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Proposition 3.1. The Nested Set Theorem
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Proposition 3.1. The Nested Set Theorem.
Given a sequence F1 ⊇ F2 ⊇ F3 ⊇ · · · of closed nonempty sets in a
Banach space such that diam(Fn) → 0, there is a unique point that is in
Fn for all n ∈ N.

Proof. Choose some xn ∈ Fn for each n ∈ N. Since diam(Fn) → 0, for all
ε > 0 there exists N ∈ N such that if n ≥ N then diam(Fn) < ε. Since the
Fn are nested, then for all m, n ≥ N, we have ‖xn − xm‖ < ε, and so (xn)
is a Cauchy sequence. Since we are in a Banach space, there is x such
that (xn) → x . Now for n ∈ N, the sequence (xn, xn+1, xn+2, . . .) ⊆ Fn is
convergent to x and since Fn is closed then Fn = F n. So x ∈ Fn by
Theorem 2.2.A(iii). That is x ∈ Fn for all n ∈ N.

Next, suppose both x , y ∈ Fn for all n ∈ N. Then ‖x − y‖ ≤ diam(Fn) for
all n ∈ N and since diam(Fn) → 0, then ‖x − y‖ = 0, or x = y ,
establishing uniqueness.
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Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach
space is dense.

Proof. Let (Vn) be a sequence of dense open subsets of a given Banach
space. Let W be any nonempty open set in the Banach space. We show
∩n∈NVn is dense in the Banach space by finding x ∈ ∩n∈NVn such that
x ∈ W (so that ∩n∈NVn intersects every open subset of the Banach space
and hence by Note 3.2.A, ∩n∈NVn is dense in the Banach space).

Now
W ∩ V1 is open and nonempty (by Note 3.2.A, since V1 is dense in the
space). So there is some closed ball B1 that is a subset of W ∩ V1 where
the radius of B1 is less than 1 (because W ∩ V1 is open). Inductively we
produce closed balls Bn such that Bn is a subset of Bn−1 ∩ Vn and the
radius of Bn is less than 1/n.
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Proposition 3.2. Baire’s Theorem (continued)

Theorem 3.2. Baire’s Theorem.
The intersection of countably many open and dense sets in a Banach
space is dense.

Proof (continued). Notice that Bn ⊆ Bn−1 by construction and so the
sequence (Bn) is a sequence of nested closed sets and diam(Bn) → 0. So
by the Nested Set Theorem (Proposition 3.1) there is a unique x ∈ Bn for
all n ∈ N. So x ∈ W and x ∈ Vn for all n ∈ N (since Bn ⊆ W and
Bn ⊆ Vn for all n ∈ N). Therefore x ∈ W and x ∈ ∩Vn and so ∩Vn is
dense in the space (by Note 3.2.A).
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Corollary 3.3. Dual Form of Baire’s Theorem.
In any Banach space, a countable union of closed sets with empty interiors
has an empty interior.

Proof. Let Xn be closed sets with empty interiors in Banach space X .
Then X \ Xn is dense in X for each n ∈ N by Note 3.2.B. So by Baire’s
Theorem (Theorem 3.2) we have that

∩n∈N(X \ Xn) = X \ (∪n∈NXn) (by DeMorgan’s Laws)

is dense in X and so has an empty interior (again, by Note 3.2.B).
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