Introduction to Functional Analysis

Chapter 3. Major Banach Space Theorems 3.6. Uniform Boundedness Principle—Proofs of Theorems

Theorem 3.10. Uniform Boundedness Principle

Theorem 3.10. Uniform Boundedness Principle. If X is complete, then a pointwise bounded subset A of $\mathcal{B}(X, Y)$ is bounded.

Proof. We replace Y with its completion using Theorem 2.22. We now show boundedness on the completion of Y, which certainly implies boundedness on Y itself. Let $\mathcal{A} \subseteq \mathcal{B}(X, Y)$ be a pointwise bounded set. Define the direct product \mathcal{Y} over set \mathcal{A} with each space equal to Y: $\mathcal{Y} = \prod_{T \in \mathcal{A}} Y$. Then the elements of the direct product are the bounded functions (under the sup norm) mapping \mathcal{A} to Y (see the definition of direct product in Section 2.10. Direct Products and Sums).

Theorem 3.10. Uniform Boundedness Principle

Theorem 3.10. Uniform Boundedness Principle. If X is complete, then a pointwise bounded subset \mathcal{A} of $\mathcal{B}(X, Y)$ is bounded.

Proof. We replace Y with its completion using Theorem 2.22. We now show boundedness on the completion of Y, which certainly implies boundedness on Y itself. Let $\mathcal{A} \subseteq \mathcal{B}(X, Y)$ be a pointwise bounded set. Define the direct product \mathcal{Y} over set \mathcal{A} with each space equal to Y: $\mathcal{Y} = \prod_{T \in \mathcal{A}} Y$. Then the elements of the direct product are the bounded functions (under the sup norm) mapping \mathcal{A} to Y (see the definition of direct product in Section 2.10. Direct Products and Sums).

Define $\mathcal{T}x(\mathcal{T}) = \mathcal{T}x$ for all $\mathcal{T} \in \mathcal{A}$. So \mathcal{T} has input value x and produces $\mathcal{T}x \in \mathcal{Y}$, where $\mathcal{T}x \in \mathcal{Y}$ is a mapping of \mathcal{A} into Y:

 $\mathcal{T}: X \to \mathcal{Y}$ and for $x \in X$ we have $\mathcal{T}x: \mathcal{A} \to Y$.

Theorem 3.10. Uniform Boundedness Principle

Theorem 3.10. Uniform Boundedness Principle. If X is complete, then a pointwise bounded subset \mathcal{A} of $\mathcal{B}(X, Y)$ is bounded.

Proof. We replace Y with its completion using Theorem 2.22. We now show boundedness on the completion of Y, which certainly implies boundedness on Y itself. Let $\mathcal{A} \subseteq \mathcal{B}(X, Y)$ be a pointwise bounded set. Define the direct product \mathcal{Y} over set \mathcal{A} with each space equal to Y: $\mathcal{Y} = \prod_{T \in \mathcal{A}} Y$. Then the elements of the direct product are the bounded functions (under the sup norm) mapping \mathcal{A} to Y (see the definition of direct product in Section 2.10. Direct Products and Sums).

Define $\mathcal{T}x(\mathcal{T}) = \mathcal{T}x$ for all $\mathcal{T} \in \mathcal{A}$. So \mathcal{T} has input value x and produces $\mathcal{T}x \in \mathcal{Y}$, where $\mathcal{T}x \in \mathcal{Y}$ is a mapping of \mathcal{A} into Y:

 $\mathcal{T}: X \to \mathcal{Y}$ and for $x \in X$ we have $\mathcal{T}x: \mathcal{A} \to Y$.

Theorem 3.10 (continued 1)

Proof (continued). Since \mathcal{A} is hypothesized to be pointwise bounded, for each $x \in X$, $\mathcal{O}_x = \{ \|Tx\| \mid T \in \mathcal{A} \}$ is bounded, say by \mathcal{K}_x . So for $\mathcal{T}x \in \mathcal{Y}$, $\|\mathcal{T}x\| = \sup\{\|\mathcal{T}xT\| \mid T \in \mathcal{A}, \|T\| = 1\}$ $= \sup\{\|Tx\| \mid T \in \mathcal{A}, \|T\| = 1\} \leq \mathcal{K}_x.$

So Tx is a bounded function on A for each $x \in X$.

Now for the boundedness of \mathcal{A} . Suppose that $(x_n) \subseteq X$ converges to $x \in X$, and suppose that $(\mathcal{T}x_n) \subseteq \mathcal{A}$ converges to some $g : \mathcal{A} \to Y$. We now show that $g = \mathcal{T}x$ (by showing they agree for all $\mathcal{T} \in \mathcal{A}$). Indeed,

$$g(T) = \lim_{n \to \infty} (\mathcal{T} x_n)(T)$$
 by assumption on convergence of $(\mathcal{T} x_n)$

- $= \lim_{n \to \infty} Tx_n \text{ since } \mathcal{T}x_n(\mathcal{T}) = Tx_n \text{ by the definition of } \mathcal{T}$
- $= T(\lim x_n) \text{ since } T \in \mathcal{A} \subseteq \mathcal{B}(X, Y) \text{ is bounded and so}$ continuous by Theorem 2.6

$$= Tx \text{ since } (x_n) \to x \dots$$

Theorem 3.10 (continued 1)

Proof (continued). Since \mathcal{A} is hypothesized to be pointwise bounded, for each $x \in X$, $\mathcal{O}_x = \{ \|Tx\| \mid T \in \mathcal{A} \}$ is bounded, say by \mathcal{K}_x . So for $\mathcal{T}x \in \mathcal{Y}$, $\|\mathcal{T}x\| = \sup\{ \|\mathcal{T}xT\| \mid T \in \mathcal{A}, \|T\| = 1 \}$

 $= \sup\{\|Tx\| \mid T \in \mathcal{A}, \|T\| = 1\} \leq K_x.$

So Tx is a bounded function on A for each $x \in X$.

Now for the boundedness of \mathcal{A} . Suppose that $(x_n) \subseteq X$ converges to $x \in X$, and suppose that $(\mathcal{T}x_n) \subseteq \mathcal{A}$ converges to some $g : \mathcal{A} \to Y$. We now show that $g = \mathcal{T}x$ (by showing they agree for all $\mathcal{T} \in \mathcal{A}$). Indeed,

$$g(T) = \lim_{n \to \infty} (\mathcal{T}x_n)(T)$$
 by assumption on convergence of $(\mathcal{T}x_n)$

- $= \lim_{n \to \infty} Tx_n \text{ since } \mathcal{T}x_n(\mathcal{T}) = Tx_n \text{ by the definition of } \mathcal{T}$
- $= T(\lim x_n) \text{ since } T \in \mathcal{A} \subseteq \mathcal{B}(X, Y) \text{ is bounded and so}$ continuous by Theorem 2.6

$$=$$
 Tx since $(x_n) \rightarrow x \dots$

į

Theorem 3.10 (continued 2)

Proof (continued). ...

$$g(T) = Tx \text{ since } (x_n) \rightarrow x$$

= $\mathcal{T}x(T)$ by definition of \mathcal{T} .

So for any sequence $(x_n, \mathcal{T}x_n) \to (x, \mathcal{T}x)$ in $X \times \mathcal{Y}$ (with respect to the sup norm on $X \times \mathcal{Y}$), we have $(x_n) \to x$ and $(\mathcal{T}x_n) \to \mathcal{T}x$. Hence the graph of \mathcal{T} is closed. So by the Closed Graph Theorem (Theorem 3.9), \mathcal{T} is bounded. That is,

$$||\mathcal{T}|| = \sup\{||\mathcal{T}x|| \mid x \in X, ||x|| = 1\} = K < \infty.$$

Hence, for any $T \in A$ and for any $x \in X$ with ||x|| = 1, we have $||Tx(T)|| = ||Tx|| \le K$. Since $||Tx|| \le K$ for all unit vectors $x \in X$, then $||T|| \le K$. This holds for all $T \in A$ so that A is bounded (by K), as claimed.

Theorem 3.10 (continued 2)

Proof (continued). ...

$$g(T) = Tx \text{ since } (x_n) \rightarrow x$$

= $Tx(T)$ by definition of T .

So for any sequence $(x_n, \mathcal{T}x_n) \to (x, \mathcal{T}x)$ in $X \times \mathcal{Y}$ (with respect to the sup norm on $X \times \mathcal{Y}$), we have $(x_n) \to x$ and $(\mathcal{T}x_n) \to \mathcal{T}x$. Hence the graph of \mathcal{T} is closed. So by the Closed Graph Theorem (Theorem 3.9), \mathcal{T} is bounded. That is,

$$\|\mathcal{T}\| = \sup\{\|\mathcal{T}x\| \mid x \in X, \|x\| = 1\} = K < \infty.$$

Hence, for any $T \in A$ and for any $x \in X$ with ||x|| = 1, we have $||Tx(T)|| = ||Tx|| \le K$. Since $||Tx|| \le K$ for all unit vectors $x \in X$, then $||T|| \le K$. This holds for all $T \in A$ so that A is bounded (by K), as claimed.

Theorem 3.11

Theorem 3.11. Suppose that (T_n) is a pointwise convergent sequence of bounded linear operators from Banach space X to normed linear space Y. That is, for each $x \in X$ the sequence $(T_n x)$ converges to an element $Tx \in Y$. Then T is linear and bounded.

Proof. For linearity, let $\alpha x + \beta y \in X$. Then

$$T(\alpha x + \beta y) = \lim_{n \to \infty} T_n(\alpha x + \beta y) = \lim_{n \to \infty} (\alpha T_n(x) + \beta T_n(y))$$
$$= \alpha \lim_{n \to \infty} (T_n(x)) + \beta \lim_{n \to \infty} (T_n(x)) = \alpha T(x) + \beta T(y)$$

and T is linear, as claimed.

Theorem 3.11

Theorem 3.11. Suppose that (T_n) is a pointwise convergent sequence of bounded linear operators from Banach space X to normed linear space Y. That is, for each $x \in X$ the sequence $(T_n x)$ converges to an element $Tx \in Y$. Then T is linear and bounded.

Proof. For linearity, let $\alpha x + \beta y \in X$. Then

$$T(\alpha x + \beta y) = \lim_{n \to \infty} T_n(\alpha x + \beta y) = \lim_{n \to \infty} (\alpha T_n(x) + \beta T_n(y))$$
$$= \alpha \lim_{n \to \infty} (T_n(x)) + \beta \lim_{n \to \infty} (T_n(x)) = \alpha T(x) + \beta T(y)$$

and T is linear, as claimed.

Now for boundedness. For $x \in X$, the sequence $(T_n x)$ converges and so is bounded by Theorem 2.9(a) and (b). So $\{T_n \mid n \in \mathbb{N}\}$ is a pointwise bounded set; that is, for each $x \in X$ the set $\mathcal{O}_x = \{T_n x \mid n \in \mathbb{N}\}$ is bounded. By the Uniform Boundedness Principle, there is K > 0 such that $\|T_n\| \leq K$ for all $n \in \mathbb{N}$.

Theorem 3.11

Theorem 3.11. Suppose that (T_n) is a pointwise convergent sequence of bounded linear operators from Banach space X to normed linear space Y. That is, for each $x \in X$ the sequence $(T_n x)$ converges to an element $Tx \in Y$. Then T is linear and bounded.

Proof. For linearity, let $\alpha x + \beta y \in X$. Then

$$T(\alpha x + \beta y) = \lim_{n \to \infty} T_n(\alpha x + \beta y) = \lim_{n \to \infty} (\alpha T_n(x) + \beta T_n(y))$$
$$= \alpha \lim_{n \to \infty} (T_n(x)) + \beta \lim_{n \to \infty} (T_n(x)) = \alpha T(x) + \beta T(y)$$

and T is linear, as claimed.

Now for boundedness. For $x \in X$, the sequence $(T_n x)$ converges and so is bounded by Theorem 2.9(a) and (b). So $\{T_n \mid n \in \mathbb{N}\}$ is a pointwise bounded set; that is, for each $x \in X$ the set $\mathcal{O}_x = \{T_n x \mid n \in \mathbb{N}\}$ is bounded. By the Uniform Boundedness Principle, there is K > 0 such that $\|T_n\| \leq K$ for all $n \in \mathbb{N}$.

Theorem 3.11 (continued)

Theorem 3.11. Suppose that (T_n) is a pointwise convergent sequence of bounded linear operators from Banach space X to normed linear space Y. That is, for each $x \in X$ the sequence $(T_n x)$ converges to an element $Tx \in Y$. Then T is linear and bounded.

Proof (continued). Then, for $x \in X$ a unit vector, we have

$$||Tx|| = ||\text{lim } T_n x||$$
 by the convergence hypothesis
= $|\text{lim } ||T_n x||$ since $||\cdot||$ is continuous by Theorem 2.3(c)
 $\leq K$.

So $||T|| = \sup\{||Tx|| \mid x \in X, ||x|| = 1\} \le K$ and T is bounded, as claimed.