the sequence are at least distance 1/2 apart. So there cannot be a
convergent subsequence of the sequence. Since (x,) C B(0;1), then
B(0;1) is not “sequentially compact” and so is not compact. That is, if

B(0;1) is compact then X is finite-dimensional.
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Theorem 2.34. Riesz's Theorem (continued)

Theorem 2.34. Riesz’s Theorem. A normed linear space (X, || - ||) is
finite-dimensional if and only if the closed unit ball B(0;1) is compact.

Proof (continued). Suppose X is finite dimensional. Then by Theorem
2.31(b), all norms on X are equivalent (and so the properties of closed and
boundedness are the same with respect to any norm on X), so we can
assume the norm is the sup norm. By the Fundamental Theorem of Finite
Dimensional Vector Spaces (see Theorem 3.3.A of my online Linear
Algebra [MATH 2010] notes on Section 3.3. Coordinatization of Vectors),
X and B(F) are isomorphic (where F ={1,2,..., N} and N is the
dimension of X). Since B(0;1) is closed and bounded then, by Theorem
2.29, B(0;1) is compact in B(F) and hence in X. O
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