Introduction to Functional Analysis

Chapter 4. Hilbert Spaces 4.2. Semi-Inner Products—Proofs of Theorems

Table of contents

- Lemma 4.2. Basic Identity
- 2 Theorem 4.3. Cauchy-Schwartz Inequality
- 3 Theorem 4.4. Triangle Inequality
- 4 Theorem 4.5. Parallelogram Law
- 5 Proposition 4.7. Polarization Identity
- 6 Theorem 4.9. Continuity of Inner Product

Lemma 4.2. Basic Identity

Lemma 4.2. Basic Identity.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-inner product satisfies: for all $x, y \in X$, we have

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}\langle x, y \rangle.$$

Proof. We have

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

= $\langle x, x + y \rangle + \langle y, x + y \rangle$
= $\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$
= $||x||^{2} + \langle x, y \rangle + \overline{\langle x, y \rangle} + ||y||^{2}$
= $||x||^{2} + 2\operatorname{Re}(\langle x, y \rangle) + ||y||^{2}$.

Lemma 4.2. Basic Identity

Lemma 4.2. Basic Identity.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-inner product satisfies: for all $x, y \in X$, we have

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}\langle x, y \rangle.$$

Proof. We have

$$\begin{aligned} \|x+y\|^2 &= \langle x+y, x+y \rangle \\ &= \langle x, x+y \rangle + \langle y, x+y \rangle \\ &= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \\ &= \|x\|^2 + \langle x, y \rangle + \overline{\langle x, y \rangle} + \|y\|^2 \\ &= \|x\|^2 + 2\operatorname{Re}(\langle x, y \rangle) + \|y\|^2. \end{aligned}$$

Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all $x, y \in X$ we have $|\langle x, y \rangle| \leq ||x|| ||y||$. If $\langle \cdot, \cdot \rangle$ is an inner product, then equality holds if and only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof. Notice that if we scale x or y by a nonzero amount, the Cauchy-Schwartz Inequality remains unchanged (the scaling factor is introduced on both sides and can be divided out).

Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all $x, y \in X$ we have $|\langle x, y \rangle| \le ||x|| ||y||$. If $\langle \cdot, \cdot \rangle$ is an inner product, then equality holds if and only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof. Notice that if we scale x or y by a nonzero amount, the Cauchy-Schwartz Inequality remains unchanged (the scaling factor is introduced on both sides and can be divided out).

Suppose $||y|| \neq 0$. If $\langle x, y \rangle = 0$, the result trivially follows. If $\langle x, y \rangle \neq 0$ then x and y can be scaled so that ||y|| = 1 and $\langle x, y \rangle = 1$ (the second claim possibly requiring the use of a complex factor). Then by Lemma 4.2, with y replaced by -y, we have

$$0 \le \|x - y\|^2 = \|x\|^2 + \|-y\|^2 + 2\operatorname{Re}(\langle x, -y \rangle) = \|x\|^2 + 1 + 2(-1) = \|x\|^2 - 1.$$

So $||x|| \ge 1$ and the result holds in the case that $||y|| \ne 0$ (or symmetrically, in the case that $||x|| \ne 0$).

Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all $x, y \in X$ we have $|\langle x, y \rangle| \le ||x|| ||y||$. If $\langle \cdot, \cdot \rangle$ is an inner product, then equality holds if and only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof. Notice that if we scale x or y by a nonzero amount, the Cauchy-Schwartz Inequality remains unchanged (the scaling factor is introduced on both sides and can be divided out). Suppose $||y|| \neq 0$. If $\langle x, y \rangle = 0$, the result trivially follows. If $\langle x, y \rangle \neq 0$ then x and y can be scaled so that ||y|| = 1 and $\langle x, y \rangle = 1$ (the second claim possibly requiring the use of a complex factor). Then by Lemma 4.2, with y replaced by -y, we have

$$0 \le \|x - y\|^2 = \|x\|^2 + \|-y\|^2 + 2\operatorname{Re}(\langle x, -y \rangle) = \|x\|^2 + 1 + 2(-1) = \|x\|^2 - 1.$$

So $||x|| \ge 1$ and the result holds in the case that $||y|| \ne 0$ (or symmetrically, in the case that $||x|| \ne 0$).

Theorem 4.3 (continued 1)

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all $x, y \in X$ we have $|\langle x, y \rangle| \le ||x|| ||y||$. If $\langle \cdot, \cdot \rangle$ is an inner product, then equality holds if and only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof (continued). If ||x|| = ||y|| = 0 but $\langle x, y \rangle \neq 0$, then we can scale x and y such that $\langle x, y \rangle = 1$. Then by Lemma 4.2,

$$0 \le \|x - y\|^2 = \|x\|^2 + \| - y\|^2 + 2\operatorname{Re}(\langle x, -y \rangle) = 0 + 0 - 2,$$

a contradiction (so it must be that $\langle x, y \rangle = 0$) and the inequality follows. If $y = \alpha x$ then

 $|\langle x, y \rangle| = |\langle x, \alpha x \rangle| = |\overline{\alpha} \langle x, x \rangle| = |\alpha| ||x||^2 = ||x|| |\alpha| ||x|| = ||x|| ||y||.$

Theorem 4.3 (continued 1)

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all $x, y \in X$ we have $|\langle x, y \rangle| \le ||x|| ||y||$. If $\langle \cdot, \cdot \rangle$ is an inner product, then equality holds if and only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof (continued). If ||x|| = ||y|| = 0 but $\langle x, y \rangle \neq 0$, then we can scale x and y such that $\langle x, y \rangle = 1$. Then by Lemma 4.2,

$$0 \le \|x - y\|^2 = \|x\|^2 + \|-y\|^2 + 2\operatorname{Re}(\langle x, -y \rangle) = 0 + 0 - 2,$$

a contradiction (so it must be that $\langle x,y\rangle=0)$ and the inequality follows. If $y=\alpha x$ then

$$|\langle x,y\rangle| = |\langle x,\alpha x\rangle| = |\overline{\alpha}\langle x,x\rangle| = |\alpha| \|x\|^2 = \|x\| |\alpha| \|x\| = \|x\| \|y\|.$$

Theorem 4.3 (continued 2)

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all $x, y \in X$ we have $|\langle x, y \rangle| \le ||x|| ||y||$. If $\langle \cdot, \cdot \rangle$ is an inner product, then equality holds if and only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof (continued). Conversely, suppose that equality holds. Notice that $\langle 0, x \rangle = \langle x - x, x \rangle = \langle x, x \rangle - \langle x, x \rangle = 0$, so if either ||x|| = 0 or ||y|| = 0, then x and y are linearly dependent since x = 0 or y = 0 (we are assuming $\langle \cdot, \cdot \rangle$ is an inner product and $|| \cdot ||$ is a norm in the exploration of equality). If neither x nor y is 0, then again we can scale y so that ||y|| = 1 and then scale x so that $\langle x, y \rangle = 1$. Then equality in the Cauchy-Schwartz linequality implies that ||x|| = 1. Then, as above, with -y replacing y in Lemma 4.2,

$$0 \le \|x - y\|^2 = \|x\|^2 + \|y\|^2 + 2\operatorname{Re}(\langle x, -y \rangle) = 1 + 1 + 2(-1) = 0,$$

and so ||x - y|| = 0 and x = y

Theorem 4.3 (continued 2)

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all $x, y \in X$ we have $|\langle x, y \rangle| \le ||x|| ||y||$. If $\langle \cdot, \cdot \rangle$ is an inner product, then equality holds if and only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof (continued). Conversely, suppose that equality holds. Notice that $\langle 0, x \rangle = \langle x - x, x \rangle = \langle x, x \rangle - \langle x, x \rangle = 0$, so if either ||x|| = 0 or ||y|| = 0, then x and y are linearly dependent since x = 0 or y = 0 (we are assuming $\langle \cdot, \cdot \rangle$ is an inner product and $|| \cdot ||$ is a norm in the exploration of equality). If neither x nor y is 0, then again we can scale y so that ||y|| = 1 and then scale x so that $\langle x, y \rangle = 1$. Then equality in the Cauchy-Schwartz Inequality implies that ||x|| = 1. Then, as above, with -y replacing y in Lemma 4.2,

$$0 \le ||x - y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}(\langle x, -y \rangle) = 1 + 1 + 2(-1) = 0,$$

and so ||x - y|| = 0 and x = y

Theorem 4.4. Triangle Inequality

Theorem 4.4. Triangle Inequality.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-inner product satisfies: for all $x, y \in X$, we have $||x + y|| \le ||x|| + ||y||$.

Proof. We simply have

$$\begin{aligned} \|x+y\|^2 &= \|x\|^2 + \|y\|^2 + 2\operatorname{Re}(\langle x, y \rangle) \text{ by Lemma 4.2} \\ &\leq \|x\|^2 + \|y\|^2 + 2|\langle x, y \rangle| \\ &\leq \|x\|^2 + \|y\|^2 + 2\|x\|\|y\| \text{ by Cauchy-Schwartz} \\ &= (\|x\| + \|y\|)^2. \end{aligned}$$

Taking square roots, we have

$$||x + y|| \le ||x|| + ||y||.$$

Theorem 4.4. Triangle Inequality

Theorem 4.4. Triangle Inequality.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-inner product satisfies: for all $x, y \in X$, we have $||x + y|| \le ||x|| + ||y||$.

Proof. We simply have

$$\begin{aligned} \|x+y\|^2 &= \|x\|^2 + \|y\|^2 + 2\operatorname{Re}(\langle x, y \rangle) \text{ by Lemma 4.2} \\ &\leq \|x\|^2 + \|y\|^2 + 2|\langle x, y \rangle| \\ &\leq \|x\|^2 + \|y\|^2 + 2\|x\|\|y\| \text{ by Cauchy-Schwartz} \\ &= (\|x\| + \|y\|)^2. \end{aligned}$$

Taking square roots, we have

$$||x + y|| \le ||x|| + ||y||.$$

Theorem 4.5. Parallelogram Law

Proposition 4.5. Parallelogram Law.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-inner product satisfies: for all $x, y \in X$, we have

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Proof. Lemma 4.2 gives $||x + y||^2 = ||x||^2 + ||y||^2 + 2\text{Re}(\langle x, y \rangle)$ and, by replacing y with -y, gives

 $||x - y||^{2} = ||x||^{2} + ||y||^{2} + 2\operatorname{Re}(\langle x, -y \rangle) = ||x||^{2} + ||y||^{2} - 2\operatorname{Re}(\langle x, y \rangle).$

Adding these two equations give the result.

Theorem 4.5. Parallelogram Law

Proposition 4.5. Parallelogram Law.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-inner product satisfies: for all $x, y \in X$, we have

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Proof. Lemma 4.2 gives $||x + y||^2 = ||x||^2 + ||y||^2 + 2\text{Re}(\langle x, y \rangle)$ and, by replacing y with -y, gives

$$||x - y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}(\langle x, -y \rangle) = ||x||^2 + ||y||^2 - 2\operatorname{Re}(\langle x, y \rangle).$$

Adding these two equations give the result.

Proposition 4.7. Polarization Identity

Proposition 4.7. Polarization Identity.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-inner product satisfies: for all $x, y \in X$, we have

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2 \right).$$

Proof. As in the proof of the Parallelogram Law $||x + y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}(\langle x, y \rangle)$ and $||x - y||^2 = ||x||^2 + ||y||^2 - 2\operatorname{Re}(\langle x, y \rangle)$. Subtracting these give

$$4\mathsf{Re}(\langle x, y \rangle) = \|x + y\|^2 - \|x - y\|^2. \ (*)$$

As with any complex number, $\langle x, y \rangle = \text{Re}(\langle x, y \rangle) + i \text{Im}(\langle x, y \rangle)$ and so

$$\operatorname{Im}(\langle x, y \rangle) = \operatorname{Re}(-i \langle x, y \rangle) = \operatorname{Re}(\langle x, iy \rangle). (**)$$

Proposition 4.7. Polarization Identity

Proposition 4.7. Polarization Identity.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-inner product satisfies: for all $x, y \in X$, we have

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2 \right).$$

Proof. As in the proof of the Parallelogram Law $||x + y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}(\langle x, y \rangle)$ and $||x - y||^2 = ||x||^2 + ||y||^2 - 2\operatorname{Re}(\langle x, y \rangle)$. Subtracting these give

$$4\mathsf{Re}(\langle x, y \rangle) = \|x + y\|^2 - \|x - y\|^2. \ (*)$$

As with any complex number, $\langle x,y \rangle = \mathsf{Re}(\langle x,y \rangle) + i\mathsf{Im}(\langle x,y \rangle)$ and so

$$\mathsf{Im}(\langle x, y \rangle) = \mathsf{Re}(-i\langle x, y \rangle) = \mathsf{Re}(\langle x, iy \rangle). (**)$$

Proposition 4.7 (continued)

Proposition 4.7. Polarization Identity.

Let X be a semi-inner product space. Then the semi-norm induced by the semi-inner product satisfies: for all $x, y \in X$, we have

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2 \right).$$

Proof (continued). Using (*) for $\text{Re}(\langle x, y \rangle)$ and using (*) with y replaced by *iy* gives

$$\mathsf{Re}(\langle x, y \rangle) = \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2)$$

and

$$\mathsf{Re}(\langle x, iy \rangle) = \frac{1}{4}(\|x + iy\|^2 - \|x - iy\|^2),$$

and this substituted into (**) gives the result.

Theorem 4.9. Continuity of Inner Product

Theorem 4.9. Continuity of Inner Product.

In any semi-inner product space, if the sequences $(x_n) \to x$ and $(y_n) \to y$, then $(\langle x_n, y_n \rangle) \to \langle x, y \rangle$.

Proof. We have

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle| \\ &\leq |\langle x_n, y_n \rangle - \langle x_n, y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle| \\ &\leq |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \\ &\leq ||x_n|| ||y_n - y|| + ||x_n - x|| ||y|| \text{ by Cauchy-Schwartz.} \end{aligned}$$

Since (x_n) is convergent, then it is bounded, since $(y_n) \to y$ then $||y_n - y|| \to 0$, since $(x_n) \to x$ then $||x_n - x|| \to 0$. Therefore

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| \to 0 \text{ and } \langle x_n, y_n \rangle \to \langle x, y \rangle.$$

Theorem 4.9. Continuity of Inner Product

Theorem 4.9. Continuity of Inner Product.

In any semi-inner product space, if the sequences $(x_n) \to x$ and $(y_n) \to y$, then $(\langle x_n, y_n \rangle) \to \langle x, y \rangle$.

Proof. We have

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle| \\ &\leq |\langle x_n, y_n \rangle - \langle x_n, y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle| \\ &\leq |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \\ &\leq ||x_n|| ||y_n - y|| + ||x_n - x|| ||y|| \text{ by Cauchy-Schwartz.} \end{aligned}$$

Since (x_n) is convergent, then it is bounded, since $(y_n) \to y$ then $||y_n - y|| \to 0$, since $(x_n) \to x$ then $||x_n - x|| \to 0$. Therefore

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| \to 0 \text{ and } \langle x_n, y_n \rangle \to \langle x, y \rangle.$$