Introduction to Functional Analysis

Chapter 3. Major Banach Space Theorems 3.5. Closed Linear Operators—Proofs of Theorems

Theorem 3.7. If $T \in \mathcal{L}(X, Y)$ is injective (one to one) and closed, then T^{-1} is closed.

Proof. Suppose $T \in \mathcal{L}(X, Y)$ is injective and closed. Let $(y, x) \in \overline{G_{T^{-1}}}$. Then there is a sequence $((y_n, x_n))_{n=1}^{\infty} \subseteq G_{T^{-1}}$ that converges to (y, x) by Theorem 2.2.A(iii). Since we are using the sup norm in $X \times Y$ (and $Y \times X$) then $((x_n, y_n))_{n=1}^{\infty} \subseteq G_T$ converges to (x, y).

Theorem 3.7. If $T \in \mathcal{L}(X, Y)$ is injective (one to one) and closed, then T^{-1} is closed.

Proof. Suppose $T \in \mathcal{L}(X, Y)$ is injective and closed. Let $(y, x) \in \overline{G_{T^{-1}}}$. Then there is a sequence $((y_n, x_n))_{n=1}^{\infty} \subseteq G_{T^{-1}}$ that converges to (y, x) by Theorem 2.2.A(iii). Since we are using the sup norm in $X \times Y$ (and $Y \times X$) then $((x_n, y_n))_{n=1}^{\infty} \subseteq G_T$ converges to (x, y). Since T is closed (i.e., G_T is a closed set) then $(x, y) \in G_T$ by Theorem 2.2.A(iii) and so y = Tx. Then $x = T^{-1}y$ and so $(y, x) \in G_{T^{-1}}$. Therefore $\overline{G_{T^{-1}}} = \overline{G_{T^{-1}}}$ and $\overline{G_{T^{-1}}}$ is closed. That is, T^{-1} is closed. **Theorem 3.7.** If $T \in \mathcal{L}(X, Y)$ is injective (one to one) and closed, then T^{-1} is closed.

Proof. Suppose $T \in \mathcal{L}(X, Y)$ is injective and closed. Let $(y, x) \in \overline{G_{T^{-1}}}$. Then there is a sequence $((y_n, x_n))_{n=1}^{\infty} \subseteq G_{T^{-1}}$ that converges to (y, x) by Theorem 2.2.A(iii). Since we are using the sup norm in $X \times Y$ (and $Y \times X$) then $((x_n, y_n))_{n=1}^{\infty} \subseteq G_T$ converges to (x, y). Since T is closed (i.e., G_T is a closed set) then $(x, y) \in G_T$ by Theorem 2.2.A(iii) and so y = Tx. Then $x = T^{-1}y$ and so $(y, x) \in G_{T^{-1}}$. Therefore $\overline{G_{T^{-1}}} = \overline{G_{T^{-1}}}$ and $\overline{G_{T^{-1}}}$ is closed. That is, T^{-1} is closed.

()

Lemma 3.5.A

Lemma 3.5.A. If $T \in \mathcal{L}(X, Y)$, where X and Y are Banach spaces, is bounded then T is closed.

Proof. Let (x_n, y_n) be a sequence in G_T which converges under the sup norm to (x, y). Then $(x_n) \to x$ in X and $(y_n) \to y$ in Y. Since T is bounded, then it is continuous by Theorem 2.6. So

$$Tx = T(\lim x_n) = \lim (Tx_n) = \lim y_n = y.$$

So $(x, y) \in G_T$ and by Theorem 2.2.A(iii), G_T is closed. Hence, by definition, T is closed, as claimed.

Lemma 3.5.A. If $T \in \mathcal{L}(X, Y)$, where X and Y are Banach spaces, is bounded then T is closed.

Proof. Let (x_n, y_n) be a sequence in G_T which converges under the sup norm to (x, y). Then $(x_n) \to x$ in X and $(y_n) \to y$ in Y. Since T is bounded, then it is continuous by Theorem 2.6. So

$$Tx = T(\lim x_n) = \lim (Tx_n) = \lim y_n = y.$$

So $(x, y) \in G_T$ and by Theorem 2.2.A(iii), G_T is closed. Hence, by definition, T is closed, as claimed.

Theorem 3.9. Closed Graph Theorem.

If $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces, then T is closed if and only if it is bounded.

Proof. Lemma 3.5.A shows that if T is bounded then T is closed.

Theorem 3.9. Closed Graph Theorem.

If $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces, then T is closed if and only if it is bounded.

Proof. Lemma 3.5.A shows that if T is bounded then T is closed.

Now suppose *T* is closed. Let P_X be the projection $P_X : G_T \to X$ defined as $P_X(x,y) = x$, and let $P_Y : G_T \to Y$ be defined as $P_Y(x,y) = y$. Since $X \times Y$ has the sup norm, if ||(x,y)|| = 1 then $||P_X(x,y)|| = ||x|| \le 1$. For (x,0) with ||(x,0)|| = ||x|| = 1, we see that $||P_X|| = 1$ and similarly $||P_Y|| = 1$. So P_X and P_Y are bounded.

Theorem 3.9. Closed Graph Theorem.

If $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces, then T is closed if and only if it is bounded.

Proof. Lemma 3.5.A shows that if T is bounded then T is closed.

Now suppose T is closed. Let P_X be the projection $P_X : G_T \to X$ defined as $P_X(x,y) = x$, and let $P_Y : G_T \to Y$ be defined as $P_Y(x,y) = y$. Since $X \times Y$ has the sup norm, if ||(x, y)|| = 1 then $||P_X(x, y)|| = ||x|| \le 1$. For (x, 0) with ||(x, 0)|| = ||x|| = 1, we see that $||P_X|| = 1$ and similarly $||P_Y|| = 1$. So P_X and P_Y are bounded. Since X and Y are Banach spaces, then $X \times Y$ is a Banach space by Theorem 2.10.A. Since G_T is closed in $X \times Y$, then $G_{\mathcal{T}}$ is a Banach space by Theorem 2.16. The range of P_X is all of X since T is defined on X, and so $R(P_X) = X$ is closed. So by Theorem 3.6, P_x^{-1} is bounded. So $T = P_Y P_x^{-1}$ is bounded by Proposition 2.8. (Notice $P_X^{-1}: X \to G_T$ and $P_Y: G_T \to Y$, so $T = P_Y P_Y^{-1}$.)

Theorem 3.9. Closed Graph Theorem.

If $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces, then T is closed if and only if it is bounded.

Proof. Lemma 3.5.A shows that if T is bounded then T is closed.

Now suppose T is closed. Let P_X be the projection $P_X : G_T \to X$ defined as $P_X(x,y) = x$, and let $P_Y : G_T \to Y$ be defined as $P_Y(x,y) = y$. Since $X \times Y$ has the sup norm, if ||(x, y)|| = 1 then $||P_X(x, y)|| = ||x|| \le 1$. For (x, 0) with ||(x, 0)|| = ||x|| = 1, we see that $||P_X|| = 1$ and similarly $||P_Y|| = 1$. So P_X and P_Y are bounded. Since X and Y are Banach spaces, then $X \times Y$ is a Banach space by Theorem 2.10.A. Since G_T is closed in $X \times Y$, then $G_{\mathcal{T}}$ is a Banach space by Theorem 2.16. The range of P_X is all of X since T is defined on X, and so $R(P_X) = X$ is closed. So by Theorem 3.6, P_x^{-1} is bounded. So $T = P_Y P_x^{-1}$ is bounded by Proposition 2.8. (Notice $P_X^{-1}: X \to G_T$ and $P_Y: G_T \to Y$, so $T = P_Y P_Y^{-1}$.)