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Theorem 4.24

Theorem 4.24. Given any T € B(H) (the set of bounded linear
transformations from H to itself), the function fr defined by
fr(x,y) = (Tx,y) is a sesquilinear form with norm equal to || T||.

Conversely, given any bounded sesquilinear form f, there is a unique
T € B(H) such that f = fr.
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Theorem 4.24

Theorem 4.24. Given any T € B(H) (the set of bounded linear
transformations from H to itself), the function fr defined by
fr(x,y) = (Tx,y) is a sesquilinear form with norm equal to || T||.

Conversely, given any bounded sesquilinear form f, there is a unique
T € B(H) such that f = fr.

Proof. Since T is linear and (-, -) is sesquilinear, then fr is sesquilinear.
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Theorem 4.24

Theorem 4.24. Given any T € B(H) (the set of bounded linear
transformations from H to itself), the function fr defined by
fr(x,y) = (Tx,y) is a sesquilinear form with norm equal to || T||.

Conversely, given any bounded sesquilinear form f, there is a unique
T € B(H) such that f = fr.

Proof. Since T is linear and (-, -) is sesquilinear, then fr is sesquilinear.
By the Cauchy-Schwarz Inequality (Theorem 4.3) we have

Ifrll = sup[IFC )] lIx = llyll =1}
= sup{[(Tx,y) [Ix[[ = llyll = 1} < [ Tx[lllyll
< [Tyl = 1T-
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Theorem 4.24

Theorem 4.24. Given any T € B(H) (the set of bounded linear
transformations from H to itself), the function fr defined by
fr(x,y) = (Tx,y) is a sesquilinear form with norm equal to || T||.

Conversely, given any bounded sesquilinear form f, there is a unique
T € B(H) such that f = fr.

Proof. Since T is linear and (-, -) is sesquilinear, then fr is sesquilinear.
By the Cauchy-Schwarz Inequality (Theorem 4.3) we have

Ifrll = sup[IFC )] lIx = llyll =1}
= sup{[(Tx,y) [Ix[[ = llyll = 1} < [ Tx[lllyll
< [Tyl = 1T-

Clearly ||fr|| =||T| if T=0. If T # 0 then Tx # 0 for some unit vector
x. Let y = Tx/||Tx||. Then fr(x,y) = (Tx, Tx/||Tx||) = || Tx||, and so
Ifrll = |[ Tl Therefore |[fr(| = | T]|
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Theorem 4.24 (Part 2)

Proof (continued). Conversely, suppose f is a bounded sesquilinear form.
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Theorem 4.24 (Part 2)

Proof (continued). Conversely, suppose f is a bounded sesquilinear form.
Fix x € H and define g : H — C as g(y) = f(x,y).
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Theorem 4.24 (Part 2)

Proof (continued). Conversely, suppose f is a bounded sesquilinear form.
Fix x € H and define g: H — C as g(y) = f(x,y). Then for |ly|| =1,

)l = [ y)l=If(xy)l
= |lIIx|If(x/||x|l, ¥)| by linearity in the first position
< [l

so g is a bounded linear functional on H.
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Theorem 4.24 (Part 2)

Proof (continued). Conversely, suppose f is a bounded sesquilinear form.
Fix x € H and define g: H — C as g(y) = f(x,y). Then for |ly|| =1,

)l = [ y)l=If(xy)l
= |lIIx|If(x/||x|l, ¥)| by linearity in the first position
< [l

so g is a bounded linear functional on H. By Theorem 4.22, there is a
unique x € H such that g =1, (i.e., g(y) = (v, z) = ¢;). Define
T : H — H on the fixed x as Tx = z.
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Theorem 4.24 (Part 2)

Proof (continued). Conversely, suppose f is a bounded sesquilinear form.
Fix x € H and define g: H — C as g(y) = f(x,y). Then for |ly|| =1,

)l = [ y)l=If(xy)l
= |lIIx|If(x/||x|l, ¥)| by linearity in the first position
< [l

so g is a bounded linear functional on H. By Theorem 4.22, there is a
unique x € H such that g =1, (i.e., g(y) = (v, z) = ¢;). Define

T : H— H on the fixed x as Tx = z. Now consider ax; + 8x2. We have
for some z3 € H, T(ax) + Bx2) = z3 where

gZ3(y) = f(OéXl + ﬂXLy) = ¢Z3-
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Theorem 4.24 (Part 3)

Proof (continued).
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Theorem 4.24 (Part 3)

Proof (continued). Next

flaxi + Bx,y) = 8x(y) = vz(y)

(y,23) = (z3,5) = (T(ax1 + Bx2), y)
af(x1,y) + Bf(x2, y) since f is sesquilinear
a(Txi,y) + B(Tx, y)

= (aTxi + BTxa,y) since (-,-) is linear in first position.
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Theorem 4.24 (Part 3)

Proof (continued). Next

flaxi + Bx,y) = 8x(y) = vz(y)
= (,23) = (z,5) = (T(wa + fx2),y)
= af(x1,y) + Bf(xe,y) since f is sesquilinear
- 04<TX17)/>+/3<TX27)/>

= (aTxi + BTxa,y) since (-,-) is linear in first position.

Therefore, (T(ax1 + Ox2),y) = (aTx1 + BTxa,y) for all y and by linearity
in the first position (T (axy + 6x2) — (aTx1 + 8Tx2),y) =0 for all y € H.
So, T(axi + fx2) = aTxy + BTxz and T is linear.
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Theorem 4.24 (Part 3)

Proof (continued). Next

flaxi +0Bx2,y) = 8z(y) =vz(y)

= (,23) = (z,5) = (T(wa + fx2),y)

= af(x1,y) + Bf(xe,y) since f is sesquilinear

= a(Tx,y) +B8(Tx,y)

= (aTxi + BTxa,y) since (-,-) is linear in first position.

Therefore, (T(ax1 + Ox2),y) = (aTx1 + BTxa,y) for all y and by linearity
in the first position (T (axy + 6x2) — (aTx1 + 8Tx2),y) =0 for all y € H.
So, T(axi + fx2) = aTxy + BTxz and T is linear.

Moreover, for all y € H,

fr(x,y) = (Tx,y) = (z,y)(y,2) = ¥z(y) = g(y) = f(x,¥).

As argued above, ||f|| = ||fr|| = ||T|| and so T is bounded.
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Theorem 4.24

Theorem 4.24 (Part 4)

Theorem 4.24. Given any T € B(H) (the set of bounded linear
transformations from H to itself), the function fr defined by
fr(x,y) = (Tx,y) is a sesquilinear form with norm equal to || T||.

Conversely, given any bounded sesquilinear form f, there is a unique
T € B(H) such that f = fr.

Proof (continued).
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Theorem 4.24 (Part 4)

Theorem 4.24. Given any T € B(H) (the set of bounded linear
transformations from H to itself), the function fr defined by
fr(x,y) = (Tx,y) is a sesquilinear form with norm equal to || T||.
Conversely, given any bounded sesquilinear form f, there is a unique
T € B(H) such that f = fr.

Proof (continued). If there were two such T, say T and T, where

fr = f7s, then for all x,y € H we would have (Tx,y) = (Tx,y), or

(Tx — T'x,y) =0 for all x,y € H and hence Tx — T'x =0, or Tx = T'x
for all x € H. Thatis, T = T’ and uniqueness follows. O
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Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and ac € C:

(@) (S+T)y=8+T*

(b) (aT) =aT"
(c) (ST) = Ts"
(d) [I77]l = HTH
(e) T =
(f) 17 TH =T
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Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and ac € C:

(@) (S+T)y=8+T*

(b) (aT)" =aT~
(c) (ST) = T*5"
(d) 7]l = HTH
(e) T**

() HT*TH =TI

Proof of (a). For all x,y € H, we have ((S+ T)x,y) = (x,(S§+ T)*

Then

)

(S+T)xy) = (S y) +(Tx,y) = (x, Sy)+{x, T7y) = (x, (5" + T")y).

So(S+ T) =S+ T
Introduction to Functional Analysis May 16, 2015
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Theorem 4.26(b) and (c)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and « € C:

(b) (aT)* =aT*
(c) (ST)" = T*s*
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Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26(b) and (c)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and « € C:

(b) (aT)* =aT*
(c) (ST)" = T*s*

Proof of (b). For all x,y € H, we have ((aT)x,y) = (x,(aT)*y). Then

<(aT)X7y> = Oé(TX,y> = a(x, T*Y> = <X>aT*y>'
SoaT) =aT*.
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Theorem 4.26(b) and (c)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and « € C:

(b) (aT)* =aT*
(c) (ST)" = T*s*

Proof of (b). For all x,y € H, we have ((aT)x,y) = (x,(aT)*y). Then
((@T)x,y) = a(Tx,y) = alx, T"y) = (x,aT"y).
SoaT)  =aT*. 0
Proof of (c). For all x,y € H, we have
(ST)xy) = (x,(ST)y) = (x,5(Ty)) = (57X, Ty) = (T"S"x,y)
and so (ST)* = T*S*. O
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Theorem 4.26(d)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and ac € C:

@) 1T =17l
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Theorem 4.26(d)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and o € C:

(d) 7= 17l
Proof of (d). For f+ = (Tx,y) = fr~ = (x, T*y), we have

Ifrll = sup{[fr (¥l [ Ix] = llyll =1}
sup{[(Tx, y)| | Il = Iyl = 1}
= sup{|{x, Ty)llIx]l = llyll = 1} since (Tx,y) = {y, Tx) and the
sup is taken over all ||x|| = |ly|| =1
= || T|| by Theorem 4.24.

Introduction to Functional Analysis May 16, 2015 9 /17



Theorem 4.26(d)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and o € C:

(d) 7= 17l
Proof of (d). For f+ = (Tx,y) = fr~ = (x, T*y), we have

Ifrll = sup{[fr (¥l [ Ix] = llyll =1}
sup{[(Tx, y)| | Il = Iyl = 1}
= sup{|{x, Ty)llIx]l = llyll = 1} since (Tx,y) = {y, Tx) and the
sup is taken over all ||x|| = |ly|| =1
= || T|| by Theorem 4.24.

Similarly, ||fr«|| = || T*|| and since fr = fr«, then | T| = || T*. N
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Theorem 4.26(e) and (f)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and ac € C:

(e) T =T
() N7l =712
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Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26(e) and (f)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and ac € C:

(e) T =T
() N7l =712

Proof of (e). For all x,y € H we have (T**x,y) = (x, T*y) = (Tx,y),

so T**=T. OJ
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Theorem 4.26(e) and (f)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and ac € C:

(e) T =T
() N7l =712

Proof of (e). For all x,y € H we have (T**x,y) = (x, T*y) = (Tx,y),
so T"*=T. O

Proof of (f). By Proposition 2.8, | T*T|| < || T*|||T|| = || T||? by part
().
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Theorem 4.26(e) and (f)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and ac € C:

(e) T =T

O N7 T =TI
Proof of (e). For all x,y € H we have (T**x,y) = (x, T*y) = (Tx,y),
so T"*=T. O
Proof of (f). By Proposition 2.8, | T*T|| < || T*|||T|| = || T||? by part
(e). If x is a unit vector then

[Tx|? = (Tx, Tx) = (T*Tx,x)

< || T*T|| by definition of the operator norm.
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Theorem 4.26(e) and (f)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S, Y € B(H) and ac € C:

(e) T =T
() N7l =712

Proof of (e). For all x,y € H we have (T**x,y) = (x, T*y) = (Tx,y),
so T"*=T. O

Proof of (f). By Proposition 2.8, | T*T|| < || T*|||T|| = || T||? by part
(e). If x is a unit vector then
[Tx|? = (Tx, Tx) = (T*Tx,x)
< || T*T|| by definition of the operator norm.
So sup{| Tx||? | [Ix|| = 1} = || T|[> < [IT*T|| and hence
1T =T 0
Introduction to Functional Analysis May 16, 2015 10 / 17



Proposition 4.27

Proposition 4.27. For all T € B(H) (the set of bounded linear

transformations from H to itself):
(a) N(T*) = R(T)*

(b) N(T)*+ = R(T*).
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Proposition 4.27

Proposition 4.27

Proposition 4.27. For all T € B(H) (the set of bounded linear
transformations from H to itself):

(a) N(T*)=R(T)*

(b) N(T)*+ = R(T*).

Proof of (a). We have x € R(T)! if and only if for all y € H we have
(x, Ty) =0 (since Ty € R(T)). Equivalently, (T*x,y) =0 for all y € H,
which means T*x =0 and so x € N(T%). O
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Proposition 4.27

Proposition 4.27. For all T € B(H) (the set of bounded linear
transformations from H to itself):

(a) N(T*)=R(T)*

(b) N(T)*+ = R(T*).

Proof of (a). We have x € R(T)! if and only if for all y € H we have
(x, Ty) =0 (since Ty € R(T)). Equivalently, (T*x,y) =0 for all y € H,
which means T*x =0 and so x € N(T%). O

Proof of (b). From (a) with T* replacing T we have N(T) = R(T*)*
(since T** = T by Theorem 4.26(e)), and so
N(T)*+ = R(T*)*+ = R(T*) by Proposition 4.15. O
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Proposition 4.30

Proposition 4.30. T is normal if and only if || Tx|| = || T*x|| for all x € H.
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Proposition 4.30

Proposition 4.30

Proposition 4.30. T is normal if and only if || Tx|| = || T*x|| for all x € H.

Proof. For all x € H, we have that (T*Tx, x) = (Tx, Tx) = || Tx||> and
(TT*x,x) = (T*x, T*x) = || T*x)2.
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Proposition 4.30

Proposition 4.30

Proposition 4.30. T is normal if and only if || Tx|| = || T*x|| for all x € H.

Proof. For all x € H, we have that (T*Tx,x) = (Tx, Tx) = || Tx||> and
(TT*x,x) = (T*x, T*x) = || T*x)2. So if || Tx|| = || T*x|| then
(TT*x,x) = (T*Tx,x) for all x € H and by Corollary 425 TT* = T*T.
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Proposition 4.30

Proposition 4.30. T is normal if and only if || Tx|| = || T*x|| for all x € H.

Proof. For all x € H, we have that (T*Tx,x) = (Tx, Tx) = || Tx||> and
(TT*x,x) = (T*x, T*x) = || T*x)2. So if || Tx|| = || T*x|| then

(TT*x,x) = (T*Tx,x) for all x € H and by Corollary 425 TT* = T*T.
Also, if TT* = T*T, then the above inner products show that

I Tx|| = [ITx]]. O
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Proposition 4.31

Proposition 4.31. T is self-adjoint if and only if ( Tx, x) is real for all
x € H.
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Proposition 4.31

Proposition 4.31. T is self-adjoint if and only if ( Tx, x) is real for all
x € H.

Proof. For all x € H we have (T*x, x) = (x, Tx) = (Tx, x) and these are
equal if and only if (Tx, x) is real.
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Proposition 4.31

Proposition 4.31

Proposition 4.31. T is self-adjoint if and only if ( Tx, x) is real for all
x € H.

Proof. For all x € H we have (T*x, x) = (x, Tx) = (Tx, x) and these are
equal if and only if (Tx, x) is real. Then (and only then)

(T*x,x) = (Tx,x) for all x € H and by Corollary 4.25 we have that
T=T* O
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Proposition 4.33

Proposition 4.33

Proposition 4.33. An element P € B(H) is a projection if and only if

there is a closed subspace M of H such that P = Py (the projection onto
M, see page 79).
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Proposition 4.33

Proposition 4.33

Proposition 4.33. An element P € B(H) is a projection if and only if

there is a closed subspace M of H such that P = Py (the projection onto
M, see page 79).

Proof. Let P be a projection and consider its support, M = S(P).
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Proposition 4.33

Proposition 4.33

Proposition 4.33. An element P € B(H) is a projection if and only if

there is a closed subspace M of H such that P = Py (the projection onto
M, see page 79).

Proof. Let P be a projection and consider its support, M = S(P). For
any y = Px in the range of P, R(P), we have Py = PPx = Px = y.
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Proposition 4.33

Proposition 4.33

Proposition 4.33. An element P € B(H) is a projection if and only if

there is a closed subspace M of H such that P = Py (the projection onto
M, see page 79).

Proof. Let P be a projection and consider its support, M = S(P). For
any y = Px in the range of P, R(P), we have Py = PPx = Px = y. Since
R(P) is dense in S(P) = M (see the comment in the class notes after
Proposition 4.30), continuity of P (since P is bounded; Theorem 2.6)
implies Py =y for all y € S(P) = M.
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Proposition 4.33

Proposition 4.33. An element P € B(H) is a projection if and only if
there is a closed subspace M of H such that P = Py (the projection onto
M, see page 79).

Proof. Let P be a projection and consider its support, M = S(P). For
any y = Px in the range of P, R(P), we have Py = PPx = Px = y. Since
R(P) is dense in S(P) = M (see the comment in the class notes after
Proposition 4.30), continuity of P (since P is bounded; Theorem 2.6)
implies Py =y for all y € S(P) = M. We have H = N(P) & S(P), as
described in the class notes above, and P takes on the value 0 on

N(P) = M+, so for any x = y +z € H where y € M = S(P) and

z € M+ = N(P) we have

Px=P(y +z)=P(y)+ P(z) = P(y) + 0= P(y) = y.
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Proposition 4.33

Proposition 4.33. An element P € B(H) is a projection if and only if
there is a closed subspace M of H such that P = Py (the projection onto
M, see page 79).

Proof. Let P be a projection and consider its support, M = S(P). For
any y = Px in the range of P, R(P), we have Py = PPx = Px = y. Since
R(P) is dense in S(P) = M (see the comment in the class notes after
Proposition 4.30), continuity of P (since P is bounded; Theorem 2.6)
implies Py =y for all y € S(P) = M. We have H = N(P) & S(P), as
described in the class notes above, and P takes on the value 0 on

N(P) = M+, so for any x = y +z € H where y € M = S(P) and

z € M+ = N(P) we have

Px=P(y+2z)=P(y)+ P(z) = P(y) + 0= P(y) = y.
So P = P, where M = S(P).
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Proposition 4.33 (continued)

Proof (continued). Conversely, the projection Py maps elements of M
into themselves (P is the identity on M), so P2, = Py on H.
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Proposition 4.33 (continued)

Proof (continued). Conversely, the projection Py maps elements of M
into themselves (P is the identity on M), so P2, = Py on H. For

x1,X0 € H where x3 = y1 + z1 and xo = y» + z» where y1,y> € M and
71,20 € M1, we have

(Pmxi,x2) = (Pm(y1 + z1),y2 + 22) = (y1,y2 + 22)

= <yla}/2> + <y1722> = <y17y2> +0= <y17y2>7

and
(x1, Puxe) = (y1 + z1, Pm(y2 + 22)) = (y1 + 21, ¥2)

= (y1,y2) +(z1,52) = (y1,2) + 0= (y1, 2).
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Proposition 4.33 (continued)

Proof (continued). Conversely, the projection Py maps elements of M
into themselves (P is the identity on M), so P2, = Py on H. For

x1,X0 € H where x3 = y1 + z1 and xo = y» + z» where y1,y> € M and
71,20 € M1, we have

(Pmxi,x2) = (Pm(y1 + z1),y2 + 22) = (y1,y2 + 22)

= <yla}/2> + <y1722> = <y17y2> +0= <y17y2>7

and
(x1, Puxe) = (y1 + z1, Pm(y2 + 22)) = (y1 + 21, ¥2)

= (y1,y2) +(z1,52) = (y1,2) + 0= (y1, 2).

So (Pmx1,x2) = (x1, Pmx2) for all xi,x € H and so Py = P},. Therefore
Py is a projection. O
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Proposition 4.34

Proposition 4.34. An element U € B(H) is unitary if and only if it is a
surjective (onto) isometry.
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Proposition 4.34

Proposition 4.34. An element U € B(H) is unitary if and only if it is a
surjective (onto) isometry.

Proof. Suppose U is unitary. Then U*U =7 and so
|Ux||? = (Ux, Ux) = (U"Ux, x) = (Ix,x) = (x,x) = [|x||*.

Therefore U is an isometry. Forany y € H, Zy = UU*y = U(U*y) =y
and so U is surjective (onto).
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Proposition 4.34 (continued)

Proposition 4.34. An element U € B(H) is unitary if and only if it is a
surjective (onto) isometry.
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Proposition 4.34 (continued)

Proposition 4.34. An element U € B(H) is unitary if and only if it is a
surjective (onto) isometry.

Proof (continued). Next, suppose U is a surjective isometry. SinceU is
an isometry, then (as above)

|Ux||? = (Ux,Ux) = (U*Ux,x)
= ||x||* since U is an isometry
= (x,x),
and so (U*Ux, x) = (x,x) for all x € H and by Corollary 4.25, U*U =T.
Next, if x € H, then x = Uy for some y € H since U is surjective (onto)

and so
UU*(x) = UU*(Uy) = U(U*Uy) = Uy = x

and so UU* =Z. Therefore U is unitary. O
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