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Lemma 4.2. Basic ldentity

Lemma 4.2. Basic ldentity

Lemma 4.2. Basic ldentity.
Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x,y € X, we have

Ix + 12 = lIxII* + lly|I* + 2Re(x, y).
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Lemma 4.2. Basic ldentity

Lemma 4.2. Basic ldentity.
Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x,y € X, we have

Ix + 12 = lIxII* + lly|I* + 2Re(x, y).

Proof. We have

Ix+yl? = (x+y,x+y)
= xx+y)+{y,x+y)
= (x,x) +(xy) +{y,x) + (v, y)
= [IXIP+ (5 p) + o p) + Iy I1P
= [IxII* + 2Re({x, »)) + lI¥[I*.
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Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all x,y € X we have

|(x, v)| < |Ix[|[ly]l- If (-,-) is an inner product, then equality holds if and
only if x is a scalar multiple of y (that is, x and y are linearly dependent).
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Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all x,y € X we have

|(x, v)| < |Ix[|[ly]l- If (-,-) is an inner product, then equality holds if and
only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof. Notice that if we scale x or y by a nonzero amount, the
Cauchy-Schwartz Inequality remains unchanged (the scaling factor is
introduced on both sides and can be divided out).
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Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all x,y € X we have

|(x, v)| < |Ix[|[ly]l- If (-,-) is an inner product, then equality holds if and
only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof. Notice that if we scale x or y by a nonzero amount, the
Cauchy-Schwartz Inequality remains unchanged (the scaling factor is
introduced on both sides and can be divided out).

Suppose |ly|| # 0. If (x,y) =0, the result trivially follows. If (x,y) # 0
then x and y can be scaled so that |ly|| =1 and (x,y) = 1 (the second
claim possibly requiring the use of a complex factor). Then by Lemma 4.2,
with y replaced by —y, we have

0 < [Ix—y[|? = |Ix[*+]—y[I*+2Re((x, —y)) = [Ix[*+1+2(~1) = ||x|*~1.

So ||x|| > 1 and the result holds in the case that ||y|| # 0 (or
symmetrically, in the case that ||x| # 0).
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Theorem 4.3 (continued 1)

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all x,y € X we have

|(x, y)| < |Ix]||lly]]- If (-,-) is an inner product, then equality holds if and
only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof (continued). If ||x|| = ||y|| = 0 but (x, y) # 0, then we can scale x
and y such that (x,y) = 1. Then by Lemma 4.2,

0 < fx = ylI* = [Ix[I* + || = ylI* + 2Re((x, ~y)) = 0+ 0 — 2,

a contradiction (so it must be that (x, y) = 0) and the inequality follows.
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Theorem 4.3. Cauchy-Schwartz Inequality

Theorem 4.3 (continued 1)

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all x,y € X we have

|(x, y)| < |Ix]||lly]]- If (-,-) is an inner product, then equality holds if and
only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof (continued). If ||x|| = ||y|| = 0 but (x, y) # 0, then we can scale x
and y such that (x,y) = 1. Then by Lemma 4.2,

0 < fx = ylI* = [Ix[I* + || = ylI* + 2Re((x, ~y)) = 0+ 0 — 2,

a contradiction (so it must be that (x, y) = 0) and the inequality follows.
If y = ax then

[0y = [(x, ax)] = [alx, )] = alllx]? = Ixladlixll = [Ix]llyll
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Theorem 4.3 (continued 2)

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all x,y € X we have

|(x, v)| < |Ix[|[ly]l- If (-,-) is an inner product, then equality holds if and
only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof (continued). Conversely, suppose that equality holds. Notice that
(0,x) = (x — x,x) = (x,x) — (x,x) =0, so if either ||x|][ =0 or |ly| =0,
then x and y are linearly dependent since x = 0 or y = 0 (we are assuming
(-,-) is an inner product and || - || is a norm in the exploration of equality).
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Theorem 4.3 (continued 2)

Theorem 4.3. Cauchy-Schwartz Inequality.

Given a semi-inner product on X, for all x,y € X we have

|(x, v)| < |Ix[|[ly]l- If (-,-) is an inner product, then equality holds if and
only if x is a scalar multiple of y (that is, x and y are linearly dependent).

Proof (continued). Conversely, suppose that equality holds. Notice that
(0,x) = (x — x,x) = (x,x) — (x,x) =0, so if either ||x|][ =0 or |ly| =0,
then x and y are linearly dependent since x = 0 or y = 0 (we are assuming
(-,-) is an inner product and || - || is a norm in the exploration of equality).
If neither x nor y is 0, then again we can scale y so that ||y|| = 1 and then
scale x so that (x,y) = 1. Then equality in the Cauchy-Schwartz
Inequality implies that ||x|| = 1. Then, as above, with —y replacing y in
Lemma 4.2,

0 < [lx = ylI* = [Ix[I* + Iyl + 2Re({x, —=y)) = 1+ 1 +2(~1) = 0,

andso ||x —y|[|=0and x=y O
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Theorem 4.4. Triangle Inequality

Theorem 4.4. Triangle Inequality

Theorem 4.4. Triangle Inequality.

Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x,y € X, we have
x4yl < lIx[[ + llyll
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Theorem 4.4. Triangle Inequality

Theorem 4.4. Triangle Inequality.

Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x,y € X, we have

x4yl < lIx[[ + llyll

Proof. We simply have

Ix+yl1? = Il + Ilyll* + 2Re((x,y)) by Lemma 4.2
< P+ Dy 12+ 21(x p)
< xI? + llyll? + 2l|x|[llyll by Cauchy-Schwartz
= (lIxll =+ lly[1)?.

Taking square roots, we have
X+ yll < Il +iyll-
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Theorem 4.5. Parallelogram Law

Proposition 4.5. Parallelogram Law.
Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x,y € X, we have

Ix + 112+ llx = w112 = 2(1|x]1* + lly[1%).
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Theorem 4.5. Parallelogram Law

Proposition 4.5. Parallelogram Law.
Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x,y € X, we have

Ix + 112+ llx = w112 = 2(1|x]1* + lly[1%).

Proof. Lemma 4.2 gives |x + y||?> = ||x|?> + |ly||? + 2Re({x, y)) and, by
replacing y with —y, gives
Ix = ¥ 112 = IxII? + lIylI” + 2Re((x, —y)) = [IXI[> + [y > — 2Re((x, ).

Adding these two equations give the result. O
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Proposition 4.7. Polarization Identity

Proposition 4.7. Polarization ldentity.

Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x,y € X, we have

1 . . . .
oy) =7 (Ix+ vl = lIx =y P +illx + iy = illx = iv]]?).

|
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Proposition 4.7. Polarization Identity

Proposition 4.7. Polarization ldentity.
Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x,y € X, we have

(x,y) = (HX +yl? = lx = yI2 +illx + iy = illx iy ]]?).

~ \

Proof. As in the proof of the Parallelogram Law
I + y[I> = [Ix|* + [l|* + 2Re({x, )) and
Ix — ylI2 = |Ix]|> + |ly]|> — 2Re({x, y)). Subtracting these give

4Re((x,y)) = IIx + yII> = [Ix = yII>. (+)
As with any complex number, (x,y) = Re({x, y)) + ilm((x, y)) and so
Im((x,y)) = Re(—i(x,y)) = Re({x; iy)). (*)
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Proposition 4.7 (continued)

Proposition 4.7. Polarization Identity.
Let X be a semi-inner product space. Then the semi-norm induced by the
semi-inner product satisfies: for all x,y € X, we have

1

2 2 . . 2 . . 2
vy = 2 (I yIIF = llx = yII7 + illx + iy [ = dllx = iv]1*) -

|

Proof (continued). Using (x) for Re((x,y)) and using () with y
replaced by iy gives

Re((x 1)) = 3 (Ix +y1I2 ~ x = yI1?)
and )
Re((x,iv)) = 3 (x + iyl — x — iv[P),

and this substituted into () gives the result. O
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Theorem 4.9. Continuity of Inner Product

Theorem 4.9. Continuity of Inner Product.
In any semi-inner product space, if the sequences (x,) — x and (yn) — vy,

then (<Xn7)/n>) — (X, y).
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Theorem 4.9. Continuity of Inner Product

Theorem 4.9. Continuity of Inner Product.
In any semi-inner product space, if the sequences (x,) — x and (yn) — vy,
then (<Xl‘l7yl‘l>) - <X7y>'

Proof. We have

[(Xns yn) — () = [(Xns Yn) = (Xns y) + (Xn y) — (X, )]
< {Xny Yn) = Xy )+ [0y y) — (X, 9)]
< |y Yo = Y+ {0 — x, ¥
< [Ixallllyn = Il + lIxn — x|llly[| by Cauchy-Schwartz.

Since (x,) is convergent, then it is bounded, since (y,) — y then
llyn — || — 0, since (x,) — x then ||x, — x|| — 0. Therefore

[{xn: ¥n) = (X, ¥)| = 0 and (xa, yn) = (x, ).
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