Introduction to Functional Analysis

Chapter 4. Hilbert Spaces

4.3. Nearest Points and Convexity—Proofs of Theorems

2 Lemma 4.3.A

Proposition 4.10. Suppose X is strictly convex. For any point x and convex set K, there is at most one point in K that is nearest to x.

Proof. We translate point x and set K by an amount -x, so that x goes to 0 and K goes to the set K - x. Then finding a point in K nearest to x is equivalent to finding a point in K - x of minimal norm. ASSUME there are two points $y, z \in K - x$ of minimal norm, say ||y|| = ||z|| = a. Then, since X is strictly convex, ||(y/a + z/a)/2|| < 1, or ||(y + z)/2|| < a. But then $(y + z)/2 \in K - x$ since K - x is convex, and (y + z)/2|| < a. But then $(y + z)/2 \in K - x$ since K - x is convex, and (y + z)/2 is of smaller norm than y and z, CONTRADICTING the minimality of the norm of y and z. So the assumption of two points of minimal norm is false and there is at most on point in K - x of minimal norm, and hence at most one point in K that is nearest to x.

Proposition 4.10. Suppose X is strictly convex. For any point x and convex set K, there is at most one point in K that is nearest to x.

Proof. We translate point x and set K by an amount -x, so that x goes to 0 and K goes to the set K - x. Then finding a point in K nearest to x is equivalent to finding a point in K - x of minimal norm. ASSUME there are two points $y, z \in K - x$ of minimal norm, say ||y|| = ||z|| = a. Then, since X is strictly convex, ||(y/a + z/a)/2|| < 1, or ||(y + z)/2|| < a. But then $(y + z)/2 \in K - x$ since K - x is convex, and (y + z)/2|| < a. But then $(y + z)/2 \in K - x$ since K - x is convex, and (y + z)/2 is of smaller norm than y and z, CONTRADICTING the minimality of the norm of y and z. So the assumption of two points of minimal norm is false and there is at most on point in K - x of minimal norm, and hence at most one point in K that is nearest to x.

Lemma 4.3.A

Lemma 4.3.A. If a normed linear space is uniformly convex, then it is strictly convex.

Proof. We consider the contrapositive. Suppose a linear space is not strictly convex. Then there are distinct unit vectors x and y such that $\|(x+y)/2\| = 1$. Let $\varepsilon = \|x-y\|$. Then for all $\delta > 0$ we have $\|\frac{1}{2}(x+y)\| = 1 > 1 - \delta$, but we do not have $\|x-y\| = \varepsilon < \varepsilon$. Therefore, X is not uniformly convex.

Lemma 4.3.A. If a normed linear space is uniformly convex, then it is strictly convex.

Proof. We consider the contrapositive. Suppose a linear space is not strictly convex. Then there are distinct unit vectors x and y such that $\|(x+y)/2\| = 1$. Let $\varepsilon = \|x-y\|$. Then for all $\delta > 0$ we have $\|\frac{1}{2}(x+y)\| = 1 > 1 - \delta$, but we do not have $\|x-y\| = \varepsilon < \varepsilon$. Therefore, X is not uniformly convex.

Theorem 4.12

Theorem 4.12. Suppose X is a uniformly convex Banach space. For any point x and a nonempty closed convex set K, there is a nearest point to x in K.

Proof. By translating by -x and then scaling by d(x, K), we can reduce the existence problem to showing that d(0, K) = 1 implies there is a point $y \in K$ where ||y|| = 1. Now $d(0, K) = \inf\{||y|| \mid y \in K\} = 1$, then for each $n \in \mathbb{N}$ there is $y_n \in K$ with $1 \le ||y_n|| \le 1 + 1/n$.

Theorem 4.12

Theorem 4.12. Suppose X is a uniformly convex Banach space. For any point x and a nonempty closed convex set K, there is a nearest point to x in K.

Proof. By translating by -x and then scaling by d(x, K), we can reduce the existence problem to showing that d(0, K) = 1 implies there is a point $y \in K$ where ||y|| = 1. Now $d(0, K) = \inf\{||y|| | y \in K\} = 1$, then for each $n \in \mathbb{N}$ there is $y_n \in K$ with $1 \le ||y_n|| \le 1 + 1/n$. Let $\varepsilon > 0$ and choose $\delta > 0$ satisfying the uniform convexity condition for $\varepsilon/2$. Choose $N \in \mathbb{N}$ where $N > 1/\delta$ and suppose $n \ge m \ge N$. Then

$$\begin{aligned} \|(y_m + y_n)/2\| &\geq 1 \text{ since } d(0, K) &= 1 \text{ and } (y_m + y_n)/2 \in K \\ &= \frac{N+1}{N} \left(1 - \frac{1}{N+1} \right) \\ &> \frac{N+1}{N} (1-\delta) \text{ since } \frac{1}{N+1} < \frac{1}{N} < \delta. \end{aligned}$$
(*)

Theorem 4.12

Theorem 4.12. Suppose X is a uniformly convex Banach space. For any point x and a nonempty closed convex set K, there is a nearest point to x in K.

Proof. By translating by -x and then scaling by d(x, K), we can reduce the existence problem to showing that d(0, K) = 1 implies there is a point $y \in K$ where ||y|| = 1. Now $d(0, K) = \inf\{||y|| | y \in K\} = 1$, then for each $n \in \mathbb{N}$ there is $y_n \in K$ with $1 \le ||y_n|| \le 1 + 1/n$. Let $\varepsilon > 0$ and choose $\delta > 0$ satisfying the uniform convexity condition for $\varepsilon/2$. Choose $N \in \mathbb{N}$ where $N > 1/\delta$ and suppose $n \ge m \ge N$. Then

$$\begin{split} \|(y_m + y_n)/2\| &\geq 1 \text{ since } d(0, K) = 1 \text{ and } (y_m + y_n)/2 \in K \\ &= \frac{N+1}{N} \left(1 - \frac{1}{N+1} \right) \\ &> \frac{N+1}{N} (1-\delta) \text{ since } \frac{1}{N+1} < \frac{1}{N} < \delta. \quad (*) \end{split}$$

Theorem 4.12 (continued 1)

Proof (continued). Define $\hat{y}_n = \frac{N}{N+1}y_n$ and $\hat{y}_m = \frac{N}{N+1}y_m$. Then

$$\|\hat{y}_n\| = \frac{N}{N+1} \|y_n\| \le \frac{N}{N+1} \left(1 + \frac{1}{n}\right) = \frac{N}{N+1} \frac{n+1}{n} \le 1$$

since f(x) = 1 + 1/x is decreasing and $n \ge N$. Similarly $\|\hat{y}_m\| \le 1$ and so $\hat{y}_n, \hat{y}_m \in \overline{B}(1)$ and

$$\begin{aligned} \left\| \frac{\hat{y}_n + \hat{y}_m}{2} \right\| &= \left\| \left(\frac{N}{N+1} y_n + \frac{N}{N+1} y_m \right) \middle/ 2 \right\| = \frac{N}{N+1} \left\| \frac{y_n + y_m}{2} \right\| \\ &> \frac{N}{N+1} \frac{N+1}{N} (1-\delta) \text{ by } (*) \\ &= 1-\delta. \end{aligned}$$

Theorem 4.12 (continued 1)

Proof (continued). Define $\hat{y}_n = \frac{N}{N+1}y_n$ and $\hat{y}_m = \frac{N}{N+1}y_m$. Then

$$\|\hat{y}_n\| = \frac{N}{N+1} \|y_n\| \le \frac{N}{N+1} \left(1 + \frac{1}{n}\right) = \frac{N}{N+1} \frac{n+1}{n} \le 1$$

since f(x) = 1 + 1/x is decreasing and $n \ge N$. Similarly $\|\hat{y}_m\| \le 1$ and so $\hat{y}_n, \hat{y}_m \in \overline{B}(1)$ and

$$\begin{aligned} \left\|\frac{\hat{y}_n + \hat{y}_m}{2}\right\| &= \left\|\left(\frac{N}{N+1}y_n + \frac{N}{N+1}y_m\right) \middle/ 2\right\| = \frac{N}{N+1} \left\|\frac{y_n + y_m}{2}\right\| \\ &> \frac{N}{N+1} \frac{N+1}{N} (1-\delta) \text{ by } (*) \\ &= 1-\delta. \end{aligned}$$

Theorem 4.12 (continued 2)

Theorem 4.12. Suppose X is a uniformly convex Banach space. For any point x and a nonempty closed convex set K, there is a nearest point to x in K.

Proof (continued). So, by the uniform convexity hypothesis and the choice of δ , $\|\hat{y}_n - \hat{y}_m\| < \varepsilon/2$. Hence

$$\|y_m - y_n\| = \left\|\frac{N+1}{N}\hat{y}_m - \frac{N+1}{N}\hat{y}_n\right\| = \frac{N+1}{N}\|\hat{y}_m - \hat{y}_n\| < \frac{N+1}{N}\frac{\varepsilon}{2} \le \varepsilon.$$

So (y_n) is a Cauchy sequence of elements of K. Since X is a Banach space, $(y_n) \to y$ for some $y \in X$ and since K is closed, $y \in K$. Also since $1 \le ||y_n|| \le 1 + 1/n$ for each n, then ||y|| = 1 by Continuity of the Norm (Theorem 2.3(c)). So $y \in K$ has norm 1 and the general result follows, as explained above.