Chapter 3. Major Banach Space Theorems
3.5. Closed Linear Operators—Proofs of Theorems
1. Theorem 3.7

2. Lemma

3. Theorem 3.9, Closed Graph Theorem
Theorem 3.7

Theorem 3.7. If \(T \in \mathcal{L}(X, Y) \) is injective (one to one) and closed, then \(T^{-1} \) is closed.

Proof. Suppose \(T \in \mathcal{L}(X, Y) \) is injective and closed.
Theorem 3.7. If $T \in \mathcal{L}(X, Y)$ is injective (one to one) and closed, then T^{-1} is closed.

Proof. Suppose $T \in \mathcal{L}(X, Y)$ is injective and closed. Let $(y, x) \in \overline{G_T}$. Then there is a sequence $((y_n, x_n))_{n=1}^{\infty} \subseteq G_T^{-1}$ that converges to (y, x) by Theorem 2.2.A(iii).
Theorem 3.7. If $T \in \mathcal{L}(X, Y)$ is injective (one to one) and closed, then T^{-1} is closed.

Proof. Suppose $T \in \mathcal{L}(X, Y)$ is injective and closed. Let $(y, x) \in \overline{G_{T^{-1}}}$. Then there is a sequence $((y_n, x_n))_{n=1}^{\infty} \subseteq G_{T^{-1}}$ that converges to (y, x) by Theorem 2.2.A(iii). Since we are using the sup norm in $X \times Y$ (and $Y \times X$) then $((x_n, y_n))_{n=1}^{\infty} \subseteq G_T$ converges to (x, y).
Theorem 3.7. If $T \in \mathcal{L}(X, Y)$ is injective (one to one) and closed, then T^{-1} is closed.

Proof. Suppose $T \in \mathcal{L}(X, Y)$ is injective and closed. Let $(y, x) \in \overline{G_{T^{-1}}}$. Then there is a sequence $((y_n, x_n))_{n=1}^{\infty} \subseteq G_{T^{-1}}$ that converges to (y, x) by Theorem 2.2.A(iii). Since we are using the sup norm in $X \times Y$ (and $Y \times X$) then $((x_n, y_n))_{n=1}^{\infty} \subseteq G_T$ converges to (x, y). Since T is closed (i.e., G_T is a closed set) then $(x, y) \in G_T$ by Theorem 2.2.A(iii) and so $y = Tx$.

Introduction to Functional Analysis

July 1, 2017 3 / 5
Theorem 3.7

Theorem 3.7. If $T \in \mathcal{L}(X, Y)$ is injective (one to one) and closed, then T^{-1} is closed.

Proof. Suppose $T \in \mathcal{L}(X, Y)$ is injective and closed. Let $(y, x) \in \overline{G_T^{-1}}$. Then there is a sequence $((y_n, x_n))_{n=1}^\infty \subseteq G_T^{-1}$ that converges to (y, x) by Theorem 2.2.A(iii). Since we are using the sup norm in $X \times Y$ (and $Y \times X$) then $((x_n, y_n))_{n=1}^\infty \subseteq G_T$ converges to (x, y). Since T is closed (i.e., G_T is a closed set) then $(x, y) \in G_T$ by Theorem 2.2.A(iii) and so $y = Tx$. Then $x = T^{-1}y$ and so $(y, x) \in G_T^{-1}$. Therefore $\overline{G_T^{-1}} = G_T^{-1}$ and G_T^{-1} is closed.
Theorem 3.7. If $T \in \mathcal{L}(X, Y)$ is injective (one to one) and closed, then T^{-1} is closed.

Proof. Suppose $T \in \mathcal{L}(X, Y)$ is injective and closed. Let $(y, x) \in \overline{G_{T^{-1}}}$. Then there is a sequence $((y_n, x_n))_{n=1}^{\infty} \subseteq G_{T^{-1}}$ that converges to (y, x) by Theorem 2.2.A(iii). Since we are using the sup norm in $X \times Y$ (and $Y \times X$) then $((x_n, y_n))_{n=1}^{\infty} \subseteq G_T$ converges to (x, y). Since T is closed (i.e., G_T is a closed set) then $(x, y) \in G_T$ by Theorem 2.2.A(iii) and so $y = Tx$. Then $x = T^{-1}y$ and so $(y, x) \in G_{T^{-1}}$. Therefore $\overline{G_{T^{-1}}} = G_{T^{-1}}$ and $G_{T^{-1}}$ is closed. That is, T^{-1} is closed.
Theorem 3.7

Theorem 3.7. If $T \in \mathcal{L}(X, Y)$ is injective (one to one) and closed, then T^{-1} is closed.

Proof. Suppose $T \in \mathcal{L}(X, Y)$ is injective and closed. Let $(y, x) \in \overline{G_{T^{-1}}}$. Then there is a sequence $((y_n, x_n))_{n=1}^{\infty} \subseteq G_{T^{-1}}$ that converges to (y, x) by Theorem 2.2.A(iii). Since we are using the sup norm in $X \times Y$ (and $Y \times X$) then $((x_n, y_n))_{n=1}^{\infty} \subseteq G_T$ converges to (x, y). Since T is closed (i.e., G_T is a closed set) then $(x, y) \in G_T$ by Theorem 2.2.A(iii) and so $y = Tx$. Then $x = T^{-1}y$ and so $(y, x) \in G_{T^{-1}}$. Therefore $\overline{G_{T^{-1}}} = G_{T^{-1}}$ and $G_{T^{-1}}$ is closed. That is, T^{-1} is closed. \qed
Lemma. If $T \in \mathcal{L}(X, Y)$, where X and Y are Banach spaces, is bounded then T is closed.

Proof.
Lemma. If $T \in \mathcal{L}(X, Y)$, where X and Y are Banach spaces, is bounded then T is closed.

Proof. Let (x_n, y_n) be a sequence in G_T which converges under the sup norm to (x, y).

Lemma. If $T \in \mathcal{L}(X, Y)$, where X and Y are Banach spaces, is bounded then T is closed.

Proof. Let (x_n, y_n) be a sequence in G_T which converges under the sup norm to (x, y). Then $(x_n) \to x$ in X and $(y_n) \to y$ in Y.
Lemma. If $T \in \mathcal{L}(X, Y)$, where X and Y are Banach spaces, is bounded then T is closed.

Proof. Let (x_n, y_n) be a sequence in G_T which converges under the sup norm to (x, y). Then $(x_n) \to x$ in X and $(y_n) \to y$ in Y. Since T is bounded, then it is continuous by Theorem 2.6.
Lemma. If $T \in \mathcal{L}(X, Y)$, where X and Y are Banach spaces, is bounded then T is closed.

Proof. Let (x_n, y_n) be a sequence in G_T which converges under the sup norm to (x, y). Then $(x_n) \to x$ in X and $(y_n) \to y$ in Y. Since T is bounded, then it is continuous by Theorem 2.6. So

$$Tx = T \left(\lim x_n \right) = \lim \left(Tx_n \right) = \lim y_n = y.$$
Lemma. If $T \in \mathcal{L}(X, Y)$, where X and Y are Banach spaces, is bounded then T is closed.

Proof. Let (x_n, y_n) be a sequence in G_T which converges under the sup norm to (x, y). Then $(x_n) \to x$ in X and $(y_n) \to y$ in Y. Since T is bounded, then it is continuous by Theorem 2.6. So

$$T x = T \left(\lim x_n \right) = \lim (T x_n) = \lim y_n = y.$$

So $(x, y) \in G_T$ and G_T is closed.
Lemma. If $T \in \mathcal{L}(X, Y)$, where X and Y are Banach spaces, is bounded then T is closed.

Proof. Let (x_n, y_n) be a sequence in G_T which converges under the sup norm to (x, y). Then $(x_n) \to x$ in X and $(y_n) \to y$ in Y. Since T is bounded, then it is continuous by Theorem 2.6. So

$$T x = T \left(\lim x_n \right) = \lim (T x_n) = \lim y_n = y.$$

So $(x, y) \in G_T$ and G_T is closed.
Theorem 3.9, Closed Graph Theorem

Theorem 3.9. Closed Graph Theorem.
If $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces, then T is closed if and only if it is bounded.

Proof. “Lemma” shows that if T is bounded then T is closed.
Theorem 3.9, Closed Graph Theorem

Theorem 3.9. Closed Graph Theorem.
If $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces, then T is closed if and only if it is bounded.

Proof. “Lemma” shows that if T is bounded then T is closed.
Suppose T is closed.

Let $P_X: G_T \rightarrow X$ be defined as $P_X(x, y) = x$, and let $P_Y: G_T \rightarrow Y$ be defined as $P_Y(x, y) = y$.

Since $X \times Y$ has the sup norm, if $\| (x, y) \| = 1$ then $\| P_X(x, y) \| = \| x \| \leq 1$.

For $(x, 0)$ with $\| (x, 0) \| = \| x \| = 1$, we see that $\| P_X \| = 1$ and similarly $\| P_Y \| = 1$. So P_X and P_Y are bounded.

Since X and Y are Banach spaces, then $X \times Y$ is a Banach space (see pages 51-52 and the “claim” on page 1 of the class notes for Section 2.10).

Since G_T is closed in $X \times Y$, then G_T is a Banach space by Theorem 2.16.

The range of P_X is all of X since T is defined on X, and so $R(P_X) = X$ is closed. So by Theorem 3.6, P^{-1}_X is bounded.

So $T = P_Y P^{-1}_X$ is bounded by Proposition 2.8. (Notice $P^{-1}_X: X \rightarrow G_T$ and $P_Y: G_T \rightarrow Y$, so $T = P_Y P^{-1}_X$.)

Theorem 3.9. Closed Graph Theorem.
If \(T \in \mathcal{L}(X, Y) \) where \(X \) and \(Y \) are Banach spaces, then \(T \) is closed if and only if it is bounded.

Proof. “Lemma” shows that if \(T \) is bounded then \(T \) is closed.
Suppose \(T \) is closed. Let \(P_X \) be the projection \(P_X : G_T \to X \) defined as \(P_X(x, y) = x \), and let \(P_Y : G_T \to Y \) be defined as \(P_Y(x, y) = y \).
Theorem 3.9, Closed Graph Theorem

Theorem 3.9. Closed Graph Theorem.
If \(T \in \mathcal{L}(X, Y) \) where \(X \) and \(Y \) are Banach spaces, then \(T \) is closed if and only if it is bounded.

Proof. “Lemma” shows that if \(T \) is bounded then \(T \) is closed. Suppose \(T \) is closed. Let \(P_X \) be the projection \(P_X : G_T \to X \) defined as \(P_X(x, y) = x \), and let \(P_Y : G_T \to Y \) be defined as \(P_Y(x, y) = y \). Since \(X \times Y \) has the sup norm, if \(\|(x, y)\| = 1 \) then \(\|P_X(x, y)\| = \|x\| \leq 1 \).
Theorem 3.9. Closed Graph Theorem.
If $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces, then T is closed if and only if it is bounded.

Proof. “Lemma” shows that if T is bounded then T is closed. Suppose T is closed. Let P_X be the projection $P_X : G_T \to X$ defined as $P_X(x, y) = x$, and let $P_Y : G_T \to Y$ be defined as $P_Y(x, y) = y$. Since $X \times Y$ has the sup norm, if $\|(x, y)\| = 1$ then $\|P_X(x, y)\| = \|x\| \leq 1$. For $(x, 0)$ with $\|(x, 0)\| = \|x\| = 1$, we see that $\|P_X\| = 1$ and similarly $\|P_Y\| = 1$. So P_X and P_Y are bounded.
Theorem 3.9. Closed Graph Theorem.
If $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces, then T is closed if and only if it is bounded.

Proof. “Lemma” shows that if T is bounded then T is closed. Suppose T is closed. Let P_X be the projection $P_X : G_T \rightarrow X$ defined as $P_X(x, y) = x$, and let $P_Y : G_T \rightarrow Y$ be defined as $P_Y(x, y) = y$. Since $X \times Y$ has the sup norm, if $\|(x, y)\| = 1$ then $\|P_X(x, y)\| = \|x\| \leq 1$. For $(x, 0)$ with $\|(x, 0)\| = \|x\| = 1$, we see that $\|P_X\| = 1$ and similarly $\|P_Y\| = 1$. So P_X and P_Y are bounded. Since X and Y are Banach spaces, then $X \times Y$ is a Banach space (see pages 51-52 and the “claim” on page 1 of the class notes for Section 2.10).
Theorem 3.9. Closed Graph Theorem.
If $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces, then T is closed if and only if it is bounded.

Proof. “Lemma” shows that if T is bounded then T is closed. Suppose T is closed. Let P_X be the projection $P_X : G_T \rightarrow X$ defined as $P_X(x, y) = x$, and let $P_Y : G_T \rightarrow Y$ be defined as $P_Y(x, y) = y$. Since $X \times Y$ has the sup norm, if $||(x, y)|| = 1$ then $\|P_X(x, y)\| = \|x\| \leq 1$. For $(x, 0)$ with $||(x, 0)|| = \|x\| = 1$, we see that $\|P_X\| = 1$ and similarly $\|P_Y\| = 1$. So P_X and P_Y are bounded. Since X and Y are Banach spaces, then $X \times Y$ is a Banach space (see pages 51-52 and the “claim” on page 1 of the class notes for Section 2.10). Since G_T is closed in $X \times Y$, then G_T is a Banach space by Theorem 2.16.
Theorem 3.9, Closed Graph Theorem

Theorem 3.9. Closed Graph Theorem.
If \(T \in \mathcal{L}(X, Y) \) where \(X \) and \(Y \) are Banach spaces, then \(T \) is closed if and only if it is bounded.

Proof. “Lemma” shows that if \(T \) is bounded then \(T \) is closed. Suppose \(T \) is closed. Let \(P_X \) be the projection \(P_X : G_T \to X \) defined as \(P_X(x, y) = x \), and let \(P_Y : G_T \to Y \) be defined as \(P_Y(x, y) = y \). Since \(X \times Y \) has the sup norm, if \(\|(x, y)\| = 1 \) then \(\|P_X(x, y)\| = \|x\| \leq 1 \). For \((x, 0) \) with \(\|(x, 0)\| = \|x\| = 1 \), we see that \(\|P_X\| = 1 \) and similarly \(\|P_Y\| = 1 \). So \(P_X \) and \(P_Y \) are bounded. Since \(X \) and \(Y \) are Banach spaces, then \(X \times Y \) is a Banach space (see pages 51-52 and the “claim” on page 1 of the class notes for Section 2.10). Since \(G_T \) is closed in \(X \times Y \), then \(G_T \) is a Banach space by Theorem 2.16. The range of \(P_X \) is all of \(X \) since \(T \) is defined on \(X \), and so \(R(P_X) = X \) is closed. So by Theorem 3.6, \(P_X^{-1} \) is bounded.
Theorem 3.9. Closed Graph Theorem.

If $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces, then T is closed if and only if it is bounded.

Proof. “Lemma” shows that if T is bounded then T is closed. Suppose T is closed. Let P_X be the projection $P_X : G_T \to X$ defined as $P_X(x, y) = x$, and let $P_Y : G_T \to Y$ be defined as $P_Y(x, y) = y$. Since $X \times Y$ has the sup norm, if $\|(x, y)\| = 1$ then $\|P_X(x, y)\| = \|x\| \leq 1$. For $(x, 0)$ with $\|(x, 0)\| = \|x\| = 1$, we see that $\|P_X\| = 1$ and similarly $\|P_Y\| = 1$. So P_X and P_Y are bounded. Since X and Y are Banach spaces, then $X \times Y$ is a Banach space (see pages 51-52 and the “claim” on page 1 of the class notes for Section 2.10). Since G_T is closed in $X \times Y$, then G_T is a Banach space by Theorem 2.16. The range of P_X is all of X since T is defined on X, and so $R(P_X) = X$ is closed. So by Theorem 3.6, P_X^{-1} is bounded. So $T = P_YP_X^{-1}$ is bounded by Proposition 2.8. (Notice $P_X^{-1} : X \to G_T$ and $P_Y : G_T \to Y$, so $T = P_YP_X^{-1}$.)
Theorem 3.9. Closed Graph Theorem.
If \(T \in \mathcal{L}(X, Y) \) where \(X \) and \(Y \) are Banach spaces, then \(T \) is closed if and only if it is bounded.

Proof. “Lemma” shows that if \(T \) is bounded then \(T \) is closed. Suppose \(T \) is closed. Let \(P_X \) be the projection \(P_X : G_T \rightarrow X \) defined as \(P_X(x, y) = x \), and let \(P_Y : G_T \rightarrow Y \) be defined as \(P_Y(x, y) = y \). Since \(X \times Y \) has the sup norm, if \(\|(x, y)\| = 1 \) then \(\|P_X(x, y)\| = \|x\| \leq 1 \). For \((x, 0) \) with \(\|(x, 0)\| = \|x\| = 1 \), we see that \(\|P_X\| = 1 \) and similarly \(\|P_Y\| = 1 \). So \(P_X \) and \(P_Y \) are bounded. Since \(X \) and \(Y \) are Banach spaces, then \(X \times Y \) is a Banach space (see pages 51-52 and the “claim” on page 1 of the class notes for Section 2.10). Since \(G_T \) is closed in \(X \times Y \), then \(G_T \) is a Banach space by Theorem 2.16. The range of \(P_X \) is all of \(X \) since \(T \) is defined on \(X \), and so \(R(P_X) = X \) is closed. So by Theorem 3.6, \(P_X^{-1} \) is bounded. So \(T = P_Y P_X^{-1} \) is bounded by Proposition 2.8. (Notice \(P_X^{-1} : X \rightarrow G_T \) and \(P_Y : G_T \rightarrow Y \), so \(T = P_Y P_X^{-1} \).) \(\square \)