Chapter 3. Major Banach Space Theorems

3.4. Bounded Inverses—Proofs of Theorems
Theorem 3.6. Given an injective \(T \in \mathcal{B}(X, Y) \) for which both \(X \) and \(Y \) are Banach spaces, the following are equivalent:

(i) \(T^{-1} \) is bounded;

(ii) \(T \) is bounded below;

(iii) \(R(T) \) (the range of \(T \)) is closed.

Proof of (i) \(\Rightarrow \) (ii). If \(T^{-1} \) is bounded and \(\|T^{-1}\| = k < \infty \), then for any \(x \in X \) with \(\|x\| = 1 \) we have

\[
1 = \|x\| = \|T^{-1}Tx\| \leq \|T^{-1}\|\|Tx\| = k\|Tx\|
\]

and so \(\|Tx\| \geq 1/k > 0 \).
Theorem 3.6. Given an injective $T \in \mathcal{B}(X, Y)$ for which both X and Y are Banach spaces, the following are equivalent:

(i) T^{-1} is bounded;
(ii) T is bounded below;
(iii) $R(T)$ (the range of T) is closed.

Proof of (i) \implies (ii). If T^{-1} is bounded and $\|T^{-1}\| = k < \infty$, then for any $x \in X$ with $\|x\| = 1$ we have

$$1 = \|x\| = \|T^{-1}Tx\| \leq \|T^{-1}\|\|Tx\| = k\|Tx\|$$

and so $\|Tx\| \geq 1/k > 0$. So T is bounded below.
Theorem 3.6. Given an injective $T \in B(X, Y)$ for which both X and Y are Banach spaces, the following are equivalent:

(i) T^{-1} is bounded;

(ii) T is bounded below;

(iii) $R(T)$ (the range of T) is closed.

Proof of (i) \Rightarrow (ii). If T^{-1} is bounded and $\|T^{-1}\| = k < \infty$, then for any $x \in X$ with $\|x\| = 1$ we have

$$1 = \|x\| = \|T^{-1}Tx\| \leq \|T^{-1}\| \|Tx\| = k \|Tx\|$$

and so $\|Tx\| \geq 1/k > 0$. So T is bounded below.
Theorem 3.6, (ii) \implies (iii)

Theorem 3.6. Given an injective $T \in \mathcal{B}(X, Y)$ for which both X and Y are Banach spaces, the following are equivalent:

(i) T^{-1} is bounded;

(ii) T is bounded below;

(iii) $R(T)$ (the range of T) is closed.

Proof of (ii) \implies (iii). For $y \in \overline{R(T)}$, choose $(x_n) \subseteq X$ such that (Tx_n) converges to y (such a sequence exists by Theorem 2.2.A(iii)). Then (Tx_n) is Cauchy and since $\|Tx_n\| \geq k\|x_n\|$ for some $k > 0$ and for all $n \in \mathbb{N}$, then (x_n) is Cauchy in X and so convergent to some $x \in X$. But since T is bounded (and so continuous by Theorem 2.6),

$$y = \lim(Tx_n) = T(\lim x_n) = Tx.$$

So $y \in R(T)$ and $R(T)$ is closed.
Theorem 3.6, (ii)⇒(iii)

Theorem 3.6. Given an injective $T \in \mathcal{B}(X, Y)$ for which both X and Y are Banach spaces, the following are equivalent:

(i) T^{-1} is bounded;

(ii) T is bounded below;

(iii) $R(T)$ (the range of T) is closed.

Proof of (ii)⇒(iii). For $y \in \overline{R(T)}$, choose $(x_n) \subseteq X$ such that (Tx_n) converges to y (such a sequence exists by Theorem 2.2.A(iii)). Then (Tx_n) is Cauchy and since $\|Tx_n\| \geq k\|x_n\|$ for some $k > 0$ and for all $n \in \mathbb{N}$, then (x_n) is Cauchy in X and so convergent to some $x \in X$. But since T is bounded (and so continuous by Theorem 2.6), $y = \lim(Tx_n) = T(\lim x_n) = Tx$. So $y \in R(T)$ and $R(T)$ is closed.
Theorem 3.6, (iii) \(\implies \) (i)

Theorem 3.6. Given an injective \(T \in \mathcal{B}(X, Y) \) for which both \(X \) and \(Y \) are Banach spaces, the following are equivalent:

(i) \(T^{-1} \) is bounded;

(iii) \(R(T) \) (the range of \(T \)) is closed.

Proof of (iii) \(\implies \) (i). Suppose \(R(T) \) is a closed subset of \(Y \).
Theorem 3.6, (iii)\implies(i)

Theorem 3.6. Given an injective $T \in \mathcal{B}(X, Y)$ for which both X and Y are Banach spaces, the following are equivalent:

(i) T^{-1} is bounded;

(iii) $R(T)$ (the range of T) is closed.

Proof of (iii)\implies(i). Suppose $R(T)$ is a closed subset of Y. Then $R(T)$ is a closed subspace of Y since $y_1, y_2 \in Y$ implies there exists $x_1, x_2 \in X$ with $T(x_1) = y_1$ and $T(x_2) = y_2$. So any linear combination of y_1 and y_2 is the image under T of the corresponding linear combination of x_1 and x_2 (say, $ay_1 + by_2 = T(ax_1 + bx_2)$ where $ax_1 + bx_2 \in X$).
Theorem 3.6, (iii)⇒(i)

Theorem 3.6. Given an injective $T \in \mathcal{B}(X, Y)$ for which both X and Y are Banach spaces, the following are equivalent:

(i) T^{-1} is bounded;

(iii) $R(T)$ (the range of T) is closed.

Proof of (iii)⇒(i). Suppose $R(T)$ is a closed subset of Y. Then $R(T)$ is a closed subspace of Y since $y_1, y_2 \in Y$ implies there exists $x_1, x_2 \in X$ with $T(x_1) = y_1$ and $T(x_2) = y_2$. So any linear combination of y_1 and y_2 is the image under T of the corresponding linear combination of x_1 and x_2 (say, $ay_1 + by_2 = T(ax_1 + bx_2)$ where $ax_1 + bx_2 \in X$). Then by Theorem 2.16, $R(T)$ is a Banach space itself.
Theorem 3.6, (iii) \Rightarrow (i)

Theorem 3.6. Given an injective $T \in B(X, Y)$ for which both X and Y are Banach spaces, the following are equivalent:

(i) T^{-1} is bounded;

(iii) $R(T)$ (the range of T) is closed.

Proof of (iii) \Rightarrow (i). Suppose $R(T)$ is a closed subset of Y. Then $R(T)$ is a closed subspace of Y since $y_1, y_2 \in Y$ implies there exists $x_1, x_2 \in X$ with $T(x_1) = y_1$ and $T(x_2) = y_2$. So any linear combination of y_1 and y_2 is the image under T of the corresponding linear combination of x_1 and x_2 (say, $ay_1 + by_2 = T(ax_1 + bx_2)$ where $ax_1 + bx_2 \in X$). Then by Theorem 2.16, $R(T)$ is a Banach space itself. Let $U \subseteq X$ be open. Then $(T^{-1})^{-1}U = T(U)$ and by the Open Mapping Theorem (Theorem 3.5), $T(U)$ is open in $R(T)$ (since T is bounded and onto [surjective] its range $R(T)$).
Theorem 3.6. Given an injective $T \in \mathcal{B}(X, Y)$ for which both X and Y are Banach spaces, the following are equivalent:

(i) T^{-1} is bounded;

(iii) $R(T)$ (the range of T) is closed.

Proof of (iii)\implies(i). Suppose $R(T)$ is a closed subset of Y. Then $R(T)$ is a closed subspace of Y since $y_1, y_2 \in Y$ implies there exists $x_1, x_2 \in X$ with $T(x_1) = y_1$ and $T(x_2) = y_2$. So any linear combination of y_1 and y_2 is the image under T of the corresponding linear combination of x_1 and x_2 (say, $ay_1 + by_2 = T(ax_1 + bx_2)$ where $ax_1 + bx_2 \in X$). Then by Theorem 2.16, $R(T)$ is a Banach space itself. Let $U \subseteq X$ be open. Then $(T^{-1})^{-1}U = T(U)$ and by the Open Mapping Theorem (Theorem 3.5), $T(U)$ is open in $R(T)$ (since T is bounded and onto [surjective] its range $R(T)$). So inverse images of open sets (i.e., inverse images with respect to T^{-1}) are open in $R(T)$ and so T^{-1} is continuous and hence, by Theorem 2.6, T^{-1} is bounded on $R(T)$ (the subset of Y on which T^{-1} is defined) and so (i) follows.
Theorem 3.6. Given an injective $T \in \mathcal{B}(X, Y)$ for which both X and Y are Banach spaces, the following are equivalent:

(i) T^{-1} is bounded;

(iii) $R(T)$ (the range of T) is closed.

Proof of (iii)\Rightarrow(i). Suppose $R(T)$ is a closed subset of Y. Then $R(T)$ is a closed subspace of Y since $y_1, y_2 \in Y$ implies there exists $x_1, x_2 \in X$ with $T(x_1) = y_1$ and $T(x_2) = y_2$. So any linear combination of y_1 and y_2 is the image under T of the corresponding linear combination of x_1 and x_2 (say, $ay_1 + by_2 = T(\alpha x_1 + \beta x_2)$ where $\alpha x_1 + \beta x_2 \in X$). Then by Theorem 2.16, $R(T)$ is a Banach space itself. Let $U \subseteq X$ be open. Then $(T^{-1})^{-1}U = T(U)$ and by the Open Mapping Theorem (Theorem 3.5), $T(U)$ is open in $R(T)$ (since T is bounded and onto [surjective] its range $R(T)$). So inverse images of open sets (i.e., inverse images with respect to T^{-1}) are open in $R(T)$ and so T^{-1} is continuous and hence, by Theorem 2.6, T^{-1} is bounded on $R(T)$ (the subset of Y on which T^{-1} is defined) and so (i) follows.