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Lemma 4.2. Basic Identity

Lemma 4.2. Basic Identity

Lemma 4.2. Basic Identity.
Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x , y ∈ X , we have

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x , y〉.

Proof. We have

‖x + y‖2 = 〈x + y , x + y〉
= 〈x , x + y〉+ 〈y , x + y〉
= 〈x , x〉+ 〈x , y〉+ 〈y , x〉+ 〈y , y〉
= ‖x‖2 + 〈x , y〉+ 〈x , y〉+ ‖y‖2

= ‖x‖2 + 2Re(〈x , y〉) + ‖y‖2.
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Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3. Cauchy-Schwartz Inequality.
Given a semi-inner product on X , for all x , y ∈ X we have
|〈x , y〉| ≤ ‖x‖‖y‖. If 〈·, ·〉 is an inner product, then equality holds if and
only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof. Notice that if we scale x or y by a nonzero amount, the
Cauchy-Schwartz Inequality remains unchanged (the scaling factor is
introduced on both sides and can be divided out).

Suppose ‖y‖ 6= 0. If 〈x , y〉 = 0, the result trivially follows. If 〈x , y〉 6= 0
then x and y can be scaled so that ‖y‖ = 1 and 〈x , y〉 = 1 (the second
claim possibly requiring the use of a complex factor). Then by Lemma 4.2,
with y replaced by −y , we have

0 ≤ ‖x−y‖2 = ‖x‖2+‖−y‖2+2Re(〈x ,−y〉) = ‖x‖2+1+2(−1) = ‖x‖2−1.

So ‖x‖ ≥ 1 and the result holds in the case that ‖y‖ 6= 0 (or
symmetrically, in the case that ‖x‖ 6= 0).
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Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3 (continued 1)

Theorem 4.3. Cauchy-Schwartz Inequality.
Given a semi-inner product on X , for all x , y ∈ X we have
|〈x , y〉| ≤ ‖x‖‖y‖. If 〈·, ·〉 is an inner product, then equality holds if and
only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof (continued). If ‖x‖ = ‖y‖ = 0 but 〈x , y〉 6= 0, then we can scale x
and y such that 〈x , y〉 = 1. Then by Lemma 4.2,

0 ≤ ‖x − y‖2 = ‖x‖2 + ‖ − y‖2 + 2Re(〈x ,−y〉) = 0 + 0− 2,

a contradiction (so it must be that 〈x , y〉 = 0) and the inequality follows.
If y = αx then

|〈x , y〉| = |〈x , αx〉| = |α〈x , x〉| = |α|‖x‖2 = ‖x‖|α|‖x‖ = ‖x‖‖y‖.
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Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3 (continued 2)

Theorem 4.3. Cauchy-Schwartz Inequality.
Given a semi-inner product on X , for all x , y ∈ X we have
|〈x , y〉| ≤ ‖x‖‖y‖. If 〈·, ·〉 is an inner product, then equality holds if and
only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof (continued). Conversely, suppose that equality holds. Notice that
〈0, x〉 = 〈x − x , x〉 = 〈x , x〉 − 〈x , x〉 = 0, so if either ‖x‖ = 0 or ‖y‖ = 0,
then x and y are linearly dependent since x = 0 or y = 0 (we are assuming
〈·, ·〉 is an inner product and ‖ · ‖ is a norm in the exploration of equality).
If neither x nor y is 0, then again we can scale y so that ‖y‖ = 1 and then
scale x so that 〈x , y〉 = 1. Then equality in the Cauchy-Schwartz
Inequality implies that ‖x‖ = 1. Then, as above, with −y replacing y in
Lemma 4.2,

0 ≤ ‖x − y‖2 = ‖x‖2 + ‖y‖2 + 2Re(〈x ,−y〉) = 1 + 1 + 2(−1) = 0,

and so ‖x − y‖ = 0 and x = y
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Theorem 4.4. Triangle Inequality

Theorem 4.4. Triangle Inequality

Theorem 4.4. Triangle Inequality.
Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x , y ∈ X , we have
‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proof. We simply have

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re(〈x , y〉) by Lemma 4.2

≤ ‖x‖2 + ‖y‖2 + 2|〈x , y〉|
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ by Cauchy-Schwartz

= (‖x‖+ ‖y‖)2.

Taking square roots, we have

‖x + y‖ ≤ ‖x‖+ ‖y‖.
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Theorem 4.5. Parallelogram Law

Theorem 4.5. Parallelogram Law

Proposition 4.5. Parallelogram Law.
Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x , y ∈ X , we have

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2).

Proof. Lemma 4.2 gives ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re(〈x , y〉) and, by
replacing y with −y , gives

‖x − y‖2 = ‖x‖2 + ‖y‖2 + 2Re(〈x ,−y〉) = ‖x‖2 + ‖y‖2 − 2Re(〈x , y〉).

Adding these two equations give the result.
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Proposition 4.7. Polarization Identity

Proposition 4.7. Polarization Identity

Proposition 4.7. Polarization Identity.
Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x , y ∈ X , we have

〈x , y〉 =
1

4

(
‖x + y‖2 − ‖x − y‖2 + i‖x + iy‖2 − i‖x − iy‖2

)
.

Proof. As in the proof of the Parallelogram Law
‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re(〈x , y〉) and
‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2Re(〈x , y〉). Subtracting these give

4Re(〈x , y〉) = ‖x + y‖2 − ‖x − y‖2. (∗)

As with any complex number, 〈x , y〉 = Re(〈x , y〉) + i Im(〈x , y〉) and so

Im(〈x , y〉) = Re(−i〈x , y〉) = Re(〈x , iy〉). (∗∗)
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Proposition 4.7. Polarization Identity

Proposition 4.7 (continued)

Proposition 4.7. Polarization Identity.
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4
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Theorem 4.9. Continuity of Inner Product

Theorem 4.9. Continuity of Inner Product

Theorem 4.9. Continuity of Inner Product.
In any semi-inner product space, if the sequences (xn) → x and (yn) → y ,
then (〈xn, yn〉) → 〈x , y〉.

Proof. We have

|〈xn, yn〉 − 〈x , y〉| = |〈xn, yn〉 − 〈xn, y〉+ 〈xn, y〉 − 〈x , y〉|
≤ |〈xn, yn〉 − 〈xn, y〉|+ |〈xn, y〉 − 〈x , y〉|
≤ |〈xn, yn − y〉|+ |〈xn − x , y〉|
≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖ by Cauchy-Schwartz.

Since (xn) is convergent, then it is bounded, since (yn) → y then
‖yn − y‖ → 0, since (xn) → x then ‖xn − x‖ → 0. Therefore

|〈xn, yn〉 − 〈x , y〉| → 0 and 〈xn, yn〉 → 〈x , y〉.
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