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Proposition 3.1. The Nested Set Theorem

Proposition 3.1. The Nested Set Theorem

Proposition 3.1. The Nested Set Theorem.
Given a sequence F;1 D F, D F3 D --- of closed nonempty sets in a

Banach space such that diam(F,) — 0, there is a unique point that is in
F, for all n € N.
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Proposition 3.1. The Nested Set Theorem

Proposition 3.1. The Nested Set Theorem.

Given a sequence F; O F» D F3 D --- of closed nonempty sets in a
Banach space such that diam(F,) — 0, there is a unique point that is in
F, for all n € N.

Proof. Choose some x, € F,, for each n € N. Since diam(F,) — 0, for all
£ > 0 there exists N € N such that if n > N then diam(F,) < €. Since the
F, are nested, then for all m,n > N, we have ||x, — xm|| < &, and so (x,)
is a Cauchy sequence. Since we are in a Banach space, there is x such
that (x,) — x. Now for n € N, the sequence (xn, Xp11, Xnt2,...) C Fp is
convergent to x and since F, is closed then F, = F,. So x € F, by
Theorem 2.2.A(iii). That is x € F, for all n € N.
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Proposition 3.1. The Nested Set Theorem

Proposition 3.1. The Nested Set Theorem.

Given a sequence F; O F» D F3 D --- of closed nonempty sets in a
Banach space such that diam(F,) — 0, there is a unique point that is in
F, for all n € N.

Proof. Choose some x, € F,, for each n € N. Since diam(F,) — 0, for all
£ > 0 there exists N € N such that if n > N then diam(F,) < €. Since the
F, are nested, then for all m,n > N, we have ||x, — xm|| < &, and so (x,)
is a Cauchy sequence. Since we are in a Banach space, there is x such
that (x,) — x. Now for n € N, the sequence (xn, Xp11, Xnt2,...) C Fp is
convergent to x and since F, is closed then F, = F,. So x € F, by
Theorem 2.2.A(iii). That is x € F, for all n € N.

Next, suppose both x,y € F, for all n € N. Then ||x — y|| < diam(F,) for
all n € N and since diam(F,) — 0, then ||[x — y|| =0, or x =y,
establishing uniqueness. O
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Proposition 3.2. Baire's Theorem

Theorem 3.2. Baire’s Theorem.

The intersection of countably many open and dense sets in a Banach
space is dense.
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Proposition 3.2. Baire's Theorem

Proposition 3.2. Baire's Theorem

Theorem 3.2. Baire’s Theorem.

The intersection of countably many open and dense sets in a Banach
space is dense.

Proof. Let (V) be a sequence of dense open subsets of a given Banach
space. Let W be any nonempty open set in the Banach space. We show
MNpen V) is dense in the Banach space by finding x € Npen V, such that

x € W (so that N,en V, intersects every open subset of the Banach space
and hence by Note 3.2.A, NyenV, is dense in the Banach space).
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Proposition 3.2. Baire's Theorem

Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach
space is dense.

Proof. Let (V) be a sequence of dense open subsets of a given Banach
space. Let W be any nonempty open set in the Banach space. We show
MNpen V) is dense in the Banach space by finding x € Npen V, such that

x € W (so that N,en V, intersects every open subset of the Banach space
and hence by Note 3.2.A, N,enV, is dense in the Banach space). Now
W N V; is open and nonempty (by Note 3.2.A, since V; is dense in the
space). So there is some closed ball Bj that is a subset of W N V4 where
the radius of By is less than 1 (because W N V is open). Inductively we
produce closed balls B, such that B, is a subset of B,_1 NV, and the
radius of B, is less than 1/n.
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Proposition 3.2. Baire's Theorem

Proposition 3.2. Baire's Theorem (continued)

Theorem 3.2. Baire’s Theorem.

The intersection of countably many open and dense sets in a Banach
space is dense.

Proof (continued). Notice that B, C B,_; by construction and so the
sequence (B,) is a sequence of nested closed sets and diam(B,) — 0. So
by the Nested Set Theorem (Proposition 3.1) there is a unique x € B, for
allneN. Sox € W and x € V, for all n € N (since B, C W and

B,C V, forallne N). Therefore x € W and x € NV, and so NV, is
dense in the space (by Note 3.2.A). O
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Corollary 3.3. Dual Form of Baire's Theorem

Corollary 3.3. Dual Form of Baire’s Theorem.

In any Banach space, a countable union of closed sets with empty interiors
has an empty interior.
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Corollary 3.3. Dual Form of Baire's Theorem

Corollary 3.3. Dual Form of Baire’s Theorem.
In any Banach space, a countable union of closed sets with empty interiors
has an empty interior.

Proof. Let X, be closed sets with empty interiors in Banach space X.
Then X \ X, is dense in X for each n € N by Note 3.2.B. So by Baire's
Theorem (Theorem 3.2) we have that

Nnen(X \ Xn) = X'\ (UnenXn) (by DeMorgan's Laws)

is dense in X and so has an empty interior (again, by Note 3.2.B). O
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