Introduction to Functional Analysis

Chapter 4. Hilbert Spaces

4.6. Linear Operators on Hilbert Spaces-Proofs of Theorems

Table of contents

Theorem 4.24

- 2 Theorem 4.26, Properties of Hilbert Space Adjoints
- 3 Proposition 4.27
- Proposition 4.30
- 5 Proposition 4.31
- 6 Proposition 4.33
- Proposition 4.34

Theorem 4.24. Given any $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself), the function f_T defined by $f_T(x, y) = \langle Tx, y \rangle$ is a sesquilinear form with norm equal to ||T||. Conversely, given any bounded sesquilinear form f, there is a unique $T \in \mathcal{B}(H)$ such that $f = f_T$.

Proof. Since T is linear and $\langle \cdot, \cdot \rangle$ is sesquilinear, then f_T is sesquilinear.

Theorem 4.24. Given any $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself), the function f_T defined by $f_T(x, y) = \langle Tx, y \rangle$ is a sesquilinear form with norm equal to ||T||. Conversely, given any bounded sesquilinear form f, there is a unique $T \in \mathcal{B}(H)$ such that $f = f_T$.

Proof. Since T is linear and $\langle \cdot, \cdot \rangle$ is sesquilinear, then f_T is sesquilinear. By the Cauchy-Schwarz Inequality (Theorem 4.3) we have

$$\begin{aligned} \|f_{\mathcal{T}}\| &= \sup \||f(x,y)| \mid \|x = \|y\| = 1 \\ &= \sup \{ |\langle Tx, y \rangle \mid \|x\| = \|y\| = 1 \} \le \|Tx\| \|y\| \\ &\le \|T\| \|x\|y\| = \|T\|. \end{aligned}$$

Theorem 4.24. Given any $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself), the function f_T defined by $f_T(x, y) = \langle Tx, y \rangle$ is a sesquilinear form with norm equal to ||T||. Conversely, given any bounded sesquilinear form f, there is a unique $T \in \mathcal{B}(H)$ such that $f = f_T$.

Proof. Since T is linear and $\langle \cdot, \cdot \rangle$ is sesquilinear, then f_T is sesquilinear. By the Cauchy-Schwarz Inequality (Theorem 4.3) we have

$$\begin{aligned} \|f_{T}\| &= \sup \||f(x,y)| \mid \|x = \|y\| = 1 \\ &= \sup \{ |\langle Tx, y \rangle \mid \|x\| = \|y\| = 1 \} \le \|Tx\| \|y\| \\ &\le \|T\| \|x\|y\| = \|T\|. \end{aligned}$$

Clearly $||f_T|| = ||T||$ if T = 0. If $T \neq 0$ then $Tx \neq 0$ for some unit vector x. Let y = Tx/||Tx||. Then $f_T(x, y) = \langle Tx, Tx/||Tx|| \rangle = ||Tx||$, and so $||f_T|| \ge ||T||$. Therefore $||f_T|| = ||T||$.

Theorem 4.24. Given any $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself), the function f_T defined by $f_T(x, y) = \langle Tx, y \rangle$ is a sesquilinear form with norm equal to ||T||. Conversely, given any bounded sesquilinear form f, there is a unique $T \in \mathcal{B}(H)$ such that $f = f_T$.

Proof. Since T is linear and $\langle \cdot, \cdot \rangle$ is sesquilinear, then f_T is sesquilinear. By the Cauchy-Schwarz Inequality (Theorem 4.3) we have

$$\begin{aligned} \|f_{T}\| &= \sup \||f(x,y)| \mid \|x = \|y\| = 1 \\ &= \sup \{ |\langle Tx, y \rangle \mid \|x\| = \|y\| = 1 \} \le \|Tx\| \|y\| \\ &\le \|T\| \|x\|y\| = \|T\|. \end{aligned}$$

Clearly $||f_T|| = ||T||$ if T = 0. If $T \neq 0$ then $Tx \neq 0$ for some unit vector x. Let y = Tx/||Tx||. Then $f_T(x, y) = \langle Tx, Tx/||Tx|| \rangle = ||Tx||$, and so $||f_T|| \ge ||T||$. Therefore $||f_T|| = ||T||$.

Proof (continued). Conversely, suppose f is a bounded sesquilinear form. Fix $x \in H$ and define $g : H \to \mathbb{C}$ as $g(y) = \overline{f(x, y)}$.

Proof (continued). Conversely, suppose f is a bounded sesquilinear form. Fix $x \in H$ and define $g: H \to \mathbb{C}$ as $g(y) = \overline{f(x, y)}$. Then for ||y|| = 1,

$$\begin{aligned} |g(y)| &= |\overline{f(x,y)}| = |f(x,y)| \\ &= |||x||f(x/||x||,y)| \text{ by linearity in the first position} \\ &\leq ||x|| ||f||, \end{aligned}$$

so g is a bounded linear functional on H.

Proof (continued). Conversely, suppose f is a bounded sesquilinear form. Fix $x \in H$ and define $g: H \to \mathbb{C}$ as $g(y) = \overline{f(x, y)}$. Then for ||y|| = 1,

$$|g(y)| = |\overline{f(x,y)}| = |f(x,y)|$$

= $|||x|| f(x/||x||, y)|$ by linearity in the first position
 $\leq ||x|| ||f||,$

so g is a bounded linear functional on H. By Theorem 4.22, there is a unique $x \in H$ such that $g = \psi_z$ (i.e., $g(y) = \langle y, z \rangle = \psi_z$). Define $T : H \to H$ on the fixed x as Tx = z.

Proof (continued). Conversely, suppose f is a bounded sesquilinear form. Fix $x \in H$ and define $g: H \to \mathbb{C}$ as $g(y) = \overline{f(x, y)}$. Then for ||y|| = 1,

$$\begin{aligned} |g(y)| &= |\overline{f(x,y)}| = |f(x,y)| \\ &= |||x||f(x/||x||,y)| \text{ by linearity in the first position} \\ &\leq ||x||||f||, \end{aligned}$$

so g is a bounded linear functional on H. By Theorem 4.22, there is a unique $x \in H$ such that $g = \psi_z$ (i.e., $g(y) = \langle y, z \rangle = \psi_z$). Define $T: H \to H$ on the fixed x as Tx = z. Now consider $\alpha x_1 + \beta x_2$. We have for some $z_3 \in H$, $T(\alpha x_1 + \beta x_2) = z_3$ where $g_{z_3}(y) = \overline{f(\alpha x_1 + \beta x_2, y)} = \psi_{z_3}$.

Proof (continued). Conversely, suppose f is a bounded sesquilinear form. Fix $x \in H$ and define $g: H \to \mathbb{C}$ as $g(y) = \overline{f(x, y)}$. Then for ||y|| = 1,

$$\begin{aligned} |g(y)| &= |\overline{f(x,y)}| = |f(x,y)| \\ &= |||x||f(x/||x||,y)| \text{ by linearity in the first position} \\ &\leq ||x||||f||, \end{aligned}$$

so g is a bounded linear functional on H. By Theorem 4.22, there is a unique $x \in H$ such that $g = \psi_z$ (i.e., $g(y) = \langle y, z \rangle = \psi_z$). Define $T: H \to H$ on the fixed x as Tx = z. Now consider $\alpha x_1 + \beta x_2$. We have for some $z_3 \in H$, $T(\alpha x_1 + \beta x_2) = z_3$ where $g_{z_3}(y) = \overline{f(\alpha x_1 + \beta x_2, y)} = \psi_{z_3}$.

Proof (continued). Next

$$f(\alpha x_1 + \beta x_2, y) = \overline{g_{z_3}(y)} = \overline{\psi_{z_3}(y)}$$

= $\overline{\langle y, z_3 \rangle} = \langle z_3, y \rangle = \langle T(\alpha x_1 + \beta x_2), y \rangle$
= $\alpha f(x_1, y) + \beta f(x_2, y)$ since f is sesquilinear

$$= \alpha \langle Tx_1, y \rangle + \beta \langle Tx_2, y \rangle$$

=
$$\langle \alpha T x_1 + \beta T x_2, y \rangle$$
 since $\langle \cdot, \cdot \rangle$ is linear in first position.

Proof (continued). Next

$$\begin{aligned} f(\alpha x_1 + \beta x_2, y) &= \overline{g_{z_3}(y)} = \overline{\psi_{z_3}(y)} \\ &= \overline{\langle y, z_3 \rangle} = \langle z_3, y \rangle = \langle T(\alpha x_1 + \beta x_2), y \rangle \\ &= \alpha f(x_1, y) + \beta f(x_2, y) \text{ since } f \text{ is sesquilinear} \\ &= \alpha \langle Tx_1, y \rangle + \beta \langle Tx_2, y \rangle \\ &= \langle \alpha Tx_1 + \beta Tx_2, y \rangle \text{ since } \langle \cdot, \cdot \rangle \text{ is linear in first position.} \end{aligned}$$

Therefore, $\langle T(\alpha x_1 + \beta x_2), y \rangle = \langle \alpha T x_1 + \beta T x_2, y \rangle$ for all y and by linearity in the first position $\langle T(\alpha x_1 + \beta x_2) - (\alpha T x_1 + \beta T x_2), y \rangle = 0$ for all $y \in H$. So, $T(\alpha x_1 + \beta x_2) = \alpha T x_1 + \beta T x_2$ and T is linear.

Proof (continued). Next

$$f(\alpha x_1 + \beta x_2, y) = \overline{g_{z_3}(y)} = \overline{\psi_{z_3}(y)}$$

= $\overline{\langle y, z_3 \rangle} = \langle z_3, y \rangle = \langle T(\alpha x_1 + \beta x_2), y \rangle$
= $\alpha f(x_1, y) + \beta f(x_2, y)$ since f is sesquilinear
= $\alpha \langle Tx_1, y \rangle + \beta \langle Tx_2, y \rangle$
= $\langle \alpha Tx_1 + \beta Tx_2, y \rangle$ since $\langle \cdot, \cdot \rangle$ is linear in first position.

Therefore, $\langle T(\alpha x_1 + \beta x_2), y \rangle = \langle \alpha T x_1 + \beta T x_2, y \rangle$ for all y and by linearity in the first position $\langle T(\alpha x_1 + \beta x_2) - (\alpha T x_1 + \beta T x_2), y \rangle = 0$ for all $y \in H$. So, $T(\alpha x_1 + \beta x_2) = \alpha T x_1 + \beta T x_2$ and T is linear. Moreover, for all $y \in H$,

$$f_T(x,y) = \langle Tx, y \rangle = \langle z, y \rangle \overline{\langle y, z \rangle} = \overline{\psi_z(y)} = \overline{g(y)} = f(x,y).$$

As argued above, $||f|| = ||f_T|| = ||T||$ and so T is bounded.

Proof (continued). Next

$$f(\alpha x_1 + \beta x_2, y) = \overline{g_{z_3}(y)} = \overline{\psi_{z_3}(y)}$$

= $\overline{\langle y, z_3 \rangle} = \langle z_3, y \rangle = \langle T(\alpha x_1 + \beta x_2), y \rangle$
= $\alpha f(x_1, y) + \beta f(x_2, y)$ since f is sesquilinear
= $\alpha \langle Tx_1, y \rangle + \beta \langle Tx_2, y \rangle$
= $\langle \alpha Tx_1 + \beta Tx_2, y \rangle$ since $\langle \cdot, \cdot \rangle$ is linear in first position.

Therefore, $\langle T(\alpha x_1 + \beta x_2), y \rangle = \langle \alpha T x_1 + \beta T x_2, y \rangle$ for all y and by linearity in the first position $\langle T(\alpha x_1 + \beta x_2) - (\alpha T x_1 + \beta T x_2), y \rangle = 0$ for all $y \in H$. So, $T(\alpha x_1 + \beta x_2) = \alpha T x_1 + \beta T x_2$ and T is linear. Moreover, for all $y \in H$,

$$f_T(x,y) = \langle Tx,y \rangle = \langle z,y \rangle \overline{\langle y,z \rangle} = \overline{\psi_z(y)} = \overline{g(y)} = f(x,y).$$

As argued above, $||f|| = ||f_T|| = ||T||$ and so T is bounded.

Theorem 4.24. Given any $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself), the function f_T defined by $f_T(x, y) = \langle Tx, y \rangle$ is a sesquilinear form with norm equal to ||T||. Conversely, given any bounded sesquilinear form f, there is a unique $T \in \mathcal{B}(H)$ such that $f = f_T$.

Proof (continued). If there were two such T, say T and T', where $f_T = f_{T'}$, then for all $x, y \in H$ we would have $\langle Tx, y \rangle = \langle Tx, y \rangle$, or $\langle Tx - T'x, y \rangle = 0$ for all $x, y \in H$ and hence Tx - T'x = 0, or Tx = T'x for all $x \in H$. That is, T = T' and uniqueness follows.

Theorem 4.24. Given any $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself), the function f_T defined by $f_T(x, y) = \langle Tx, y \rangle$ is a sesquilinear form with norm equal to ||T||. Conversely, given any bounded sesquilinear form f, there is a unique $T \in \mathcal{B}(H)$ such that $f = f_T$.

Proof (continued). If there were two such *T*, say *T* and *T'*, where $f_T = f_{T'}$, then for all $x, y \in H$ we would have $\langle Tx, y \rangle = \langle Tx, y \rangle$, or $\langle Tx - T'x, y \rangle = 0$ for all $x, y \in H$ and hence Tx - T'x = 0, or Tx = T'x for all $x \in H$. That is, T = T' and uniqueness follows.

Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$:

(a)
$$(S + T)^* = S^* + T$$

(b) $(\alpha T)^* = \overline{\alpha}T^*$
(c) $(ST)^* = T^*S^*$
(d) $||T^*|| = ||T||$
(e) $T^{**} = T$
(f) $||T^*T|| = ||T||^2$.

Proof of (a). For all $x, y \in H$, we have $\langle (S + T)x, y \rangle = \langle x, (S + T)^*, y \rangle$. Then

$$\langle (S+T)x, y \rangle = \langle Sx, y \rangle + \langle Tx, y \rangle = \langle x, S^*y \rangle + \langle x, T^*y \rangle = \langle x, (S^*+T^*)y \rangle + \langle x, (S^*+T^*)y \rangle + \langle x, (S^*+T^*)y \rangle = \langle x, (S^*+T^*)y \rangle + \langle x, (S^*+T^*)y \rangle = \langle x, (S^*+T^*)y \rangle + \langle x, (S^*+T^*)y \rangle = \langle x, (S^*+T^*)y \rangle + \langle x, (S^*+T^*)y \rangle = \langle x, (S^*,$$

So $(S + T)^* = S^* + T^*$.

Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$:

(a)
$$(S + T)^* = S^* + T$$

(b) $(\alpha T)^* = \overline{\alpha} T^*$
(c) $(ST)^* = T^*S^*$
(d) $||T^*|| = ||T||$
(e) $T^{**} = T$
(f) $||T^*T|| = ||T||^2$.

Proof of (a). For all $x, y \in H$, we have $\langle (S + T)x, y \rangle = \langle x, (S + T)^*, y \rangle$. Then

$$\langle (S+T)x, y \rangle = \langle Sx, y \rangle + \langle Tx, y \rangle = \langle x, S^*y \rangle + \langle x, T^*y \rangle = \langle x, (S^*+T^*)y \rangle.$$

So $(S + T)^* = S^* + T^*$.

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$: (b) $(\alpha T)^* = \overline{\alpha}T^*$ (c) $(ST)^* = T^*S^*$

Proof of (b). For all $x, y \in H$, we have $\langle (\alpha T)x, y \rangle = \langle x, (\alpha T)^*y \rangle$. Then

$$\langle (\alpha T)x, y \rangle = \alpha \langle Tx, y \rangle = \alpha \langle x, T^*y \rangle = \langle x, \overline{\alpha} T^*y \rangle.$$

So αT)* = $\overline{\alpha}T^*$.

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$:

(b)
$$(\alpha T)^* = \overline{\alpha} T^*$$

(c) $(ST)^* = T^*S^*$

Proof of (b). For all $x, y \in H$, we have $\langle (\alpha T)x, y \rangle = \langle x, (\alpha T)^*y \rangle$. Then

$$\langle (\alpha T)x, y \rangle = \alpha \langle Tx, y \rangle = \alpha \langle x, T^*y \rangle = \langle x, \overline{\alpha} T^*y \rangle.$$

So αT)* = $\overline{\alpha}T^*$.

Proof of (c). For all $x, y \in H$, we have

 $\langle (ST)^*x, y \rangle = \langle x, (ST)y \rangle = \langle x, S(Ty) \rangle = \langle S^*x, Ty \rangle = \langle T^*S^*x, y \rangle$

and so $(ST)^* = T^*S^*$.

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$:

(b)
$$(\alpha T)^* = \overline{\alpha} T^*$$

(c) $(ST)^* = T^*S^*$

Proof of (b). For all $x, y \in H$, we have $\langle (\alpha T)x, y \rangle = \langle x, (\alpha T)^*y \rangle$. Then

$$\langle (\alpha T)x, y \rangle = \alpha \langle Tx, y \rangle = \alpha \langle x, T^*y \rangle = \langle x, \overline{\alpha} T^*y \rangle.$$

So αT)* = $\overline{\alpha}T^*$.

Proof of (c). For all $x, y \in H$, we have

$$\langle (ST)^*x, y \rangle = \langle x, (ST)y \rangle = \langle x, S(Ty) \rangle = \langle S^*x, Ty \rangle = \langle T^*S^*x, y \rangle$$

and so $(ST)^* = T^*S^*$.

Theorem 4.26(d)

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$: (d) $||T^*|| = ||T||$

Proof of (d). For $f_T = \langle Tx, y \rangle = f_{T^*} = \langle x, T^*y \rangle$, we have

$$||f_{\mathcal{T}}|| = \sup\{|f_{\mathcal{T}}(x, y)| \mid ||x|| = ||y|| = 1\}$$

$$= \sup\{|\langle Tx, y \rangle| \mid ||x|| = ||y|| = 1\}$$

= sup{
$$|\langle x, Ty \rangle| ||x|| = ||y|| = 1$$
} since $\langle Tx, y \rangle = \overline{\langle y, Tx \rangle}$ and the sup is taken over all $||x|| = ||y|| = 1$

= ||T|| by Theorem 4.24.

Theorem 4.26(d)

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$: (d) $||T^*|| = ||T||$

Proof of (d). For $f_T = \langle Tx, y \rangle = f_{T^*} = \langle x, T^*y \rangle$, we have

$$\begin{aligned} \|f_{T}\| &= \sup\{|f_{T}(x,y)| \mid \|x\| = \|y\| = 1\} \\ &= \sup\{|\langle Tx, y\rangle| \mid \|x\| = \|y\| = 1\} \\ &= \sup\{|\langle x, Ty\rangle| \|x\| = \|y\| = 1\} \text{ since } \langle Tx, y\rangle = \overline{\langle y, Tx\rangle} \text{ and the} \\ &\quad \text{sup is taken over all } \|x\| = \|y\| = 1 \\ &= \|T\| \text{ by Theorem 4.24.} \end{aligned}$$

Similarly, $||f_{T^*}|| = ||T^*||$ and since $f_T = f_{T^*}$, then $||T|| = ||T^*||$.

Theorem 4.26(d)

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$: (d) $||T^*|| = ||T||$

Proof of (d). For $f_T = \langle Tx, y \rangle = f_{T^*} = \langle x, T^*y \rangle$, we have

$$\begin{split} \|f_{T}\| &= \sup\{|f_{T}(x,y)| \mid \|x\| = \|y\| = 1\} \\ &= \sup\{|\langle Tx, y\rangle| \mid \|x\| = \|y\| = 1\} \\ &= \sup\{|\langle x, Ty\rangle| \|x\| = \|y\| = 1\} \text{ since } \langle Tx, y\rangle = \overline{\langle y, Tx\rangle} \text{ and the} \\ &\quad \text{ sup is taken over all } \|x\| = \|y\| = 1 \\ &= \|T\| \text{ by Theorem 4.24.} \end{split}$$

Similarly, $||f_{T^*}|| = ||T^*||$ and since $f_T = f_{T^*}$, then $||T|| = ||T^*||$.

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$: (e) $T^{**} = T$ (f) $||T^*T|| = ||T||^2$.

Proof of (e). For all $x, y \in H$ we have $\langle T^{**}x, y \rangle = \langle x, T^*y \rangle = \langle Tx, y \rangle$, so $T^{**} = T$.

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$: (e) $T^{**} = T$ (f) $||T^*T|| = ||T||^2$.

Proof of (e). For all $x, y \in H$ we have $\langle T^{**}x, y \rangle = \langle x, T^*y \rangle = \langle Tx, y \rangle$, so $T^{**} = T$.

Proof of (f). By Proposition 2.8, $||T^*T|| \le ||T^*|| ||T|| = ||T||^2$ by part (e).

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$: (e) $T^{**} = T$ (f) $||T^*T|| = ||T||^2$.

Proof of (e). For all $x, y \in H$ we have $\langle T^{**}x, y \rangle = \langle x, T^*y \rangle = \langle Tx, y \rangle$, so $T^{**} = T$.

Proof of (f). By Proposition 2.8, $||T^*T|| \le ||T^*|| ||T|| = ||T||^2$ by part (e). If x is a unit vector then

$$\|Tx\|^2 = \langle Tx, Tx \rangle = \langle T^*Tx, x \rangle$$

$$\leq \|T^*T\| \text{ by definition of the operator norm.}$$

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$: (e) $T^{**} = T$ (f) $||T^*T|| = ||T||^2$.

Proof of (e). For all $x, y \in H$ we have $\langle T^{**}x, y \rangle = \langle x, T^*y \rangle = \langle Tx, y \rangle$, so $T^{**} = T$.

Proof of (f). By Proposition 2.8, $||T^*T|| \le ||T^*|| ||T|| = ||T||^2$ by part (e). If x is a unit vector then

$$\|Tx\|^2 = \langle Tx, Tx \rangle = \langle T^*Tx, x \rangle$$

$$\leq \|T^*T\| \text{ by definition of the operator norm.}$$

So sup{ $||Tx||^2 | ||x|| = 1$ } = $||T||^2 \le ||T^*T||$ and hence $||T^*T|| = ||T||^2$.

Theorem 4.26. Properties of Hilbert Space Adjoints. Given $S, Y \in \mathcal{B}(H)$ and $\alpha \in \mathbb{C}$: (e) $T^{**} = T$ (f) $||T^*T|| = ||T||^2$.

Proof of (e). For all $x, y \in H$ we have $\langle T^{**}x, y \rangle = \langle x, T^*y \rangle = \langle Tx, y \rangle$, so $T^{**} = T$.

Proof of (f). By Proposition 2.8, $||T^*T|| \le ||T^*|| ||T|| = ||T||^2$ by part (e). If x is a unit vector then

$$\|Tx\|^2 = \langle Tx, Tx \rangle = \langle T^*Tx, x \rangle$$

$$\leq \|T^*T\| \text{ by definition of the operator norm.}$$

So sup{ $||Tx||^2 | ||x|| = 1$ } = $||T||^2 \le ||T^*T||$ and hence $||T^*T|| = ||T||^2$.

Proposition 4.27. For all $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself):

(a)
$$N(T^*) = R(T)^{\perp}$$

(b) $N(T)^{\perp} = \overline{R(T^*)}$.

Proof of (a). We have $x \in R(T)^{\perp}$ if and only if for all $y \in H$ we have $\langle x, Ty \rangle = 0$ (since $Ty \in R(T)$). Equivalently, $\langle T^*x, y \rangle = 0$ for all $y \in H$, which means $T^*x = 0$ and so $x \in N(T^*)$.

Proposition 4.27. For all $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself):

(a)
$$N(T^*) = R(T)^{\perp}$$

(b) $N(T)^{\perp} = \overline{R(T^*)}$.

Proof of (a). We have $x \in R(T)^{\perp}$ if and only if for all $y \in H$ we have $\langle x, Ty \rangle = 0$ (since $Ty \in R(T)$). Equivalently, $\langle T^*x, y \rangle = 0$ for all $y \in H$, which means $T^*x = 0$ and so $x \in N(T^*)$.

Proof of (b). From (a) with T^* replacing T we have $N(T) = R(T^*)^{\perp}$ (since $T^{**} = T$ by Theorem 4.26(e)), and so $N(T)^{\perp} = R(T^*)^{\perp \perp} = \overline{R(T^*)}$ by Proposition 4.15.

Proposition 4.27. For all $T \in \mathcal{B}(H)$ (the set of bounded linear transformations from H to itself):

(a)
$$N(T^*) = R(T)^{\perp}$$

(b) $N(T)^{\perp} = \overline{R(T^*)}$.

Proof of (a). We have $x \in R(T)^{\perp}$ if and only if for all $y \in H$ we have $\langle x, Ty \rangle = 0$ (since $Ty \in R(T)$). Equivalently, $\langle T^*x, y \rangle = 0$ for all $y \in H$, which means $T^*x = 0$ and so $x \in N(T^*)$.

Proof of (b). From (a) with T^* replacing T we have $N(T) = R(T^*)^{\perp}$ (since $T^{**} = T$ by Theorem 4.26(e)), and so $N(T)^{\perp} = R(T^*)^{\perp \perp} = \overline{R(T^*)}$ by Proposition 4.15.

Proof. For all $x \in H$, we have that $\langle T^*Tx, x \rangle = \langle Tx, Tx \rangle = ||Tx||^2$ and $\langle TT^*x, x \rangle = \langle T^*x, T^*x \rangle = ||T^*x\rangle^2$.

Proof. For all $x \in H$, we have that $\langle T^*Tx, x \rangle = \langle Tx, Tx \rangle = ||Tx||^2$ and $\langle TT^*x, x \rangle = \langle T^*x, T^*x \rangle = ||T^*x\rangle^2$. So if $||Tx|| = ||T^*x||$ then $\langle TT^*x, x \rangle = \langle T^*Tx, x \rangle$ for all $x \in H$ and by Corollary 4.25 $TT^* = T^*T$.

Proof. For all $x \in H$, we have that $\langle T^*Tx, x \rangle = \langle Tx, Tx \rangle = ||Tx||^2$ and $\langle TT^*x, x \rangle = \langle T^*x, T^*x \rangle = ||T^*x\rangle^2$. So if $||Tx|| = ||T^*x||$ then $\langle TT^*x, x \rangle = \langle T^*Tx, x \rangle$ for all $x \in H$ and by Corollary 4.25 $TT^* = T^*T$. Also, if $TT^* = T^*T$, then the above inner products show that $||Tx|| = ||T^*x||$.

Proof. For all $x \in H$, we have that $\langle T^*Tx, x \rangle = \langle Tx, Tx \rangle = ||Tx||^2$ and $\langle TT^*x, x \rangle = \langle T^*x, T^*x \rangle = ||T^*x\rangle^2$. So if $||Tx|| = ||T^*x||$ then $\langle TT^*x, x \rangle = \langle T^*Tx, x \rangle$ for all $x \in H$ and by Corollary 4.25 $TT^* = T^*T$. Also, if $TT^* = T^*T$, then the above inner products show that $||Tx|| = ||T^*x||$.

Proposition 4.31. T is self-adjoint if and only if $\langle Tx, x \rangle$ is real for all $x \in H$.

Proof. For all $x \in H$ we have $\langle T^*x, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$ and these are equal if and only if $\langle Tx, x \rangle$ is real.

Proposition 4.31. T is self-adjoint if and only if $\langle Tx, x \rangle$ is real for all $x \in H$.

Proof. For all $x \in H$ we have $\langle T^*x, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$ and these are equal if and only if $\langle Tx, x \rangle$ is real. Then (and only then) $\langle T^*x, x \rangle = \langle Tx, x \rangle$ for all $x \in H$ and by Corollary 4.25 we have that $T = T^*$.

Proposition 4.31. T is self-adjoint if and only if $\langle Tx, x \rangle$ is real for all $x \in H$.

Proof. For all $x \in H$ we have $\langle T^*x, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$ and these are equal if and only if $\langle Tx, x \rangle$ is real. Then (and only then) $\langle T^*x, x \rangle = \langle Tx, x \rangle$ for all $x \in H$ and by Corollary 4.25 we have that $T = T^*$.

Proposition 4.33. An element $P \in \mathcal{B}(H)$ is a projection if and only if there is a closed subspace M of H such that $P = P_M$ (the projection onto M, see page 79).

Proof. Let *P* be a projection and consider its support, M = S(P).

Proposition 4.33. An element $P \in \mathcal{B}(H)$ is a projection if and only if there is a closed subspace M of H such that $P = P_M$ (the projection onto M, see page 79).

Proof. Let *P* be a projection and consider its support, M = S(P). For any y = Px in the range of *P*, R(P), we have Py = PPx = Px = y.

Proposition 4.33. An element $P \in \mathcal{B}(H)$ is a projection if and only if there is a closed subspace M of H such that $P = P_M$ (the projection onto M, see page 79).

Proof. Let *P* be a projection and consider its support, M = S(P). For any y = Px in the range of *P*, R(P), we have Py = PPx = Px = y. Since R(P) is dense in S(P) = M (see the comment in the class notes after Proposition 4.30), continuity of *P* (since *P* is bounded; Theorem 2.6) implies Py = y for all $y \in S(P) = M$.

Proposition 4.33. An element $P \in \mathcal{B}(H)$ is a projection if and only if there is a closed subspace M of H such that $P = P_M$ (the projection onto M, see page 79).

Proof. Let *P* be a projection and consider its support, M = S(P). For any y = Px in the range of *P*, R(P), we have Py = PPx = Px = y. Since R(P) is dense in S(P) = M (see the comment in the class notes after Proposition 4.30), continuity of *P* (since *P* is bounded; Theorem 2.6) implies Py = y for all $y \in S(P) = M$. We have $H = N(P) \oplus S(P)$, as described in the class notes above, and *P* takes on the value 0 on $N(P) = M^{\perp}$, so for any $x = y + z \in H$ where $y \in M = S(P)$ and $z \in M^{\perp} = N(P)$ we have

$$Px = P(y + z) = P(y) + P(z) = P(y) + 0 = P(y) = y.$$

Proposition 4.33. An element $P \in \mathcal{B}(H)$ is a projection if and only if there is a closed subspace M of H such that $P = P_M$ (the projection onto M, see page 79).

Proof. Let *P* be a projection and consider its support, M = S(P). For any y = Px in the range of *P*, R(P), we have Py = PPx = Px = y. Since R(P) is dense in S(P) = M (see the comment in the class notes after Proposition 4.30), continuity of *P* (since *P* is bounded; Theorem 2.6) implies Py = y for all $y \in S(P) = M$. We have $H = N(P) \oplus S(P)$, as described in the class notes above, and *P* takes on the value 0 on $N(P) = M^{\perp}$, so for any $x = y + z \in H$ where $y \in M = S(P)$ and $z \in M^{\perp} = N(P)$ we have

$$Px = P(y + z) = P(y) + P(z) = P(y) + 0 = P(y) = y.$$

So $P = P_n$ where M = S(P).

Proposition 4.33. An element $P \in \mathcal{B}(H)$ is a projection if and only if there is a closed subspace M of H such that $P = P_M$ (the projection onto M, see page 79).

Proof. Let *P* be a projection and consider its support, M = S(P). For any y = Px in the range of *P*, R(P), we have Py = PPx = Px = y. Since R(P) is dense in S(P) = M (see the comment in the class notes after Proposition 4.30), continuity of *P* (since *P* is bounded; Theorem 2.6) implies Py = y for all $y \in S(P) = M$. We have $H = N(P) \oplus S(P)$, as described in the class notes above, and *P* takes on the value 0 on $N(P) = M^{\perp}$, so for any $x = y + z \in H$ where $y \in M = S(P)$ and $z \in M^{\perp} = N(P)$ we have

$$Px = P(y + z) = P(y) + P(z) = P(y) + 0 = P(y) = y.$$

So $P = P_n$ where M = S(P).

Proposition 4.33 (continued)

Proof (continued). Conversely, the projection P_M maps elements of M into themselves (P is the identity on M), so $P_M^2 = P_M$ on H. For $x_1, x_2 \in H$ where $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ where $y_1, y_2 \in M$ and $z_1, z_2 \in M^{\perp}$, we have

$$\langle P_M x_1, x_2 \rangle = \langle P_M (y_1 + z_1), y_2 + z_2 \rangle = \langle y_1, y_2 + z_2 \rangle$$

= $\langle y_1, y_2 \rangle + \langle y_1, z_2 \rangle = \langle y_1, y_2 \rangle + 0 = \langle y_1, y_2 \rangle,$

and

$$\begin{aligned} \langle x_1, P_M x_2 \rangle &= \langle y_1 + z_1, P_M (y_2 + z_2) \rangle = \langle y_1 + z_1, y_2 \rangle \\ &= \langle y_1, y_2 \rangle + \langle z_1, y_2 \rangle = \langle y_1, y_2 \rangle + 0 = \langle y_1, y_2 \rangle. \end{aligned}$$

Proposition 4.33 (continued)

Proof (continued). Conversely, the projection P_M maps elements of M into themselves (P is the identity on M), so $P_M^2 = P_M$ on H. For $x_1, x_2 \in H$ where $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ where $y_1, y_2 \in M$ and $z_1, z_2 \in M^{\perp}$, we have

$$\langle P_M x_1, x_2 \rangle = \langle P_M (y_1 + z_1), y_2 + z_2 \rangle = \langle y_1, y_2 + z_2 \rangle$$

= $\langle y_1, y_2 \rangle + \langle y_1, z_2 \rangle = \langle y_1, y_2 \rangle + 0 = \langle y_1, y_2 \rangle,$

and

$$\langle x_1, P_M x_2 \rangle = \langle y_1 + z_1, P_M (y_2 + z_2) \rangle = \langle y_1 + z_1, y_2 \rangle$$

= $\langle y_1, y_2 \rangle + \langle z_1, y_2 \rangle = \langle y_1, y_2 \rangle + 0 = \langle y_1, y_2 \rangle.$

So $\langle P_M x_1, x_2 \rangle = \langle x_1, P_M x_2 \rangle$ for all $x_1, x_2 \in H$ and so $P_M = P_M^*$. Therefore P_M is a projection.

Proposition 4.33 (continued)

Proof (continued). Conversely, the projection P_M maps elements of M into themselves (P is the identity on M), so $P_M^2 = P_M$ on H. For $x_1, x_2 \in H$ where $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ where $y_1, y_2 \in M$ and $z_1, z_2 \in M^{\perp}$, we have

$$\langle P_M x_1, x_2 \rangle = \langle P_M (y_1 + z_1), y_2 + z_2 \rangle = \langle y_1, y_2 + z_2 \rangle$$

= $\langle y_1, y_2 \rangle + \langle y_1, z_2 \rangle = \langle y_1, y_2 \rangle + 0 = \langle y_1, y_2 \rangle,$

and

$$\langle x_1, P_M x_2 \rangle = \langle y_1 + z_1, P_M (y_2 + z_2) \rangle = \langle y_1 + z_1, y_2 \rangle$$

= $\langle y_1, y_2 \rangle + \langle z_1, y_2 \rangle = \langle y_1, y_2 \rangle + 0 = \langle y_1, y_2 \rangle.$

So $\langle P_M x_1, x_2 \rangle = \langle x_1, P_M x_2 \rangle$ for all $x_1, x_2 \in H$ and so $P_M = P_M^*$. Therefore P_M is a projection.

Proposition 4.34. An element $U \in \mathcal{B}(H)$ is unitary if and only if it is a surjective (onto) isometry.

Proof. Suppose U is unitary. Then $U^*U = \mathcal{I}$ and so

$$||Ux||^2 = \langle Ux, Ux \rangle = \langle U^*Ux, x \rangle = \langle \mathcal{I}x, x \rangle = \langle x, x \rangle = ||x||^2.$$

Therefore U is an isometry. For any $y \in H$, $\mathcal{I}y = UU^*y = U(U^*y) = y$ and so U is surjective (onto).

Proposition 4.34. An element $U \in \mathcal{B}(H)$ is unitary if and only if it is a surjective (onto) isometry.

Proof. Suppose U is unitary. Then $U^*U = \mathcal{I}$ and so

$$\|Ux\|^2 = \langle Ux, Ux \rangle = \langle U^*Ux, x \rangle = \langle \mathcal{I}x, x \rangle = \langle x, x \rangle = \|x\|^2.$$

Therefore U is an isometry. For any $y \in H$, $\mathcal{I}y = UU^*y = U(U^*y) = y$ and so U is surjective (onto).

Proposition 4.34 (continued)

Proposition 4.34. An element $U \in \mathcal{B}(H)$ is unitary if and only if it is a surjective (onto) isometry.

Proof (continued). Next, suppose U is a surjective isometry. Since U is an isometry, then (as above)

$$||Ux||^2 = \langle Ux, Ux \rangle = \langle U^* Ux, x \rangle$$

= $||x||^2$ since U is an isometry
= $\langle x, x \rangle$,

and so $\langle U^*Ux, x \rangle = \langle x, x \rangle$ for all $x \in H$ and by Corollary 4.25, $U^*U = \mathcal{I}$. Next, if $x \in H$, then x = Uy for some $y \in H$ since U is surjective (onto) and so

$$UU^{*}(x) = UU^{*}(Uy) = U(U^{*}Uy) = Uy = x$$

and so $UU^* = \mathcal{I}$. Therefore U is unitary.

Proposition 4.34 (continued)

Proposition 4.34. An element $U \in \mathcal{B}(H)$ is unitary if and only if it is a surjective (onto) isometry.

Proof (continued). Next, suppose U is a surjective isometry. Since U is an isometry, then (as above)

$$\begin{split} \|Ux\|^2 &= \langle Ux, Ux \rangle = \langle U^* Ux, x \rangle \\ &= \|x\|^2 \text{ since } U \text{ is an isometry} \\ &= \langle x, x \rangle, \end{split}$$

and so $\langle U^*Ux, x \rangle = \langle x, x \rangle$ for all $x \in H$ and by Corollary 4.25, $U^*U = \mathcal{I}$. Next, if $x \in H$, then x = Uy for some $y \in H$ since U is surjective (onto) and so

$$UU^*(x) = UU^*(Uy) = U(U^*Uy) = Uy = x$$

and so $UU^* = \mathcal{I}$. Therefore U is unitary.