Theorem 2.3 (continued)

So by (9) \(I = \rho \frac{1}{I + N} \) for each \(\rho < 0 \), thus \(1 < \frac{1}{I + N} \) so \(I \) is a nonempty closed convex set. Therefore, \(I \) is a nonempty closed convex set.

Proof (continued). Define \(\theta \) and \(\varphi \) as in Theorem 4.12. Suppose \(x \) is a nonempty convex subset. For any point \(x \) and a nonempty convex subset \(Y \), there is a nearest point to \(x \).

Theorem 4.12 (continued)

\[(*) \quad \theta > \frac{N}{I} > \frac{(I + N)}{I} = \frac{(I + N)}{I - I + N} < \frac{(I + N)}{(I - I + N)} = \left(\frac{I + N}{I - I + N} \right) \]

Then the choice of \(\theta \) and \(\varphi \) for \(\rho < 0 \) is nonempty closed convex set. Therefore, \(I \) is a nonempty closed convex set.

Proof (continued). Define \(\theta \) and \(\varphi \) as in Theorem 4.12. Suppose \(x \) is a nonempty convex subset. For any point \(x \) and a nonempty convex subset \(Y \), there is a nearest point to \(x \).

Proposition 4.10

So \(\theta \) and \(\varphi \) are unique solutions to Proposition 4.10.

Proof. By "Lemma", since \(x \) is uniformly convex, then it is strictly convex. So by uniqueness, \(\theta \) and \(\varphi \) are unique solutions to Proposition 4.10.