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Proposition 4.10

Proposition 4.10

Proposition 4.10. Suppose X is strictly convex. For any point x and
convex set K , there is at most one point in K that is nearest to x .

Proof. We translate point x and set K by an amount −x , so that x goes
to 0 and K goes to the set K − x . Then finding a point in K nearest to x
is equivalent to finding a point in K − x of minimal norm. ASSUME there
are two points y , z ∈ K − x of minimal norm, say ‖y‖ = ‖z‖ = a. Then,
since X is strictly convex, ‖(y/a + z/a)/2‖ < 1, or ‖(y + z)/2‖ < a. But
then (y + z)/2 ∈ K − x since K − x is convex, and (y + z)/2 is of smaller
norm than y and z , CONTRADICTING the minimality of the norm of y
and z . So the assumption of two points of minimal norm is false and there
is at most on point in K − x of minimal norm, and hence at most one
point in K that is nearest to x .
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Lemma 4.3.A

Lemma 4.3.A

Lemma 4.3.A. If a normed linear space is uniformly convex, then it is
strictly convex.

Proof. We consider the contrapositive. Suppose a linear space is not
strictly convex. Then there are distinct unit vectors x and y such that
‖(x + y)/2‖ = 1. Let ε = ‖x − y‖. Then for all δ > 0 we have∥∥1

2(x + y)
∥∥ = 1 > 1− δ, but we do not have ‖x − y‖ = ε < ε. Therefore,

X is not uniformly convex.
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Theorem 4.12

Theorem 4.12

Theorem 4.12. Suppose X is a uniformly convex Banach space. For any
point x and a nonempty closed convex set K , there is a nearest point to x
in K .

Proof. By translating by −x and then scaling by d(x ,K ), we can reduce
the existence problem to showing that d(0,K ) = 1 implies there is a point
y ∈ K where ‖y‖ = 1. Now d(0,K ) = inf{‖y‖ | y ∈ K} = 1, then for
each n ∈ N there is yn ∈ K with 1 ≤ ‖yn‖ ≤ 1 + 1/n.

Let ε > 0 and
choose δ > 0 satisfying the uniform convexity condition for ε/2. Choose
N ∈ N where N > 1/δ and suppose n ≥ m ≥ N. Then

‖(ym + yn)/2‖ ≥ 1 since d(0,K ) = 1 and (ym + yn)/2 ∈ K

=
N + 1

N

(
1− 1

N + 1

)
>

N + 1

N
(1− δ) since

1

N + 1
<

1

N
< δ. (∗)
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Theorem 4.12

Theorem 4.12 (continued 1)

Proof (continued). Define ŷn =
N

N + 1
yn and ŷm =

N

N + 1
ym. Then

‖ŷn‖ =
N

N + 1
‖yn‖ ≤

N

N + 1

(
1 +

1

n

)
=

N

N + 1

n + 1

n
≤ 1

since f (x) = 1 + 1/x is decreasing and n ≥ N. Similarly ‖ŷm‖ ≤ 1 and so
ŷn, ŷm ∈ B(1) and∥∥∥∥ ŷn + ŷm

2

∥∥∥∥ =

∥∥∥∥(
N

N + 1
yn +

N

N + 1
ym

)/
2

∥∥∥∥ =
N

N + 1

∥∥∥∥yn + ym

2

∥∥∥∥
>

N

N + 1

N + 1

N
(1− δ) by (∗)

= 1− δ.
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N

N + 1
yn and ŷm =
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Theorem 4.12

Theorem 4.12 (continued 2)

Theorem 4.12. Suppose X is a uniformly convex Banach space. For any
point x and a nonempty closed convex set K , there is a nearest point to x
in K .

Proof (continued). So, by the uniform convexity hypothesis and the
choice of δ, ‖ŷn − ŷm‖ < ε/2. Hence

‖ym − yn‖ =

∥∥∥∥N + 1

N
ŷm − N + 1

N
ŷn

∥∥∥∥ =
N + 1

N
‖ŷm − ŷn‖ <

N + 1

N

ε

2
≤ ε.

So (yn) is a Cauchy sequence of elements of K . Since X is a Banach
space, (yn) → y for some y ∈ X and since K is closed, y ∈ K . Also since
1 ≤ ‖yn‖ ≤ 1 + 1/n for each n, then ‖y‖ = 1 by Continuity of the Norm
(Theorem 2.3(c)). So y ∈ K has norm 1 and the general result follows, as
explained above.
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