Introduction to Functional Analysis

Chapter 3. Major Banach Space Theorems 3.3. Open Mappings—Proofs of Theorems

1 Theorem 3.5. The Open Mapping Theorem

Theorem 3.5

Theorem 3.5. Open Mapping Theorem.

Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then T(U) is open.

Proof. We follow the steps given in the text.

STEP 1. Suppose that we have shown that $T(B(1)) \supseteq B'(\delta)$ for some $\delta > 0$. Then given any open $U \subseteq X$ and $y \in T(U)$, we have y = Tx for some $x \in U$. Since U is open, there is r > 0 such that $U \supseteq B(x; r) = x + rB(0; 1) = x + rB(1)$, by Lemma 3.4(a). Therefore

$$T(U) \supseteq T(x + rB(1)) = Tx + rT(B(1)) \text{ since } T \text{ is linear}$$

= $y + rT(B(1)) \supseteq y + rB'(\delta) = y + B'(r\delta)$ by Lemma 3.4(a)
= $B'(y; r\delta).$

Therefore T(U) is open.

Theorem 3.5

Theorem 3.5. Open Mapping Theorem.

Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then T(U) is open.

Proof. We follow the steps given in the text.

STEP 1. Suppose that we have shown that $T(B(1)) \supseteq B'(\delta)$ for some $\delta > 0$. Then given any open $U \subseteq X$ and $y \in T(U)$, we have y = Tx for some $x \in U$. Since U is open, there is r > 0 such that $U \supseteq B(x; r) = x + rB(0; 1) = x + rB(1)$, by Lemma 3.4(a). Therefore

$$T(U) \supseteq T(x + rB(1)) = Tx + rT(B(1)) \text{ since } T \text{ is linear}$$

= $y + rT(B(1)) \supseteq y + rB'(\delta) = y + B'(r\delta)$ by Lemma 3.4(a)
= $B'(y; r\delta)$.

Therefore T(U) is open.

Theorem 3.5 (continued 1)

Theorem 3.5. Open Mapping Theorem. Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then T(U) is open.

Proof (continued). STEP 2. Let V = T(B(0; 1/2)) = T(B(1/2)). Notice that V = -V. For any $y \in Y$, since T is onto, there is $x \in X$ such that y = Tx = 2kT(x/(2k)). So if ||x|| < k then ||x/(2k)|| < 1/2 and $x/(2k) \in B(1/2)$, so that $y \in 2kT(B(1/2)) = 2kV$. So $y \in nV$ for some $n \in \mathbb{N}$ and therefore $Y = \bigcup_{n \in \mathbb{N}} nV$. Now consider the sequence of closed sets $(\overline{nV})_{n=1}^{\infty}$. If each $\overline{nV} = n\overline{V}$ has an empty interior, then (by Corollary 3.3, the Dual Form of Baire's Theorem) $\bigcup_{n \in \mathbb{N}} \overline{nV} = Y$ would have an empty interior, a contradiction (since set Y itself is open and nonempty in Banach space Y). So there is some $n \in \mathbb{N}$ with $\overline{nV} = n\overline{V}$ having a nonempty interior, say ny = w is an interior point of $n\overline{V}$. That is, y is an interior point of \overline{V} , so for some s > 0 we have that $y + B'(s) \subset \overline{V}$.

Theorem 3.5 (continued 1)

Theorem 3.5. Open Mapping Theorem. Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then T(U) is open.

Proof (continued). STEP 2. Let V = T(B(0; 1/2)) = T(B(1/2)). Notice that V = -V. For any $y \in Y$, since T is onto, there is $x \in X$ such that y = Tx = 2kT(x/(2k)). So if ||x|| < k then ||x/(2k)|| < 1/2 and $x/(2k) \in B(1/2)$, so that $y \in 2kT(B(1/2)) = 2kV$. So $y \in nV$ for some $n \in \mathbb{N}$ and therefore $Y = \bigcup_{n \in \mathbb{N}} nV$. Now consider the sequence of closed sets $(\overline{nV})_{n=1}^{\infty}$. If each $\overline{nV} = n\overline{V}$ has an empty interior, then (by Corollary 3.3, the Dual Form of Baire's Theorem) $\bigcup_{n \in \mathbb{N}} \overline{nV} = Y$ would have an empty interior, a contradiction (since set Y itself is open and nonempty in Banach space Y). So there is some $n \in \mathbb{N}$ with $\overline{nV} = n\overline{V}$ having a nonempty interior, say ny = w is an interior point of $n\overline{V}$. That is, y is an interior point of \overline{V} , so for some s > 0 we have that $y + B'(s) \subset \overline{V}$.

Theorem 3.5 (continued 2)

Proof (continued). Now suppose $z \in B'(s/2)$. Then $-(y+z) \in -\overline{V} = \overline{V} = \overline{V}$ (by Lemma 3.4(b)). Also, $y + 2z \in \overline{V}$:

$$z = (y+2z) - (y+z) \in \overline{V} + \overline{V} \subseteq \overline{V+V} \text{ by Lemma 3.4(c)}$$

= $\overline{T(B(1/2)) + T(B(1/2))} = \overline{T(B(1/2) + B(1/2))} = \overline{T(B(1))}.$

So with r = s/2 we have $B'(s/2) = B'(r) \subseteq \overline{T(B(1))}$.

Theorem 3.5 (continued 3)

Theorem 3.5. Open Mapping Theorem. Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then T(U) is open.

Proof (continued). STEP 3. From Step 2, we have $B'(r) \subseteq T(B(1))$ for some r > 0 (namely, r = s/2). For any nonnegative $k \in \mathbb{Z}$ we have $2^{-k}B'(r) \subseteq 2^{-k}\overline{T(B(1))}$ and so by Lemma 3.4(d) $B'(r/2^k) \subseteq \overline{T(B(1/2^k))}$. So for any $z \in B'(r/2^k)$, either $z \in T(B(1/2^k))$ or z is a limit point of $T(B(1/2^k))$ (by Theorem 2.2.A). So for any $\varepsilon > 0$ there exists $x \in B(1/2^k)$ such that $||z - Tx|| < \varepsilon$.

Suppose $y \in B'(r)$. Choose $x_1 \in B(1)$ such that $||y - Tx_1|| < r/2$ (from above with k = 0 and $\varepsilon = r/2$). So $y - Tx_1 \in B'(r/2)$. Then choose $x_2 \in B(1/2)$ such that $||(y - Tx_1) - Tx_2|| < r/4$ (from above with k = 1 and $\varepsilon = r/4$).

Theorem 3.5 (continued 3)

Theorem 3.5. Open Mapping Theorem. Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then T(U) is open.

Proof (continued). STEP 3. From Step 2, we have $B'(r) \subseteq \overline{T(B(1))}$ for some r > 0 (namely, r = s/2). For any nonnegative $k \in \mathbb{Z}$ we have $2^{-k}B'(r) \subseteq 2^{-k}\overline{T(B(1))}$ and so by Lemma 3.4(d) $B'(r/2^k) \subseteq \overline{T(B(1/2^k))}$. So for any $z \in B'(r/2^k)$, either $z \in T(B(1/2^k))$ or z is a limit point of $T(B(1/2^k))$ (by Theorem 2.2.A). So for any $\varepsilon > 0$ there exists $x \in B(1/2^k)$ such that $||z - Tx|| < \varepsilon$.

Suppose $y \in B'(r)$. Choose $x_1 \in B(1)$ such that $||y - Tx_1|| < r/2$ (from above with k = 0 and $\varepsilon = r/2$). So $y - Tx_1 \in B'(r/2)$. Then choose $x_2 \in B(1/2)$ such that $||(y - Tx_1) - Tx_2|| < r/4$ (from above with k = 1 and $\varepsilon = r/4$).

Theorem 3.5 (continued 4)

 (∞)

Proof (continued). STEP 3 (continued). Then inductively choose $x_n \in B(1/2^{n-1})$ such that

$$\|(y - Tx_1 - Tx_2 - \dots - Tx_{n-1}) - Tx_n\| = \|y - T(x_1 + x_2 + \dots + x_n)\| < r/2^n$$

(from above since $y - T(x_1 + x_2 + \dots + x_n) \in B'(1/2^{n-2})$ with k = n-1and $\varepsilon = r/2^n$). Now $||x_n|| < 1/2^{n-1}$, so $\sum_{n=1}^{\infty} ||x_n|| < \sum_{n=1}^{\infty} 1/2^{n-1} = 2$ and $\sum_{n=1}^{\infty} x_n$ is absolutely convergent and therefore convergent by Theorem 2.12, say $x = \sum_{n=1}^{\infty} x_n$. By the Triangle Inequality, $||x|| \le \sum_{n=1}^{\infty} ||x_n|| < 2$. Now

$$\bar{x} = T\left(\sum_{n=1}^{\infty} x_n\right)$$

= $\sum_{n=1}^{\infty} Tx_n$ since T is bounded and so continuous by Theorem 2.6
= y by (*).

Theorem 3.5 (continued 4)

Proof (continued). STEP 3 (continued). Then inductively choose $x_n \in B(1/2^{n-1})$ such that

$$\|(y - Tx_1 - Tx_2 - \dots - Tx_{n-1}) - Tx_n\| = \|y - T(x_1 + x_2 + \dots + x_n)\| < r/2^n$$

(from above since $y - T(x_1 + x_2 + \dots + x_n) \in B'(1/2^{n-2})$ with k = n-1and $\varepsilon = r/2^n$). Now $||x_n|| < 1/2^{n-1}$, so $\sum_{n=1}^{\infty} ||x_n|| < \sum_{n=1}^{\infty} 1/2^{n-1} = 2$ and $\sum_{n=1}^{\infty} x_n$ is absolutely convergent and therefore convergent by Theorem 2.12, say $x = \sum_{n=1}^{\infty} x_n$. By the Triangle Inequality, $||x|| \le \sum_{n=1}^{\infty} ||x_n|| < 2$. Now

$$Tx = T\left(\sum_{n=1}^{\infty} x_n\right)$$

= $\sum_{n=1}^{\infty} Tx_n$ since T is bounded and so continuous by Theorem 2.6
= y by (*).

Theorem 3.5 (continued 5)

Theorem 3.5. Open Mapping Theorem.

Given a surjective (onto) $T \in \mathcal{B}(X, Y)$ where X and Y are Banach spaces, if $U \subseteq X$ is open then T(U) is open.

Proof (continued). STEP 3 (continued). So $x \in B(0; 2) = B(2)$ and $y = Tx \in T(B(2))$. Since y is an arbitrary element of B'(r) then $B'(r) \subseteq T(B(2))$, and so $\frac{1}{2}B'(r) \subseteq \frac{1}{2}T(B(2))$ or $B'(r/2) \subseteq T(B(1))$ by Lemma 3.4(d). With $\delta = r/2$, we have shown that $B'(\delta) \subseteq T(B(1))$ and the result now holds by STEP 1.