Introduction to Functional Analysis

Chapter 3. Major Banach Space Theorems 3.3. Open Mappings—Proofs of Theorems

1 [Theorem 3.5. The Open Mapping Theorem](#page-2-0)

Theorem 3.5

Theorem 3.5. Open Mapping Theorem. Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subset X$ is open then $T(U)$ is open.

Proof. We follow the steps given in the text.

STEP 1. Suppose that we have shown that $T(B(1)) \supseteq B'(\delta)$ for some $\delta > 0$. Then given any open $U \subseteq X$ and $y \in T(U)$, we have $y = Tx$ for some $x \in U$. Since U is open, there is $r > 0$ such that $U \supseteq B(x; r) = x + rB(0; 1) = x + rB(1)$, by Lemma 3.4(a). Therefore

$$
T(U) \supseteq T(x + rB(1)) = Tx + rT(B(1)) \text{ since } T \text{ is linear}
$$

= $y + rT(B(1)) \supseteq y + rB'(\delta) = y + B'(r\delta)$ by Lemma 3.4(a)
= $B'(y; r\delta)$.

Therefore $T(U)$ is open.

Theorem 3.5

Theorem 3.5. Open Mapping Theorem.

Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subset X$ is open then $T(U)$ is open.

Proof. We follow the steps given in the text.

<code>STEP 1.</code> Suppose that we have shown that $\mathcal{T}(B(1))\supseteq B'(\delta)$ for some $\delta > 0$. Then given any open $U \subseteq X$ and $y \in T(U)$, we have $y = Tx$ for some $x \in U$. Since U is open, there is $r > 0$ such that $U \supseteq B(x; r) = x + rB(0; 1) = x + rB(1)$, by Lemma 3.4(a). Therefore

$$
T(U) \supseteq T(x + rB(1)) = Tx + rT(B(1))
$$
 since *T* is linear
= $y + rT(B(1)) \supseteq y + rB'(\delta) = y + B'(r\delta)$ by Lemma 3.4(a)
= $B'(y; r\delta)$.

Therefore $T(U)$ is open.

Theorem 3.5 (continued 1)

Theorem 3.5. Open Mapping Theorem. Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then $T(U)$ is open.

Proof (continued). STEP 2. Let $V = T(B(0, 1/2)) = T(B(1/2))$. Notice that $V = -V$. For any $y \in Y$, since T is onto, there is $x \in X$ such that $y = Tx = 2kT(x/(2k))$. So if $||x|| < k$ then $||x/(2k)|| < 1/2$ and $x/(2k) \in B(1/2)$, so that $y \in 2kT(B(1/2)) = 2kV$. So $y \in nV$ for some $n \in \mathbb{N}$ and therefore $Y = \bigcup_{n \in \mathbb{N}} nV$. Now consider the sequence of closed $\mathsf{sets}\ (\overline{nV})_{n=1}^\infty.$ If each $\overline{nV}=n\overline{V}$ has an empty interior, then (by Corollary 3.3, the Dual Form of Baire's Theorem) $\bigcup_{n\in\mathbb{N}}\overline{nV} = Y$ would have an empty interior, a contradiction (since set Y itself is open and nonempty in Banach space Y). So there is some $n \in \mathbb{N}$ with $n\overline{V} = n\overline{V}$ having a nonempty interior, say $ny = w$ is an interior point of nV . That is, y is an interior point of $\overline V$, so for some $s>0$ we have that $y+B'(s)\subseteq \overline V.$

Theorem 3.5 (continued 1)

Theorem 3.5. Open Mapping Theorem. Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subset X$ is open then $T(U)$ is open.

Proof (continued). STEP 2. Let $V = T(B(0, 1/2)) = T(B(1/2))$. Notice that $V = -V$. For any $y \in Y$, since T is onto, there is $x \in X$ such that $y = Tx = 2kT(x/(2k))$. So if $||x|| < k$ then $||x/(2k)|| < 1/2$ and $x/(2k) \in B(1/2)$, so that $y \in 2kT(B(1/2)) = 2kV$. So $y \in nV$ for some $n \in \mathbb{N}$ and therefore $Y = \bigcup_{n \in \mathbb{N}} nV$. Now consider the sequence of closed sets $(\overline{nV})_{n=1}^\infty$. If each $\overline{nV}=n\overline{V}$ has an empty <u>int</u>erior, then (by Corollary 3.3, the Dual Form of Baire's Theorem) $\bigcup_{n\in\mathbb{N}}\overline{nV} = Y$ would have an empty interior, a contradiction (since set Y itself is open and nonempty in Banach space Y). So there is some $n \in \mathbb{N}$ with $n\overline{V} = n\overline{V}$ having a nonempty interior, say $ny = w$ is an interior point of nV . That is, y is an interior point of $\overline V$, so for some $s>0$ we have that $y+B'(s)\subseteq \overline V.$

Theorem 3.5 (continued 2)

Proof (continued). Now suppose $z \in B'(s/2)$. Then $-(y+z) \in -\overline{V} = \overline{-V} = \overline{V}$ (by Lemma 3.4(b)). Also, $y + 2z \in \overline{V}$:

So

$$
z = (y + 2z) - (y + z) \in \overline{V} + \overline{V} \subseteq \overline{V + V}
$$
 by Lemma 3.4(c)
= $\overline{T(B(1/2)) + T(B(1/2))} = \overline{T(B(1/2) + B(1/2))} = \overline{T(B(1))}.$

So with $r=s/2$ we have $B'(s/2)=B'(r)\subseteq \overline{\mathcal{T}(B(1))}.$

Theorem 3.5 (continued 3)

Theorem 3.5. Open Mapping Theorem. Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then $T(U)$ is open.

Proof (continued). STEP 3. From Step 2, we have $B'(r) \subseteq \overline{T(B(1))}$ for some $r > 0$ (namely, $r = s/2$). For any nonnegative $k \in \mathbb{Z}$ we have $2^{-k}B'(r)\subseteq 2^{-k}\overline{T(B(1))}$ and so by Lemma 3.4(d) $B'(r/2^k) \subseteq \mathcal{T}(B(1/2^k))$. So for any $z \in B'(r/2^k)$, either $z \in \mathcal{T}(B(1/2^k))$ or z is a limit point of $\mathcal{T}(B(1/2^k))$ (by Theorem 2.2.A). So for any $\varepsilon>0$ there exists $x\in B(1/2^k)$ such that $\|z-Tx\|<\varepsilon.$

Suppose $y \in B'(r)$. Choose $x_1 \in B(1)$ such that $||y - Tx_1|| < r/2$ (from above with $k = 0$ and $\varepsilon = r/2$). So $y - Tx_1 \in B'(r/2)$. Then choose $x_2 \in B(1/2)$ such that $||y - Tx_1| - Tx_2|| < r/4$ (from above with $k = 1$) and $\varepsilon = r/4$).

Theorem 3.5 (continued 3)

Theorem 3.5. Open Mapping Theorem. Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then $T(U)$ is open.

Proof (continued). STEP 3. From Step 2, we have $B'(r) \subseteq \overline{T(B(1))}$ for some $r > 0$ (namely, $r = s/2$). For any nonnegative $k \in \mathbb{Z}$ we have $2^{-k}B'(r)\subseteq 2^{-k}\overline{T(B(1))}$ and so by Lemma 3.4(d) $B'(r/2^k) \subseteq \mathcal{T}(B(1/2^k))$. So for any $z \in B'(r/2^k)$, either $z \in \mathcal{T}(B(1/2^k))$ or z is a limit point of $\mathcal{T}(B(1/2^k))$ (by Theorem 2.2.A). So for any $\varepsilon>0$ there exists $x\in B(1/2^k)$ such that $\|z-Tx\|<\varepsilon.$

Suppose $y \in B'(r)$. Choose $x_1 \in B(1)$ such that $||y - Tx_1|| < r/2$ (from above with $k = 0$ and $\varepsilon = r/2$). So $y - Tx_1 \in B'(r/2)$. Then choose $x_2 \in B(1/2)$ such that $\|(y - Tx_1) - Tx_2\| < r/4$ (from above with $k = 1$) and $\varepsilon = r/4$).

!

Theorem 3.5 (continued 4)

Proof (continued). STEP 3 (continued). Then inductively choose $x_n\in B(1/2^{n-1})$ such that

$$
||(y-Tx_1-Tx_2-\cdots-Tx_{n-1})-Tx_n||=||y-T(x_1+x_2+\cdots+x_n)|| < r/2^n (*)
$$

(from above since $y - T(x_1 + x_2 + \cdots + x_n) \in B'(1/2^{n-2})$ with $k = n-1$ and $\varepsilon = r/2^n$). Now $||x_n|| < 1/2^{n-1}$, so $\sum_{n=1}^{\infty} ||x_n|| < \sum_{n=1}^{\infty} 1/2^{n-1} = 2$ and $\sum_{n=1}^{\infty} x_n$ is absolutely convergent and therefore convergent by Theorem 2.12, say $x = \sum_{n=1}^{\infty} x_n$. By the Triangle Inequality, $||x|| \le \sum_{n=1}^{\infty} ||x_n|| < 2.$ Now

$$
\begin{aligned}\n\text{S/N=1} & \times \text{S/N=1} \\
\text{S/N=1} & \text{S/N
$$

 $Tx = T \left(\sum_{n=1}^{\infty} x_n \right)$

Theorem 3.5 (continued 4)

Proof (continued). STEP 3 (continued). Then inductively choose $x_n\in B(1/2^{n-1})$ such that

$$
||(y-Tx_1-Tx_2-\cdots-Tx_{n-1})-Tx_n||=||y-T(x_1+x_2+\cdots+x_n)|| < r/2^n (*)
$$

(from above since $y - T(x_1 + x_2 + \cdots + x_n) \in B'(1/2^{n-2})$ with $k = n-1$ and $\varepsilon = r/2^n$). Now $||x_n|| < 1/2^{n-1}$, so $\sum_{n=1}^{\infty} ||x_n|| < \sum_{n=1}^{\infty} 1/2^{n-1} = 2$ and $\sum_{n=1}^{\infty} x_n$ is absolutely convergent and therefore convergent by Theorem 2.12, say $x = \sum_{n=1}^{\infty} x_n$. By the Triangle Inequality, $||x|| \le \sum_{n=1}^{\infty} ||x_n|| < 2$. Now

$$
Tx = T\left(\sum_{n=1}^{\infty} x_n\right)
$$

 $=\sum_{i=1}^{\infty} T_{X_{n}}$ since T is bounded and so continuous by Theorem 2.6 $n=1$ $=$ y by $(*)$.

Theorem 3.5 (continued 5)

Theorem 3.5. Open Mapping Theorem.

Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subset X$ is open then $T(U)$ is open.

Proof (continued). STEP 3 (continued). So $x \in B(0, 2) = B(2)$ and $y = Tx \in T(B(2))$. Since y is an arbitrary element of $B'(r)$ then $B'(r)\subseteq \mathcal{T}(B(2))$, and so $\frac{1}{2}B'(r)\subseteq \frac{1}{2}$ $\frac{1}{2}\, \mathcal{T}(B(2))$ or $B'(r/2) \subseteq \, \mathcal{T}(B(1))$ by Lemma 3.4(d). With $\delta = \overline{r}/2$, we have shown that $B'(\delta) \subseteq \overline{\mathcal{T}}(B(1))$ and the result now holds by STEP 1.