Theorem 3.10. Uniform Boundedness Principle.

If X is complete, then a pointwise bounded subset A of $B(X,Y)$ is bounded.

Proof (continued (again)). So for any sequence (x^n) in X we have bounded.

Theorem 3.11. Suppose that (T_n) is a pointwise convergent sequence of bounded linear operators from a Banach space X to a complete Y.

Then the limit $T(x) = \lim T_n(x)$ exists for each $x \in X$.

That is, $T \in L(X,Y)$ since x is a unit vector. So $T \in L(X,Y)$.

Theorem 2.6. If X is bounded. Since X is a unit vector and T is a continuous operator from X to Y. By

$\|T^n(x)\| \rightarrow 0$ and so T is a bounded linear operator on X. So T is bounded by k for each $T \in A$. That is, A is bounded.
So \(T \) and \(T' \) are bounded.

\[\| x \| \leq \| y \| \quad \text{for all} \quad x, y \in X \]

\[\| T(x) \| \leq \| T'(x) \| \quad \text{for all} \quad x \in X \]

\[\| T(x) \| \leq \| T'(x) \| \quad \text{for all} \quad x \in X \]

Proof (continued). Then, if \(x \in X \) is a unit vector, we have

Theorem 3.11. Suppose that \((T_n) \) is a pointwise convergent sequence of bounded linear operators from Banach space \(X \) to normed linear space \(Y \). Then, there exists a linear operator \(T \) such that \(T_n \to T \) in the norm topology.