Introduction to Functional Analysis

Chapter 4. Hilbert Spaces 4.4. Orthogonality—Proofs of Theorems

Proposition 4.13

Proposition 4.13. Suppose S is a subset of a Hilbert space H and suppose S is closed under scalar multiplication (i.e., $y \in S$ and $\alpha \in \mathbb{C}$ implies $\alpha y \in S$). Then

$$S^{\perp} = \{x \in H \mid d(x, S) = ||x||\}.$$

Proof. If d(x, S) = ||x||, then for all $y \in S$ and t > 0,

$$||x||^{2} = (\inf\{||x - y|| | y \in S\})^{2} \le ||x \pm ty||^{2} \text{ since } ty \in S$$

= $||x||^{2} + t^{2}||y||^{2} \pm 2\operatorname{Re}(t\langle x, y\rangle)$ by Lemma 4.2.

Proposition 4.13

Proposition 4.13. Suppose S is a subset of a Hilbert space H and suppose S is closed under scalar multiplication (i.e., $y \in S$ and $\alpha \in \mathbb{C}$ implies $\alpha y \in S$). Then

$$S^{\perp} = \{x \in H \mid d(x, S) = ||x||\}.$$

Proof. If d(x, S) = ||x||, then for all $y \in S$ and t > 0,

$$\begin{aligned} \|x\|^2 &= (\inf\{\|x - y\| \mid y \in S\})^2 \le \|x \pm ty\|^2 \text{ since } ty \in S \\ &= \|x\|^2 + t^2 \|y\|^2 \pm 2\operatorname{Re}(t\langle x, y\rangle) \text{ by Lemma 4.2.} \end{aligned}$$

So $\mp \operatorname{Re}(\langle x, y \rangle) \leq (t/2) ||y||^2$ holds for all t > 0 and so it must be that $\operatorname{Re}(\langle x, y \rangle) = 0$. Similarly, by considering that $||x||^2 \leq ||x \pm ity||^2$, we have that $\operatorname{Im}(\langle x, y \rangle) = \operatorname{Re}(\langle x, iy \rangle) = 0$. So $\langle x, y \rangle = 0$ and $x \in S^{\perp}$. Hence $\{x \in H \mid d(x, S) = ||x||\} \subseteq S^{\perp}$.

Proposition 4.13

Proposition 4.13. Suppose S is a subset of a Hilbert space H and suppose S is closed under scalar multiplication (i.e., $y \in S$ and $\alpha \in \mathbb{C}$ implies $\alpha y \in S$). Then

$$S^{\perp} = \{x \in H \mid d(x, S) = ||x||\}.$$

Proof. If d(x, S) = ||x||, then for all $y \in S$ and t > 0,

$$\begin{aligned} \|x\|^2 &= (\inf\{\|x - y\| \mid y \in S\})^2 \le \|x \pm ty\|^2 \text{ since } ty \in S \\ &= \|x\|^2 + t^2 \|y\|^2 \pm 2\operatorname{Re}(t\langle x, y\rangle) \text{ by Lemma 4.2.} \end{aligned}$$

So $\mp \operatorname{Re}(\langle x, y \rangle) \leq (t/2) ||y||^2$ holds for all t > 0 and so it must be that $\operatorname{Re}(\langle x, y \rangle) = 0$. Similarly, by considering that $||x||^2 \leq ||x \pm ity||^2$, we have that $\operatorname{Im}(\langle x, y \rangle) = \operatorname{Re}(\langle x, iy \rangle) = 0$. So $\langle x, y \rangle = 0$ and $x \in S^{\perp}$. Hence $\{x \in H \mid d(x, S) = ||x||\} \subseteq S^{\perp}$.

Proposition 4.13 (continued)

Proposition 4.13. Suppose S is a subset of a Hilbert space H and suppose S is closed under scalar multiplication (i.e., $y \in S$ and $\alpha \in \mathbb{C}$ implies $\alpha y \in S$). Then

$$S^{\perp} = \{x \in H \mid d(x, S) = ||x||\}.$$

Proof (continued). Conversely, if $x \in S^{\perp}$ then for all $y \in S$,

$$|x - y||^2 = ||x||^2 + ||y||^2 - 2\operatorname{Re}(\langle x, y \rangle) = ||x||^2 + ||y||^2 \ge ||x||^2.$$

So $d(x, S) \ge ||x||$. Since $0 \in S$ (S is closed under scalar multiplication) then

$$||x|| \le d(x, S) = \inf\{||x - y|| \mid y \in S\} \le ||x - 0|| = ||x||$$

and d(x, S) = ||x||, so $x \in \{x \in H \mid d(x, S) = ||x||\}$, and $S^{\perp} \subseteq \{x \in H \mid d(x, S) = ||x||\}.$

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

(a)
$$M \cap M^{\perp} = \{0\}.$$

(b) Any z ∈ H can be written uniquely as the sum of an element of M and an element of M[⊥]. Specifically, z = P_M(z) + P_{M[⊥]}(z).

(c)
$$M^{\perp\perp} = M$$
.

(d) *H* is isometric to $M \oplus M^{\perp}$ where the direct sum is equipped with the ℓ^2 norm.

Proof of (a). If $x \in M \cap M^{\perp}$ then $\langle x, x \rangle = 0$ and so x = 0 and (a) follows.

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

(a)
$$M \cap M^{\perp} = \{0\}.$$

(b) Any z ∈ H can be written uniquely as the sum of an element of M and an element of M[⊥]. Specifically,
 z = P_M(z) + P_{M[⊥]}(z).

(c)
$$M^{\perp\perp} = M$$
.

(d) *H* is isometric to $M \oplus M^{\perp}$ where the direct sum is equipped with the ℓ^2 norm.

Proof of (a). If $x \in M \cap M^{\perp}$ then $\langle x, x \rangle = 0$ and so x = 0 and (a) follows.

Theorem 4.14 (continued 1)

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z ∈ H can be written uniquely as the sum of an element of M and an element of M[⊥]. Specifically, z = P_M(z) + P_{M[⊥]}(z).
(c) M^{⊥⊥} = M.

Proof (continued). (b). For $z \in H$, define $y = z - P_M(z)$. Now $P_M(z)$ is the vector in M nearest z. That is, $\inf\{\|z - m\| \mid m \in M\} = \|z - P_M(z)\|$. For any $m \in M$, we have

$$||y - m|| = ||(z - P_M(z)) - m|| = ||z - (P_M(z) + m)||$$

$$\geq \inf\{\|z - m\| \mid m \in M\} = \|z - P_M(z)\| = \|y\|.$$

So $d(y, M) = \inf\{\|y - m\| \mid m \in M\} \ge \|y\|$ and since $0 \in M$, $d(y, M) = \|y\|$. So by Proposition 4.13, $y = z - P_M(z) \in M^{\perp}$.

Theorem 4.14 (continued 1)

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z ∈ H can be written uniquely as the sum of an element of M and an element of M[⊥]. Specifically, z = P_M(z) + P_{M[⊥]}(z).
(c) M^{⊥⊥} = M.

Proof (continued). (b). For $z \in H$, define $y = z - P_M(z)$. Now $P_M(z)$ is the vector in M nearest z. That is, $\inf\{||z - m|| \mid m \in M\} = ||z - P_M(z)||$. For any $m \in M$, we have

$$||y - m|| = ||(z - P_M(z)) - m|| = ||z - (P_M(z) + m)||$$

$$\geq \inf\{\|z - m\| \mid m \in M\} = \|z - P_M(z)\| = \|y\|.$$

So $d(y, M) = \inf\{\|y - m\| \mid m \in M\} \ge \|y\|$ and since $0 \in M$, $d(y, M) = \|y\|$. So by Proposition 4.13, $y = z - P_M(z) \in M^{\perp}$.

Theorem 4.14 (continued 2)

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

Proof (continued). Now we write $z = P_M(z) + (z - P_M(z))$ where $P_M(z) \in M$ and $y = z - P_M(z) \in M^{\perp}$. So we see that any $z \in H$ can be written as a sum of an element of M and an element of M^{\perp} . We'll see below that this representation is unique.

Theorem 4.14 (continued 3)

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z ∈ H can be written uniquely as the sum of an element of M and an element of M[⊥]. Specifically, z = P_M(z) + P_{M[⊥]}(z).
(c) M^{⊥⊥} = M.

Proof (continued). (c). M^{\perp} is the set of all vectors in H which are orthogonal to M, and $M^{\perp\perp}$ is the set of all vectors orthogonal to M^{\perp} (which includes all vectors in M). So $M \subseteq M^{\perp\perp}$. Now, suppose $z \in M^{\perp\perp} \subseteq H$. Then, as argued above, z = x + y for some $x \in M$ and $y \in M^{\perp}$. Since $M \subseteq M^{\perp\perp}$, then $x \in M^{\perp\perp}$ and so $y = z - x \in M^{\perp\perp}$ ("clearly" a perp space is closed under linear combinations). So $y \in M^{\perp}$ and $y \in M^{\perp\perp}$ and by (a), y = z - x = 0 and $z = x \in M$. That is, $M^{\perp\perp} \subseteq M$. Therefore, $M = M^{\perp\perp}$ and (c) follows.

Theorem 4.14 (continued 3)

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

(b) Any z ∈ H can be written uniquely as the sum of an element of M and an element of M[⊥]. Specifically, z = P_M(z) + P_{M[⊥]}(z).
(c) M^{⊥⊥} = M.

Proof (continued). (c). M^{\perp} is the set of all vectors in H which are orthogonal to M, and $M^{\perp\perp}$ is the set of all vectors orthogonal to M^{\perp} (which includes all vectors in M). So $M \subseteq M^{\perp\perp}$. Now, suppose $z \in M^{\perp\perp} \subseteq H$. Then, as argued above, z = x + y for some $x \in M$ and $y \in M^{\perp}$. Since $M \subseteq M^{\perp\perp}$, then $x \in M^{\perp\perp}$ and so $y = z - x \in M^{\perp\perp}$ ("clearly" a perp space is closed under linear combinations). So $y \in M^{\perp}$ and $y \in M^{\perp\perp}$ and by (a), y = z - x = 0 and $z = x \in M$. That is, $M^{\perp\perp} \subseteq M$. Therefore, $M = M^{\perp\perp}$ and (c) follows.

Theorem 4.14 (continued 4)

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

(b) Any $z \in H$ can be written uniquely as the sum of an element of M and an element of M^{\perp} . Specifically, $z = P_M(z) + P_{M^{\perp}}(z)$.

Proof (continued). (b) (continued). To complete (b), we now show uniqueness. Suppose $z = x_1 + y_1 = x_2 + y_2$ where $x_1, x_2 \in M$ and $y_1, y_2 \in M^{\perp}$. But then by (a), $x_1 - x_2 = y_2 - y_1 = 0$ and so $x_1 = x_2$ and $y_1 = y_2$ and the representation of z as a sum of an element of M and an element of M^{\perp} is unique. Now, following the technique above but by replacing closed subspace M with closed subspace M^{\perp} , we have $z = P_{M^{\perp}}(z) + (z - P_{M^{\perp}}(z))$ where $P_{M^{\perp}}(z) \in M^{\perp}$ and $z - P_{M^{\perp}}(z) \in M^{\perp \perp} = M$ by (c). By the uniqueness representation of z we have $z = P_M(z) + P_{M^{\perp}}(z)$ and (b) follows.

Theorem 4.14 (continued 4)

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

(b) Any $z \in H$ can be written uniquely as the sum of an element of M and an element of M^{\perp} . Specifically, $z = P_M(z) + P_{M^{\perp}}(z)$.

Proof (continued). (b) (continued). To complete (b), we now show uniqueness. Suppose $z = x_1 + y_1 = x_2 + y_2$ where $x_1, x_2 \in M$ and $y_1, y_2 \in M^{\perp}$. But then by (a), $x_1 - x_2 = y_2 - y_1 = 0$ and so $x_1 = x_2$ and $y_1 = y_2$ and the representation of z as a sum of an element of M and an element of M^{\perp} is unique. Now, following the technique above but by replacing closed subspace M with closed subspace M^{\perp} , we have $z = P_{M^{\perp}}(z) + (z - P_{M^{\perp}}(z))$ where $P_{M^{\perp}}(z) \in M^{\perp}$ and $z - P_{M^{\perp}}(z) \in M^{\perp \perp} = M$ by (c). By the uniqueness representation of z we have $z = P_M(z) + P_{M^{\perp}}(z)$ and (b) follows.

Theorem 4.14 (continued 5)

Theorem 4.14. Projection Theorem.

Let M be a closed subspace of a Hilbert space H. Then:

(d) *H* is isometric to $M \oplus M^{\perp}$ where the direct sum is equipped with the ℓ^2 norm.

Proof (continued). (d). Define $\pi : H \to M \oplus M^{\perp}$ as $\pi(z) = (P_M(z), P_{M^{\perp}}(z))$. Then "clearly" π is one to one, onto, and preserves linear combinations (i.e., π is a linear space isomorphism). Now for $z \in H$,

$$\begin{aligned} \|\pi(z)\|_{2}^{2} &= \|(P_{M}(z), P_{M^{\perp}}(z))\|_{2}^{2} \\ &= \|P_{M}(z)\|^{2} + \|P_{M^{\perp}}(z)\|^{2} \text{ since we are using the } \ell^{2} \text{ norm} \\ &= \|z\|^{2} \text{ by Lemma 4.2 since } \langle P_{M}(z), P_{M^{\perp}}(z) \rangle = 0. \end{aligned}$$

So π is an isometry, and (d) follows.

Theorem 4.18. Every Hilbert space has an orthonormal basis.

Proof. Let *P* be the class whose members are all orthonormal subsets of the Hilbert space *H*. Define the partial order \leq on *P* as $A \leq B$ for $A, B \in P$ if $A \subset B$. Now for any nonzero $x \in H$, we have $\{x/||x||\} \in P$, so *P* is nonempty.

Theorem 4.18. Every Hilbert space has an orthonormal basis.

Proof. Let *P* be the class whose members are all orthonormal subsets of the Hilbert space *H*. Define the partial order \leq on *P* as $A \leq B$ for $A, B \in P$ if $A \subset B$. Now for any nonzero $x \in H$, we have $\{x/||x||\} \in P$, so *P* is nonempty. Next, suppose *Q* is a completely ordered subset of *P*. Define *C* to be the union of all sets in *Q*. Then *C* is orthonormal (so $C \in P$) and *C* is an upper bound of *Q*. Hence, by Zorn's Lemma, *P* has a maximal element, call it *D*. Since *D* is in *P*, *D* is an orthonormal set. Consider the closed linear span *M* of *D*.

Theorem 4.18. Every Hilbert space has an orthonormal basis.

Proof. Let P be the class whose members are all orthonormal subsets of the Hilbert space *H*. Define the partial order \leq on *P* as $A \leq B$ for $A, B \in P$ if $A \subset B$. Now for any nonzero $x \in H$, we have $\{x/||x||\} \in P$, so P is nonempty. Next, suppose Q is a completely ordered subset of P. Define C to be the union of all sets in Q. Then C is orthonormal (so $C \in P$) and C is an upper bound of Q. Hence, by Zorn's Lemma, P has a maximal element, call it D. Since D is in P, D is an orthonormal set. Consider the closed linear span M of D. If there is $x \in H$ where $x \notin M$, then $x = P_M(x) + P_{M^{\perp}}(x)$ by the Projection Theorem (Theorem 4.14(b)) where $P_{M^{\perp}}(x) \neq 0$. But then $D \cup \{P_{M^{\perp}}(x) / \|P_{M^{\perp}}(x)\|\}$ is an orthonormal set and $D \leq D \cup \{P_{M^{\perp}}(x) / \|P_{M^{\perp}}(x)\|\}$, contradicting the maximality of D. So no such $x \in H$ exists and H is the closed linear span of orthonormal set D. That is, D is an orthonormal basis for H by "Properties of Orthonormal Sets" (Theorem 4.17(b)).

Theorem 4.18. Every Hilbert space has an orthonormal basis.

Proof. Let P be the class whose members are all orthonormal subsets of the Hilbert space *H*. Define the partial order \leq on *P* as $A \leq B$ for $A, B \in P$ if $A \subset B$. Now for any nonzero $x \in H$, we have $\{x/||x||\} \in P$, so P is nonempty. Next, suppose Q is a completely ordered subset of P. Define C to be the union of all sets in Q. Then C is orthonormal (so $C \in P$) and C is an upper bound of Q. Hence, by Zorn's Lemma, P has a maximal element, call it D. Since D is in P, D is an orthonormal set. Consider the closed linear span M of D. If there is $x \in H$ where $x \notin M$, then $x = P_M(x) + P_{M^{\perp}}(x)$ by the Projection Theorem (Theorem 4.14(b)) where $P_{M^{\perp}}(x) \neq 0$. But then $D \cup \{P_{M^{\perp}}(x) / \|P_{M^{\perp}}(x)\|\}$ is an orthonormal set and $D \leq D \cup \{P_{M^{\perp}}(x)/\|P_{M^{\perp}}(x)\|\}$, contradicting the maximality of D. So no such $x \in H$ exists and H is the closed linear span of orthonormal set D. That is, D is an orthonormal basis for H by "Properties of Orthonormal Sets" (Theorem 4.17(b)).