Introduction to Functional Analysis

Chapter 3. Major Banach Space Theorems
3.2. Baire Category Theorem—Proofs of Theorems
Proposition 3.1. The Nested Set Theorem.
Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \cdots$ of closed nonempty sets in a Banach space such that $\text{diam}(F_n) \to 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$.
Proposition 3.1, The Nested Set Theorem

Proposition 3.1. The Nested Set Theorem.
Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \cdots$ of closed nonempty sets in a Banach space such that $\text{diam}(F_n) \to 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$. Since $\text{diam}(F_n) \to 0$, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\text{diam}(F_n) < \varepsilon$.
Proposition 3.1, The Nested Set Theorem.
Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \cdots$ of closed nonempty sets in a Banach space such that $\text{diam}(F_n) \to 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$. Since $\text{diam}(F_n) \to 0$, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\text{diam}(F_n) < \varepsilon$. Since the F_n are nested, then for all $m, n \geq N$, we have $\|x_n - x_m\| < \varepsilon$, and so (x_n) is a Cauchy sequence.
Proposition 3.1. The Nested Set Theorem.

Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \cdots$ of closed nonempty sets in a Banach space such that $\text{diam}(F_n) \to 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$. Since $\text{diam}(F_n) \to 0$, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\text{diam}(F_n) < \varepsilon$. Since the F_n are nested, then for all $m, n \geq N$, we have $\|x_n - x_m\| < \varepsilon$, and so (x_n) is a Cauchy sequence. Since we are in a Banach space, there is x such that $(x_n) \to x$.
Proposition 3.1, The Nested Set Theorem

Proposition 3.1. The Nested Set Theorem.
Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \cdots$ of closed nonempty sets in a Banach space such that $\text{diam}(F_n) \to 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$. Since $\text{diam}(F_n) \to 0$, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\text{diam}(F_n) < \varepsilon$. Since the F_n are nested, then for all $m, n \geq N$, we have $\|x_n - x_m\| < \varepsilon$, and so (x_n) is a Cauchy sequence. Since we are in a Banach space, there is x such that $(x_n) \to x$. Now for $n \in \mathbb{N}$, the sequence $(x_n, x_{n+1}, x_{n+2}, \ldots) \subseteq F_n$ is convergent to x and since F_n is closed, then $x \in F_n$. That is $x \in F_n$ for all $n \in \mathbb{N}$.
Proposition 3.1. The Nested Set Theorem.
Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \cdots$ of closed nonempty sets in a Banach space such that $\text{diam}(F_n) \to 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$. Since $\text{diam}(F_n) \to 0$, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\text{diam}(F_n) < \varepsilon$. Since the F_n are nested, then for all $m, n \geq N$, we have $\|x_n - x_m\| < \varepsilon$, and so (x_n) is a Cauchy sequence. Since we are in a Banach space, there is x such that $(x_n) \to x$. Now for $n \in \mathbb{N}$, the sequence $(x_n, x_{n+1}, x_{n+2}, \ldots) \subseteq F_n$ is convergent to x and since F_n is closed, then $x \in F_n$. That is $x \in F_n$ for all $n \in \mathbb{N}$.

Next, suppose both $x, y \in F_n$ for all $n \in \mathbb{N}$.
Proposition 3.1. The Nested Set Theorem.
Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \cdots$ of closed nonempty sets in a Banach space such that $\text{diam}(F_n) \to 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$. Since $\text{diam}(F_n) \to 0$, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\text{diam}(F_n) < \varepsilon$. Since the F_n are nested, then for all $m, n \geq N$, we have $\|x_n - x_m\| < \varepsilon$, and so (x_n) is a Cauchy sequence. Since we are in a Banach space, there is x such that $(x_n) \to x$. Now for $n \in \mathbb{N}$, the sequence $(x_n, x_{n+1}, x_{n+2}, \ldots) \subseteq F_n$ is convergent to x and since F_n is closed, then $x \in F_n$. That is $x \in F_n$ for all $n \in \mathbb{N}$.

Next, suppose both $x, y \in F_n$ for all $n \in \mathbb{N}$. Then $\|x - y\| \leq \text{diam}(F_n)$ for all $n \in \mathbb{N}$ and since $\text{diam}(F_n) \to 0$, then $\|x - y\| = 0$, or $x = y$, establishing uniqueness.
Proposition 3.1. The Nested Set Theorem.

Given a sequence $F_1 \supseteq F_2 \supseteq F_3 \cdots$ of closed nonempty sets in a Banach space such that $\text{diam}(F_n) \to 0$, there is a unique point that is in F_n for all $n \in \mathbb{N}$.

Proof. Choose some $x_n \in F_n$ for each $n \in \mathbb{N}$. Since $\text{diam}(F_n) \to 0$, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\text{diam}(F_n) < \varepsilon$. Since the F_n are nested, then for all $m, n \geq N$, we have $\|x_n - x_m\| < \varepsilon$, and so (x_n) is a Cauchy sequence. Since we are in a Banach space, there is x such that $(x_n) \to x$. Now for $n \in \mathbb{N}$, the sequence $(x_n, x_{n+1}, x_{n+2}, \ldots) \subseteq F_n$ is convergent to x and since F_n is closed, then $x \in F_n$. That is $x \in F_n$ for all $n \in \mathbb{N}$.

Next, suppose both $x, y \in F_n$ for all $n \in \mathbb{N}$. Then $\|x - y\| \leq \text{diam}(F_n)$ for all $n \in \mathbb{N}$ and since $\text{diam}(F_n) \to 0$, then $\|x - y\| = 0$, or $x = y$, establishing uniqueness.
Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let \((V_n)\) be a sequence of dense open subsets of a given Banach space.
Proposition 3.2, Baire’s Theorem

Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let \((V_n)\) be a sequence of dense open subsets of a given Banach space. Let \(W\) be any nonempty open set. We show \(\bigcap_{n \in \mathbb{N}} V_n\) is dense by finding \(x \in \bigcap_{n \in \mathbb{N}} V_n\) such that \(x \in W\).
Proposition 3.2, Baire’s Theorem

Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let \((V_n)\) be a sequence of dense open subsets of a given Banach space. Let \(W\) be any nonempty open set. We show \(\bigcap_{n \in \mathbb{N}} V_n\) is dense by finding \(x \in \bigcap_{n \in \mathbb{N}} V_n\) such that \(x \in W\). Now \(W \cap V_1\) is open and nonempty (since \(V_1\) is dense in the space). So there is some closed ball \(\overline{B}_1\) that is a subset of \(W \cap V_1\) where the radius of \(\overline{B}_1\) is less than 1.
Proposition 3.2, Baire’s Theorem

Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let \((V_n)\) be a sequence of dense open subsets of a given Banach space. Let \(W\) be any nonempty open set. We show \(\cap_{n \in \mathbb{N}} V_n\) is dense by finding \(x \in \cap_{n \in \mathbb{N}} V_n\) such that \(x \in W\). Now \(W \cap V_1\) is open and nonempty (since \(V_1\) is dense in the space). So there is some closed ball \(\overline{B}_1\) that is a subset of \(W \cap V_1\) where the radius of \(\overline{B}_1\) is less than 1. Inductively we produce closed balls \(\overline{B}_n\) such that \(\overline{B}_n\) is a subset of \(\overline{B}_{n-1} \cap V_n\) and the radius of \(\overline{B}_n\) is less than \(1/n\).
Proposition 3.2, Baire’s Theorem

Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let \((V_n)\) be a sequence of dense open subsets of a given Banach space. Let \(W\) be any nonempty open set. We show \(\cap_{n \in \mathbb{N}} V_n\) is dense by finding \(x \in \cap_{n \in \mathbb{N}} V_n\) such that \(x \in W\). Now \(W \cap V_1\) is open and nonempty (since \(V_1\) is dense in the space). So there is some closed ball \(\overline{B}_1\) that is a subset of \(W \cap V_1\) where the radius of \(\overline{B}_1\) is less than 1. Inductively we produce closed balls \(\overline{B}_n\) such that \(\overline{B}_n\) is a subset of \(\overline{B}_{n-1} \cap V_n\) and the radius of \(\overline{B}_n\) is less than \(1/n\). Notice that \(\overline{B}_n \subseteq \overline{B}_{n-1}\) by construction and so the sequence \((\overline{B}_n)\) is a sequence of nested closed sets and \(\text{diam} (\overline{B}_n) \to 0\).
Proposition 3.2, Baire’s Theorem

Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let \((V_n)\) be a sequence of dense open subsets of a given Banach space. Let \(W\) be any nonempty open set. We show \(\bigcap_{n \in \mathbb{N}} V_n\) is dense by finding \(x \in \bigcap_{n \in \mathbb{N}} V_n\) such that \(x \in W\). Now \(W \cap V_1\) is open and nonempty (since \(V_1\) is dense in the space). So there is some closed ball \(\overline{B}_1\) that is a subset of \(W \cap V_1\) where the radius of \(\overline{B}_1\) is less than 1. Inductively we produce closed balls \(\overline{B}_n\) such that \(\overline{B}_n\) is a subset of \(\overline{B}_{n-1} \cap V_n\) and the radius of \(\overline{B}_n\) is less than \(1/n\). Notice that \(\overline{B}_n \subseteq \overline{B}_{n-1}\) by construction and so the sequence \((\overline{B}_n)\) is a sequence of nested closed sets and \(\text{diam}(\overline{B}_n) \to 0\). So by the Nested Set Theorem (Proposition 3.1) there is a unique \(x \in \overline{B}_n\) for all \(n \in \mathbb{N}\). So \(x \in W\) and \(x \in V_n\) for all \(n \in \mathbb{N}\).
Proposition 3.2, Baire’s Theorem

Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let \((V_n)\) be a sequence of dense open subsets of a given Banach space. Let \(W\) be any nonempty open set. We show \(\bigcap_{n \in \mathbb{N}} V_n\) is dense by finding \(x \in \bigcap_{n \in \mathbb{N}} V_n\) such that \(x \in W\). Now \(W \cap V_1\) is open and nonempty (since \(V_1\) is dense in the space). So there is some closed ball \(\overline{B}_1\) that is a subset of \(W \cap V_1\) where the radius of \(\overline{B}_1\) is less than 1. Inductively we produce closed balls \(\overline{B}_n\) such that \(\overline{B}_n\) is a subset of \(\overline{B}_{n-1} \cap V_n\) and the radius of \(\overline{B}_n\) is less than \(1/n\). Notice that \(\overline{B}_n \subseteq \overline{B}_{n-1}\) by construction and so the sequence \((\overline{B}_n)\) is a sequence of nested closed sets and \(\text{diam}(\overline{B}_n) \to 0\). So by the Nested Set Theorem (Proposition 3.1) there is a unique \(x \in \overline{B}_n\) for all \(n \in \mathbb{N}\). So \(x \in W\) and \(x \in V_n\) for all \(n \in \mathbb{N}\). Therefore \(x \in W\) and \(x \in \bigcap V_n\) and therefore \(\bigcap V_n\) is dense in the space.
Proposition 3.2, Baire’s Theorem

Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach space is dense.

Proof. Let \((V_n)\) be a sequence of dense open subsets of a given Banach space. Let \(W\) be any nonempty open set. We show \(\bigcap_{n\in\mathbb{N}} V_n\) is dense by finding \(x \in \bigcap_{n\in\mathbb{N}} V_n\) such that \(x \in W\). Now \(W \cap V_1\) is open and nonempty (since \(V_1\) is dense in the space). So there is some closed ball \(\overline{B}_1\) that is a subset of \(W \cap V_1\) where the radius of \(\overline{B}_1\) is less than 1. Inductively we produce closed balls \(\overline{B}_n\) such that \(\overline{B}_n\) is a subset of \(\overline{B}_{n-1} \cap V_n\) and the radius of \(\overline{B}_n\) is less than \(1/n\). Notice that \(\overline{B}_n \subseteq \overline{B}_{n-1}\) by construction and so the sequence \((\overline{B}_n)\) is a sequence of nested closed sets and \(\text{diam}(\overline{B}_n) \to 0\). So by the Nested Set Theorem (Proposition 3.1) there is a unique \(x \in \overline{B}_n\) for all \(n \in \mathbb{N}\). So \(x \in W\) and \(x \in V_n\) for all \(n \in \mathbb{N}\). Therefore \(x \in W\) and \(x \in \bigcap V_n\) and therefore \(\bigcap V_n\) is dense in the space.
Corollary 3.3. Dual Form of Baire’s Theorem.
In any Banach space, a countable union of closed sets with empty interiors has an empty interior.

Proof. Let \(X_n \) be closed sets with empty interiors in Banach space \((X, \| \cdot \|) \).
Corollary 3.3. Dual Form of Baire’s Theorem.
In any Banach space, a countable union of closed sets with empty interiors has an empty interior.

Proof. Let X_n be closed sets with empty interiors in Banach space $(X, \| \cdot \|)$. Then $X \setminus X_n$ is dense in X for each $n \in \mathbb{N}$.
Corollary 3.3. Dual Form of Baire’s Theorem.

In any Banach space, a countable union of closed sets with empty interiors has an empty interior.

Proof. Let X_n be closed sets with empty interiors in Banach space $(X, \| \cdot \|)$. Then $X \setminus X_n$ is dense in X for each $n \in \mathbb{N}$. So by Baire’s Theorem (Theorem 3.2) we have that

$$\bigcap_{n \in \mathbb{N}} (X \setminus X_n) = X \setminus (\bigcup_{n \in \mathbb{N}} X_n)$$

(by DeMorgan’s Laws)

is dense in X and so has an empty interior.
Corollary 3.3. Dual Form of Baire’s Theorem.

In any Banach space, a countable union of closed sets with empty interiors has an empty interior.

Proof. Let X_n be closed sets with empty interiors in Banach space $(X, \| \cdot \|)$. Then $X \setminus X_n$ is dense in X for each $n \in \mathbb{N}$. So by Baire’s Theorem (Theorem 3.2) we have that

$$\bigcap_{n \in \mathbb{N}} (X \setminus X_n) = X \setminus (\bigcup_{n \in \mathbb{N}} X_n) \quad \text{(by DeMorgan’s Laws)}$$

is dense in X and so has an empty interior.