Chapter 3. Major Banach Space Theorems

3.2. Baire Category Theorem—Proofs of Theorems

Proposition 3.1. The Nested Set Theorem.
Given a sequence \(F_1 \supseteq F_2 \supseteq F_3 \cdots \) of closed nonempty sets in a Banach space such that \(\text{diam}(F_n) \to 0 \), there is a unique point that is in \(F_n \) for all \(n \in \mathbb{N} \).

Proof. Choose some \(x_n \in F_n \) for each \(n \in \mathbb{N} \). Since \(\text{diam}(F_n) \to 0 \), for all \(\varepsilon > 0 \) there exists \(N \in \mathbb{N} \) such that if \(n \geq N \) then \(\text{diam}(F_n) < \varepsilon \). Since the \(F_n \) are nested, then for all \(m, n \geq N \), we have \(\|x_n - x_m\| < \varepsilon \), and so \((x_n) \) is a Cauchy sequence. Since we are in a Banach space, there is \(x \) such that \((x_n) \to x \). Now for \(n \in \mathbb{N} \), the sequence \((x_n, x_{n+1}, x_{n+2}, \ldots) \subseteq F_n \) is convergent to \(x \) and since \(F_n \) is closed, then \(x \in F_n \). That is \(x \in F_n \) for all \(n \in \mathbb{N} \).

Next, suppose both \(x, y \in F_n \) for all \(n \in \mathbb{N} \). Then \(\|x - y\| \leq \text{diam}(F_n) \) for all \(n \in \mathbb{N} \) and since \(\text{diam}(F_n) \to 0 \), then \(\|x - y\| = 0 \), or \(x = y \), establishing uniqueness.

Proposition 3.2, Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let \((V_n) \) be a sequence of dense open subsets of a given Banach space. Let \(W \) be any nonempty open set. We show \(\bigcap_{n \in \mathbb{N}} V_n \) is dense by finding \(x \in \bigcap_{n \in \mathbb{N}} V_n \) such that \(x \in W \). Now \(W \cap V_1 \) is open and nonempty (since \(V_1 \) is dense in the space). So there is some closed ball \(\overline{B}_1 \) that is a subset of \(W \cap V_1 \) where the radius of \(\overline{B}_1 \) is less than 1. Inductively we produce closed balls \(\overline{B}_n \) such that \(\overline{B}_n \) is a subset of \(\overline{B}_{n-1} \cap V_n \) and the radius of \(\overline{B}_n \) is less than \(1/n \). Notice that \(\overline{B}_n \subseteq \overline{B}_{n-1} \) by construction and so the sequence \((\overline{B}_n) \) is a sequence of nested closed sets and \(\text{diam}(\overline{B}_n) \to 0 \). So by the Nested Set Theorem (Proposition 3.1) there is a unique \(x \in \overline{B}_n \) for all \(n \in \mathbb{N} \). So \(x \in W \) and \(x \in V_n \) for all \(n \in \mathbb{N} \).

Therefore \(x \in W \) and \(x \in \bigcap_{n \in \mathbb{N}} V_n \) and therefore \(\bigcap_{n \in \mathbb{N}} V_n \) is dense in the space.

Corollary 3.3, Dual Form of Baire’s Theorem.
In any Banach space, a countable union of closed sets with empty interiors has an empty interior.

Proof. Let \(X_n \) be closed sets with empty interiors in Banach space \((X, \| \cdot \|) \). Then \(X \setminus X_n \) is dense in \(X \) for each \(n \in \mathbb{N} \). So by Baire’s Theorem (Theorem 3.2) we have that

\[
\bigcap_{n \in \mathbb{N}} (X \setminus X_n) = X \setminus \bigcup_{n \in \mathbb{N}} X_n \quad \text{(by DeMorgan’s Laws)}
\]

is dense in \(X \) and so has an empty interior.