Introduction to Functional Analysis

Chapter 3. Major Banach Space Theorems 3.2. Baire Category Theorem—Proofs of Theorems

Proposition 3.2. Baire's Theorem

3 Corollary 3.3. Dual Form of Baire's Theorem

Proposition 3.1. The Nested Set Theorem.

Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \supseteq \cdots$ of closed nonempty sets in a Banach space such that diam $(F_n) \rightarrow 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$. Since diam $(F_n) \to 0$, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \ge N$ then diam $(F_n) < \varepsilon$. Since the F_n are nested, then for all $m, n \ge N$, we have $||x_n - x_m|| < \varepsilon$, and so (x_n) is a Cauchy sequence. Since we are in a Banach space, there is x such that $(x_n) \to x$. Now for $n \in \mathbb{N}$, the sequence $(x_n, x_{n+1}, x_{n+2}, \ldots) \subseteq F_n$ is convergent to x and since F_n is closed then $F_n = \overline{F_n}$. So $x \in F_n$ by Theorem 2.2.A(iii). That is $x \in F_n$ for all $n \in \mathbb{N}$.

Proposition 3.1. The Nested Set Theorem.

Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \supseteq \cdots$ of closed nonempty sets in a Banach space such that diam $(F_n) \rightarrow 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$. Since diam $(F_n) \to 0$, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \ge N$ then diam $(F_n) < \varepsilon$. Since the F_n are nested, then for all $m, n \ge N$, we have $||x_n - x_m|| < \varepsilon$, and so (x_n) is a Cauchy sequence. Since we are in a Banach space, there is x such that $(x_n) \to x$. Now for $n \in \mathbb{N}$, the sequence $(x_n, x_{n+1}, x_{n+2}, \ldots) \subseteq F_n$ is convergent to x and since F_n is closed then $F_n = \overline{F_n}$. So $x \in F_n$ by Theorem 2.2.A(iii). That is $x \in F_n$ for all $n \in \mathbb{N}$.

Next, suppose both $x, y \in F_n$ for all $n \in \mathbb{N}$. Then $||x - y|| \le \text{diam}(F_n)$ for all $n \in \mathbb{N}$ and since $\text{diam}(F_n) \to 0$, then ||x - y|| = 0, or x = y, establishing uniqueness.

Proposition 3.1. The Nested Set Theorem.

Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \supseteq \cdots$ of closed nonempty sets in a Banach space such that diam $(F_n) \rightarrow 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$. Since diam $(F_n) \to 0$, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \ge N$ then diam $(F_n) < \varepsilon$. Since the F_n are nested, then for all $m, n \ge N$, we have $||x_n - x_m|| < \varepsilon$, and so (x_n) is a Cauchy sequence. Since we are in a Banach space, there is x such that $(x_n) \to x$. Now for $n \in \mathbb{N}$, the sequence $(x_n, x_{n+1}, x_{n+2}, \ldots) \subseteq F_n$ is convergent to x and since F_n is closed then $F_n = \overline{F_n}$. So $x \in F_n$ by Theorem 2.2.A(iii). That is $x \in F_n$ for all $n \in \mathbb{N}$.

Next, suppose both $x, y \in F_n$ for all $n \in \mathbb{N}$. Then $||x - y|| \le \text{diam}(F_n)$ for all $n \in \mathbb{N}$ and since $\text{diam}(F_n) \to 0$, then ||x - y|| = 0, or x = y, establishing uniqueness.

Proposition 3.2. Baire's Theorem

Theorem 3.2. Baire's Theorem.

The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let (V_n) be a sequence of dense open subsets of a given Banach space. Let W be any nonempty open set in the Banach space. We show $\bigcap_{n \in \mathbb{N}} V_n$ is dense in the Banach space by finding $x \in \bigcap_{n \in \mathbb{N}} V_n$ such that $x \in W$ (so that $\bigcap_{n \in \mathbb{N}} V_n$ intersects every open subset of the Banach space and hence by Note 3.2.A, $\bigcap_{n \in \mathbb{N}} V_n$ is dense in the Banach space).

Proposition 3.2. Baire's Theorem

Theorem 3.2. Baire's Theorem.

The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let (V_n) be a sequence of dense open subsets of a given Banach space. Let W be any nonempty open set in the Banach space. We show $\bigcap_{n\in\mathbb{N}}V_n$ is dense in the Banach space by finding $x \in \bigcap_{n\in\mathbb{N}}V_n$ such that $x \in W$ (so that $\bigcap_{n\in\mathbb{N}}V_n$ intersects every open subset of the Banach space and hence by Note 3.2.A, $\bigcap_{n\in\mathbb{N}}V_n$ is dense in the Banach space). Now $W \cap V_1$ is open and nonempty (by Note 3.2.A, since V_1 is dense in the space). So there is some closed ball \overline{B}_1 that is a subset of $W \cap V_1$ where the radius of \overline{B}_1 is less than 1 (because $W \cap V_1$ is open). Inductively we produce closed balls \overline{B}_n such that \overline{B}_n is a subset of $B_{n-1} \cap V_n$ and the radius of \overline{B}_n is less than 1/n.

Proposition 3.2. Baire's Theorem

Theorem 3.2. Baire's Theorem.

The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let (V_n) be a sequence of dense open subsets of a given Banach space. Let W be any nonempty open set in the Banach space. We show $\bigcap_{n\in\mathbb{N}}V_n$ is dense in the Banach space by finding $x \in \bigcap_{n\in\mathbb{N}}V_n$ such that $x \in W$ (so that $\bigcap_{n\in\mathbb{N}}V_n$ intersects every open subset of the Banach space and hence by Note 3.2.A, $\bigcap_{n\in\mathbb{N}}V_n$ is dense in the Banach space). Now $W \cap V_1$ is open and nonempty (by Note 3.2.A, since V_1 is dense in the space). So there is some closed ball \overline{B}_1 that is a subset of $W \cap V_1$ where the radius of \overline{B}_1 is less than 1 (because $W \cap V_1$ is open). Inductively we produce closed balls \overline{B}_n such that \overline{B}_n is a subset of $B_{n-1} \cap V_n$ and the radius of \overline{B}_n is less than 1/n.

Proposition 3.2. Baire's Theorem (continued)

Theorem 3.2. Baire's Theorem.

The intersection of countably many open and dense sets in a Banach space is dense.

Proof (continued). Notice that $\overline{B}_n \subseteq \overline{B}_{n-1}$ by construction and so the sequence (\overline{B}_n) is a sequence of nested closed sets and diam $(\overline{B}_n) \to 0$. So by the Nested Set Theorem (Proposition 3.1) there is a unique $x \in \overline{B}_n$ for all $n \in \mathbb{N}$. So $x \in W$ and $x \in V_n$ for all $n \in \mathbb{N}$ (since $\overline{B}_n \subseteq W$ and $\overline{B}_n \subseteq V_n$ for all $n \in \mathbb{N}$). Therefore $x \in W$ and $x \in \cap V_n$ and so $\cap V_n$ is dense in the space (by Note 3.2.A).

Corollary 3.3. Dual Form of Baire's Theorem

Corollary 3.3. Dual Form of Baire's Theorem.

In any Banach space, a countable union of closed sets with empty interiors has an empty interior.

Proof. Let X_n be closed sets with empty interiors in Banach space X. Then $X \setminus X_n$ is dense in X for each $n \in \mathbb{N}$ by Note 3.2.B. So by Baire's Theorem (Theorem 3.2) we have that

 $\cap_{n\in\mathbb{N}}(X\setminus X_n)=X\setminus (\cup_{n\in\mathbb{N}}X_n)$ (by DeMorgan's Laws)

is dense in X and so has an empty interior (again, by Note 3.2.B).

Corollary 3.3. Dual Form of Baire's Theorem

Corollary 3.3. Dual Form of Baire's Theorem.

In any Banach space, a countable union of closed sets with empty interiors has an empty interior.

Proof. Let X_n be closed sets with empty interiors in Banach space X. Then $X \setminus X_n$ is dense in X for each $n \in \mathbb{N}$ by Note 3.2.B. So by Baire's Theorem (Theorem 3.2) we have that

 $\cap_{n\in\mathbb{N}}(X\setminus X_n)=X\setminus (\cup_{n\in\mathbb{N}}X_n)$ (by DeMorgan's Laws)

is dense in X and so has an empty interior (again, by Note 3.2.B).