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Proposition 4.13

Proposition 4.13

Proposition 4.13. Suppose S is a subset of a Hilbert space H and

suppose S is closed under scalar multiplication (i.e., y € Sand a € C
implies ay € S). Then

St ={xeH|d(x,S)=|x}.
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Proposition 4.13

Proposition 4.13

Proposition 4.13. Suppose S is a subset of a Hilbert space H and
suppose S is closed under scalar multiplication (i.e., y € Sand a € C
implies ay € S). Then

St={xeH|d(x,S) = |x||}.

Proof. If d(x,S) = ||x]||, then for all y € S and t > 0,

Il = (inf{lx =yl | y € S})* < |x £ ty||* since ty € §
= |Ix]I? + £2|ly||® & 2Re(t(x, y)) by Lemma 4.2.
Introduction to Functional Analysis

July 4, 2021 3/11



Proposition 4.13

Proposition 4.13. Suppose S is a subset of a Hilbert space H and
suppose S is closed under scalar multiplication (i.e., y € Sand a € C
implies ay € S). Then

L={xeH|d(x,S)=|x|}

Proof. If d(x,S) = ||x]||, then for all y € S and t > 0,

Ix[I> = (inf{lx =yl |y € S})* < |x+ ty|* since ty € S
Ix/12 + 2|y ||> & 2Re(t(x, y)) by Lemma 4.2.

So FRe((x,y)) < (t/2)|ly||?> holds for all t > 0 and so it must be that
Re((x,y)) = 0. |mi|ar|y, by considering that ||x||? < ||x & ity||?, we have
that Im(<x, )) = Re({x,iy)) = 0. So (x,y) = 0 and x € S*. Hence
{xeH|d(x,5) = x|} C S-
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Proposition 4.13 (continued)

Proposition 4.13. Suppose S is a subset of a Hilbert space H and
suppose S is closed under scalar multiplication (i.e., y € S and a € C
implies ay € S). Then

St={xeH|d(x,S)=|x}.
Proof (continued). Conversely, if x € S then for all y € S,
Ix = 12 = IxII* + Iy I? = 2Re((x, y)) = [Ix1 + Iy [I* = [Ix]1>.

So d(x,S) > ||x||. Since 0 € S (S is closed under scalar multiplication)
then
x|l < d(x,5) = inf{[lx —y[l | y € S} < [[x = 0] = [[x]]

and d(x,S) =||x||, so x € {x € H| d(x,S) = ||x]|}, and
StC{xeH|d(x,S)=|x|} O
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Theorem 4.14. Projection Theorem

Theorem 4.14

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:
(a) MM+ ={0}.
(b) Any z € H can be written uniquely as the sum of an element
of M and an element of M. Specifically,
z= P/\/I(Z) + PMJ_(Z).
(c) M+ =M.

(d) H is isometric to M @ M~ where the direct sum is equipped
with the ¢2 norm.
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Theorem 4.14. Projection Theorem

Theorem 4.14

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:
(a) MM+ ={0}.
(b) Any z € H can be written uniquely as the sum of an element
of M and an element of M. Specifically,
z= P/\/I(Z) + PMJ_(Z).
(c) M+ =M.

(d) H is isometric to M @ M~ where the direct sum is equipped
with the ¢2 norm.

Proof of (a). If x € M N M~ then (x,x) =0 and so x = 0 and (a)
follows.
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Theorem 4.14 (continued 1)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:
(b) Any z € H can be written uniquely as the sum of an element
of M and an element of M. Specifically,
z= P/\/I(Z) + PMJ_(Z).
(c) M+ =M.
Proof (continued). (b). For z € H, define y = z — Ppy(z). Now Ppy(z)
is the vector in M nearest z. That is,
inf{[|z —m|[ | me M} = ||z — Pu(z)]|.
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Theorem 4.14 (continued 1)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z € H can be written uniquely as the sum of an element

of M and an element of M. Specifically,
z= P/\/I(Z) + PMJ_(Z).
(c) M+ =M.

Proof (continued). (b). For z € H, define y = z — Ppy(z). Now Ppy(z)

is the vector in M nearest z. That is,
inf{||lz—m| | me M} = ||z — Py(2)||. For any m € M, we have
ly = m| = |l(z = Pm(2)) — m|| = ||z = (Pm(z) + m)|
> inf{l|z —m|| [ me M} = ||z — Pu(2)[| = [ly].

So d(y, M) = inf{|ly — m|| | m € M} > |ly|| and since 0 € M,
d(y,M) = |ly||. So by Proposition 4.13, y = z — Pp(z) € M*+.
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Theorem 4.14 (continued 2)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:
(b) Any z € H can be written uniquely as the sum of an element
of M and an element of M. Specifically,
z = Pp(z) + Pyo(2).
(c) M+ =M.
Proof (continued). Now we write z = Py(z) + (z — Pm(z)) where
Prm(z) € M and y = z — Pp(z) € M*. So we see that any z € H can be
written as a sum of an element of M and an element of M+. We'll see
below that this representation is unique.
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Theorem 4.14 (continued 3)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:
(b) Any z € H can be written uniquely as the sum of an element
of M and an element of M. Specifically,
z = Puy(z2) + Pyo(2).
(c) M+ =M.

Proof (continued). (c). M= is the set of all vectors in H which are
orthogonal to M, and M+ is the set of all vectors orthogonal to M=+
(which includes all vectors in M). So M C M++.
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Theorem 4.14 (continued 3)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z € H can be written uniquely as the sum of an element
of M and an element of M. Specifically,
z = Py(z)+ Pyi(2).

(c) M+ =M.

Proof (continued). (c). M= is the set of all vectors in H which are
orthogonal to M, and M+ is the set of all vectors orthogonal to M=+
(which includes all vectors in M). So M C M++. Now, suppose

z € M+ C H. Then, as argued above, z = x + y for some x € M and
y € M+. Since M C M++, then x € M+t andso y = z — x € M+t
(“clearly” a perp space is closed under linear combinations). So y € M+
and y € M+ and by (a), y=z—x=0and z=x € M. That is,
M-+L C M. Therefore, M = M+ and (c) follows.
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Theorem 4.14 (continued 4)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:
(b) Any z € H can be written uniquely as the sum of an element
of M and an element of M. Specifically,
z = Py(z2) + Ppo(2).

Proof (continued). (b) (continued). To complete (b), we now show
uniqueness. Suppose z = x3 + y1 = xo + y» where x3,x0 € M and

v1,y> € ML But then by (a), x1 — X2 = yo» — y1 = 0 and so x; = x» and
y1 = y» and the representation of z as a sum of an element of M and an
element of M~ is unique.
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Theorem 4.14 (continued 4)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z € H can be written uniquely as the sum of an element
of M and an element of M. Specifically,
z = Py(z)+ Pyi(2).

Proof (continued). (b) (continued). To complete (b), we now show
uniqueness. Suppose z = x3 + y1 = xo + y» where x3,x0 € M and

v1,y> € ML But then by (a), x1 — X2 = yo» — y1 = 0 and so x; = x» and
y1 = y» and the representation of z as a sum of an element of M and an
element of M~ is unique. Now, following the technique above but by
replacing closed subspace M with closed subspace M-, we have

z = Ppi(2) + (z — Ppys(2)) where Py, (z) € M+ and

z— Py.(z) € M+t = M by (c). By the uniqueness representation of z
we have z = Pp(z) + Py (2) and (b) follows.
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Theorem 4.14 (continued 5)

Theorem 4.14. Projection Theorem.
Let M be a closed subspace of a Hilbert space H. Then:

(d) H is isometric to M @ M~ where the direct sum is equipped
with the £2 norm.

Proof (continued). (d). Define 7 : H — M ® M+ as

7(z) = (Pm(2), Ppi(2)). Then “clearly” 7 is one to one, onto, and
preserves linear combinations (i.e., 7 is a linear space isomorphism). Now
for ze H,

Im(2)lI3 = [1(Pu(2), Pu(2))I13
= [|Pm(2)||> + || Py (2)||? since we are using the £2 norm
= ||z||> by Lemma 4.2 since (P (z), Pp1(2)) = 0.

So 7 is an isometry, and (d) follows. O
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Theorem 4.18

Theorem 4.18. Every Hilbert space has an orthonormal basis.
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Theorem 4.18

Theorem 4.18

Theorem 4.18. Every Hilbert space has an orthonormal basis.

Proof. Let P be the class whose members are all orthonormal subsets of
the Hilbert space H. Define the partial order < on P as A < B for

A,B € P if AC B. Now for any nonzero x € H, we have {x/||x|} € P, so
P is nonempty.
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Theorem 4.18

Theorem 4.18. Every Hilbert space has an orthonormal basis.

Proof. Let P be the class whose members are all orthonormal subsets of
the Hilbert space H. Define the partial order < on P as A < B for

A,B € P if AC B. Now for any nonzero x € H, we have {x/||x|} € P, so
P is nonempty. Next, suppose @ is a completely ordered subset of P.
Define C to be the union of all sets in Q. Then C is orthonormal (so

C € P) and C is an upper bound of Q. Hence, by Zorn's Lemma, P has a
maximal element, call it D. Since D is in P, D is an orthonormal set.
Consider the closed linear span M of D.
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Theorem 4.18

Theorem 4.18. Every Hilbert space has an orthonormal basis.

Proof. Let P be the class whose members are all orthonormal subsets of
the Hilbert space H. Define the partial order < on P as A < B for

A,B € P if AC B. Now for any nonzero x € H, we have {x/||x|} € P, so
P is nonempty. Next, suppose @ is a completely ordered subset of P.
Define C to be the union of all sets in Q. Then C is orthonormal (so

C € P) and C is an upper bound of Q. Hence, by Zorn's Lemma, P has a
maximal element, call it D. Since D is in P, D is an orthonormal set.
Consider the closed linear span M of D. If there is x € H where x & M,
then x = Pp(x) 4+ Ppy.(x) by the Projection Theorem (Theorem 4.14(b))
where Py, (x) # 0. But then DU {Py(x)/||Ppmr(x)]|} is an orthonormal
set and D < DU {Pp.(x)/||Ppr(x)||}, contradicting the maximality of
D. So no such x € H exists and H is the closed linear span of orthonormal
set D. That is, D is an orthonormal basis for H by “Properties of
Orthonormal Sets” (Theorem 4.17(b)). O
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