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Proposition 4.13

Proposition 4.13

Proposition 4.13. Suppose S is a subset of a Hilbert space H and
suppose S is closed under scalar multiplication (i.e., y ∈ S and α ∈ C
implies αy ∈ S). Then

S⊥ = {x ∈ H | d(x ,S) = ‖x‖}.

Proof. If d(x ,S) = ‖x‖, then for all y ∈ S and t > 0,

‖x‖2 = (inf{‖x − y‖ | y ∈ S})2 ≤ ‖x ± ty‖2 since ty ∈ S

= ‖x‖2 + t2‖y‖2 ± 2Re(t〈x , y〉) by Lemma 4.2.

So ∓Re(〈x , y〉) ≤ (t/2)‖y‖2 holds for all t > 0 and so it must be that
Re(〈x , y〉) = 0. Similarly, by considering that ‖x‖2 ≤ ‖x ± ity‖2, we have
that Im(〈x , y〉) = Re(〈x , iy〉) = 0. So 〈x , y〉 = 0 and x ∈ S⊥. Hence
{x ∈ H | d(x ,S) = ‖x‖} ⊆ S⊥.
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Proposition 4.13

Proposition 4.13 (continued)

Proposition 4.13. Suppose S is a subset of a Hilbert space H and
suppose S is closed under scalar multiplication (i.e., y ∈ S and α ∈ C
implies αy ∈ S). Then

S⊥ = {x ∈ H | d(x ,S) = ‖x‖}.

Proof (continued). Conversely, if x ∈ S⊥ then for all y ∈ S ,

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2Re(〈x , y〉) = ‖x‖2 + ‖y‖2 ≥ ‖x‖2.

So d(x ,S) ≥ ‖x‖. Since 0 ∈ S (S is closed under scalar multiplication)
then

‖x‖ ≤ d(x ,S) = inf{‖x − y‖ | y ∈ S} ≤ ‖x − 0‖ = ‖x‖

and d(x ,S) = ‖x‖, so x ∈ {x ∈ H | d(x ,S) = ‖x‖}, and
S⊥ ⊆ {x ∈ H | d(x ,S) = ‖x‖}.
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Theorem 4.14. Projection Theorem

Theorem 4.14

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:

(a) M ∩M⊥ = {0}.
(b) Any z ∈ H can be written uniquely as the sum of an element

of M and an element of M⊥. Specifically,
z = PM(z) + PM⊥(z).

(c) M⊥⊥ = M.

(d) H is isometric to M ⊕M⊥ where the direct sum is equipped
with the `2 norm.

Proof of (a). If x ∈ M ∩M⊥ then 〈x , x〉 = 0 and so x = 0 and (a)
follows.
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Theorem 4.14. Projection Theorem

Theorem 4.14 (continued 1)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z ∈ H can be written uniquely as the sum of an element
of M and an element of M⊥. Specifically,
z = PM(z) + PM⊥(z).

(c) M⊥⊥ = M.

Proof (continued). (b). For z ∈ H, define y = z − PM(z). Now PM(z)
is the vector in M nearest z . That is,
inf{‖z −m‖ | m ∈ M} = ‖z − PM(z)‖. For any m ∈ M, we have

‖y −m‖ = ‖(z − PM(z))−m‖ = ‖z − (PM(z) + m)‖

≥ inf{‖z −m‖ | m ∈ M} = ‖z − PM(z)‖ = ‖y‖.

So d(y ,M) = inf{‖y −m‖ | m ∈ M} ≥ ‖y‖ and since 0 ∈ M,
d(y ,M) = ‖y‖. So by Proposition 4.13, y = z − PM(z) ∈ M⊥.
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Theorem 4.14. Projection Theorem

Theorem 4.14 (continued 2)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z ∈ H can be written uniquely as the sum of an element
of M and an element of M⊥. Specifically,
z = PM(z) + PM⊥(z).

(c) M⊥⊥ = M.

Proof (continued). Now we write z = PM(z) + (z − PM(z)) where
PM(z) ∈ M and y = z − PM(z) ∈ M⊥. So we see that any z ∈ H can be
written as a sum of an element of M and an element of M⊥. We’ll see
below that this representation is unique.
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Theorem 4.14. Projection Theorem

Theorem 4.14 (continued 3)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z ∈ H can be written uniquely as the sum of an element
of M and an element of M⊥. Specifically,
z = PM(z) + PM⊥(z).

(c) M⊥⊥ = M.

Proof (continued). (c). M⊥ is the set of all vectors in H which are
orthogonal to M, and M⊥⊥ is the set of all vectors orthogonal to M⊥

(which includes all vectors in M). So M ⊆ M⊥⊥. Now, suppose
z ∈ M⊥⊥ ⊆ H. Then, as argued above, z = x + y for some x ∈ M and
y ∈ M⊥. Since M ⊆ M⊥⊥, then x ∈ M⊥⊥ and so y = z − x ∈ M⊥⊥

(“clearly” a perp space is closed under linear combinations). So y ∈ M⊥

and y ∈ M⊥⊥ and by (a), y = z − x = 0 and z = x ∈ M. That is,
M⊥⊥ ⊆ M. Therefore, M = M⊥⊥ and (c) follows.

() Introduction to Functional Analysis July 4, 2021 8 / 11
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Theorem 4.14. Projection Theorem.
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Theorem 4.14. Projection Theorem

Theorem 4.14 (continued 4)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z ∈ H can be written uniquely as the sum of an element
of M and an element of M⊥. Specifically,
z = PM(z) + PM⊥(z).

Proof (continued). (b) (continued). To complete (b), we now show
uniqueness. Suppose z = x1 + y1 = x2 + y2 where x1, x2 ∈ M and
y1, y2 ∈ M⊥. But then by (a), x1 − x2 = y2 − y1 = 0 and so x1 = x2 and
y1 = y2 and the representation of z as a sum of an element of M and an
element of M⊥ is unique. Now, following the technique above but by
replacing closed subspace M with closed subspace M⊥, we have
z = PM⊥(z) + (z − PM⊥(z)) where PM⊥(z) ∈ M⊥ and
z − PM⊥(z) ∈ M⊥⊥ = M by (c). By the uniqueness representation of z
we have z = PM(z) + PM⊥(z) and (b) follows.
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Theorem 4.14. Projection Theorem

Theorem 4.14 (continued 5)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:

(d) H is isometric to M ⊕M⊥ where the direct sum is equipped
with the `2 norm.

Proof (continued). (d). Define π : H → M ⊕M⊥ as
π(z) = (PM(z),PM⊥(z)). Then “clearly” π is one to one, onto, and
preserves linear combinations (i.e., π is a linear space isomorphism). Now
for z ∈ H,

‖π(z)‖2
2 = ‖(PM(z),PM⊥(z))‖2

2

= ‖PM(z)‖2 + ‖PM⊥(z)‖2 since we are using the `2 norm

= ‖z‖2 by Lemma 4.2 since 〈PM(z),PM⊥(z)〉 = 0.

So π is an isometry, and (d) follows.
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Theorem 4.18

Theorem 4.18

Theorem 4.18. Every Hilbert space has an orthonormal basis.

Proof. Let P be the class whose members are all orthonormal subsets of
the Hilbert space H. Define the partial order ≤ on P as A ≤ B for
A,B ∈ P if A ⊂ B. Now for any nonzero x ∈ H, we have {x/‖x‖} ∈ P, so
P is nonempty.

Next, suppose Q is a completely ordered subset of P.
Define C to be the union of all sets in Q. Then C is orthonormal (so
C ∈ P) and C is an upper bound of Q. Hence, by Zorn’s Lemma, P has a
maximal element, call it D. Since D is in P, D is an orthonormal set.
Consider the closed linear span M of D. If there is x ∈ H where x 6∈ M,
then x = PM(x) + PM⊥(x) by the Projection Theorem (Theorem 4.14(b))
where PM⊥(x) 6= 0. But then D ∪ {PM⊥(x)/‖PM⊥(x)‖} is an orthonormal
set and D ≤ D ∪ {PM⊥(x)/‖PM⊥(x)‖}, contradicting the maximality of
D. So no such x ∈ H exists and H is the closed linear span of orthonormal
set D. That is, D is an orthonormal basis for H by “Properties of
Orthonormal Sets” (Theorem 4.17(b)).
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