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Theorem 4.24

Theorem 4.24

Theorem 4.24. Given any T ∈ B(H) (the set of bounded linear
transformations from H to itself), the function fT defined by
fT (x , y) = 〈Tx , y〉 is a sesquilinear form with norm equal to ‖T‖.
Conversely, given any bounded sesquilinear form f , there is a unique
T ∈ B(H) such that f = fT .

Proof. Since T is linear and 〈·, ·〉 is sesquilinear, then fT is sesquilinear.

By the Cauchy-Schwarz Inequality (Theorem 4.3) we have

‖fT‖ = sup ‖|f (x , y)| | ‖x = ‖y‖ = 1}
= sup{|〈Tx , y〉 | ‖x‖ = ‖y‖ = 1} ≤ ‖Tx‖‖y‖
≤ ‖T‖‖x‖y‖ = ‖T‖.

Clearly ‖fT‖ = ‖T‖ if T = 0. If T 6= 0 then Tx 6= 0 for some unit vector
x . Let y = Tx/‖Tx‖. Then fT (x , y) = 〈Tx ,Tx/‖Tx‖〉 = ‖Tx‖, and so
‖fT‖ ≥ ‖T‖. Therefore ‖fT‖ = ‖T‖.
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Theorem 4.24

Theorem 4.24 (Part 2)

Proof (continued). Conversely, suppose f is a bounded sesquilinear form.
Fix x ∈ H and define g : H → C as g(y) = f (x , y).

Then for ‖y‖ = 1,

|g(y)| = |f (x , y)| = |f (x , y)|
= |‖x‖f (x/‖x‖, y)| by linearity in the first position

≤ ‖x‖‖f ‖,

so g is a bounded linear functional on H. By Theorem 4.22, there is a
unique x ∈ H such that g = ψz (i.e., g(y) = 〈y , z〉 = ψz). Define
T : H → H on the fixed x as Tx = z . Now consider αx1 + βx2. We have
for some z3 ∈ H, T (αx1 + βx2) = z3 where
gz3(y) = f (αx1 + βx2, y) = ψz3 .
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Theorem 4.24

Theorem 4.24 (Part 3)

Proof (continued). Next

f (αx1 + βx2, y) = gz3(y) = ψz3(y)

= 〈y , z3〉 = 〈z3, y〉 = 〈T (αx1 + βx2), y〉
= αf (x1, y) + βf (x2, y) since f is sesquilinear

= α〈Tx1, y〉+ β〈Tx2, y〉
= 〈αTx1 + βTx2, y〉 since 〈·, ·〉 is linear in first position.

Therefore, 〈T (αx1 + βx2), y〉 = 〈αTx1 + βTx2, y〉 for all y and by linearity
in the first position 〈T (αx1 + βx2)− (αTx1 + βTx2), y〉 = 0 for all y ∈ H.
So, T (αx1 + βx2) = αTx1 + βTx2 and T is linear.
Moreover, for all y ∈ H,

fT (x , y) = 〈Tx , y〉 = 〈z , y〉〈y , z〉 = ψz(y) = g(y) = f (x , y).

As argued above, ‖f ‖ = ‖fT‖ = ‖T‖ and so T is bounded.
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Theorem 4.24

Theorem 4.24 (Part 4)

Theorem 4.24. Given any T ∈ B(H) (the set of bounded linear
transformations from H to itself), the function fT defined by
fT (x , y) = 〈Tx , y〉 is a sesquilinear form with norm equal to ‖T‖.
Conversely, given any bounded sesquilinear form f , there is a unique
T ∈ B(H) such that f = fT .

Proof (continued). If there were two such T , say T and T ′, where
fT = fT ′ , then for all x , y ∈ H we would have 〈Tx , y〉 = 〈Tx , y〉, or
〈Tx − T ′x , y〉 = 0 for all x , y ∈ H and hence Tx − T ′x = 0, or Tx = T ′x
for all x ∈ H. That is, T = T ′ and uniqueness follows.
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Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S ,Y ∈ B(H) and α ∈ C:

(a) (S + T )∗ = S∗ + T ∗

(b) (αT )∗ = αT ∗

(c) (ST )∗ = T ∗S∗

(d) ‖T ∗‖ = ‖T‖
(e) T ∗∗ = T

(f) ‖T ∗T‖ = ‖T‖2.

Proof of (a). For all x , y ∈ H, we have 〈(S + T )x , y〉 = 〈x , (S + T )∗, y〉.
Then

〈(S +T )x , y〉 = 〈Sx , y〉+〈Tx , y〉 = 〈x ,S∗y〉+〈x ,T ∗y〉 = 〈x , (S∗+T ∗)y〉.

So (S + T )∗ = S∗ + T ∗.
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Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26(d)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S ,Y ∈ B(H) and α ∈ C:

(d) ‖T ∗‖ = ‖T‖

Proof of (d). For fT = 〈Tx , y〉 = fT∗ = 〈x ,T ∗y〉, we have

‖fT‖ = sup{|fT (x , y)| | ‖x‖ = ‖y‖ = 1}
= sup{|〈Tx , y〉| | ‖x‖ = ‖y‖ = 1}
= sup{|〈x ,Ty〉|‖x‖ = ‖y‖ = 1} since 〈Tx , y〉 = 〈y ,Tx〉 and the

sup is taken over all ‖x‖ = ‖y‖ = 1

= ‖T‖ by Theorem 4.24.

Similarly, ‖fT∗‖ = ‖T ∗‖ and since fT = fT∗ , then ‖T‖ = ‖T ∗‖.
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Theorem 4.26, Properties of Hilbert Space Adjoints

Theorem 4.26(e) and (f)

Theorem 4.26. Properties of Hilbert Space Adjoints.
Given S ,Y ∈ B(H) and α ∈ C:

(e) T ∗∗ = T

(f) ‖T ∗T‖ = ‖T‖2.

Proof of (e). For all x , y ∈ H we have 〈T ∗∗x , y〉 = 〈x ,T ∗y〉 = 〈Tx , y〉,
so T ∗∗ = T .

Proof of (f). By Proposition 2.8, ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2 by part
(e). If x is a unit vector then

‖Tx‖2 = 〈Tx ,Tx〉 = 〈T ∗Tx , x〉
≤ ‖T ∗T‖ by definition of the operator norm.

So sup{‖Tx‖2 | ‖x‖ = 1} = ‖T‖2 ≤ ‖T ∗T‖ and hence
‖T ∗T‖ = ‖T‖2.
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Proposition 4.27

Proposition 4.27

Proposition 4.27. For all T ∈ B(H) (the set of bounded linear
transformations from H to itself):

(a) N(T ∗) = R(T )⊥

(b) N(T )⊥ = R(T ∗).

Proof of (a). We have x ∈ R(T )⊥ if and only if for all y ∈ H we have
〈x ,Ty〉 = 0 (since Ty ∈ R(T )). Equivalently, 〈T ∗x , y〉 = 0 for all y ∈ H,
which means T ∗x = 0 and so x ∈ N(T ∗).

Proof of (b). From (a) with T ∗ replacing T we have N(T ) = R(T ∗)⊥

(since T ∗∗ = T by Theorem 4.26(e)), and so
N(T )⊥ = R(T ∗)⊥⊥ = R(T ∗) by Proposition 4.15.
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Proposition 4.30

Proposition 4.30

Proposition 4.30. T is normal if and only if ‖Tx‖ = ‖T ∗x‖ for all x ∈ H.

Proof. For all x ∈ H, we have that 〈T ∗Tx , x〉 = 〈Tx ,Tx〉 = ‖Tx‖2 and
〈TT ∗x , x〉 = 〈T ∗x ,T ∗x〉 = ‖T ∗x〉2.

So if ‖Tx‖ = ‖T ∗x‖ then
〈TT ∗x , x〉 = 〈T ∗Tx , x〉 for all x ∈ H and by Corollary 4.25 TT ∗ = T ∗T .
Also, if TT ∗ = T ∗T , then the above inner products show that
‖Tx‖ = ‖T ∗x‖.
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Proposition 4.31

Proposition 4.31

Proposition 4.31. T is self-adjoint if and only if 〈Tx , x〉 is real for all
x ∈ H.

Proof. For all x ∈ H we have 〈T ∗x , x〉 = 〈x ,Tx〉 = 〈Tx , x〉 and these are
equal if and only if 〈Tx , x〉 is real.

Then (and only then)
〈T ∗x , x〉 = 〈Tx , x〉 for all x ∈ H and by Corollary 4.25 we have that
T = T ∗.
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Proposition 4.33

Proposition 4.33

Proposition 4.33. An element P ∈ B(H) is a projection if and only if
there is a closed subspace M of H such that P = PM (the projection onto
M, see page 79).

Proof. Let P be a projection and consider its support, M = S(P).

For
any y = Px in the range of P, R(P), we have Py = PPx = Px = y . Since
R(P) is dense in S(P) = M (see the comment in the class notes after
Proposition 4.30), continuity of P (since P is bounded; Theorem 2.6)
implies Py = y for all y ∈ S(P) = M. We have H = N(P)⊕ S(P), as
described in the class notes above, and P takes on the value 0 on
N(P) = M⊥, so for any x = y + z ∈ H where y ∈ M = S(P) and
z ∈ M⊥ = N(P) we have

Px = P(y + z) = P(y) + P(z) = P(y) + 0 = P(y) = y .

So P = Pn where M = S(P).
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Proposition 4.33

Proposition 4.33 (continued)

Proof (continued). Conversely, the projection PM maps elements of M
into themselves (P is the identity on M), so P2

M = PM on H. For
x1, x2 ∈ H where x1 = y1 + z1 and x2 = y2 + z2 where y1, y2 ∈ M and
z1, z2 ∈ M⊥, we have

〈PMx1, x2〉 = 〈PM(y1 + z1), y2 + z2〉 = 〈y1, y2 + z2〉

= 〈y1, y2〉+ 〈y1, z2〉 = 〈y1, y2〉+ 0 = 〈y1, y2〉,

and
〈x1,PMx2〉 = 〈y1 + z1,PM(y2 + z2)〉 = 〈y1 + z1, y2〉

= 〈y1, y2〉+ 〈z1, y2〉 = 〈y1, y2〉+ 0 = 〈y1, y2〉.

So 〈PMx1, x2〉 = 〈x1,PMx2〉 for all x1, x2 ∈ H and so PM = P∗
M . Therefore

PM is a projection.
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Proposition 4.34

Proposition 4.34

Proposition 4.34. An element U ∈ B(H) is unitary if and only if it is a
surjective (onto) isometry.

Proof. Suppose U is unitary. Then U∗U = I and so

‖Ux‖2 = 〈Ux ,Ux〉 = 〈U∗Ux , x〉 = 〈Ix , x〉 = 〈x , x〉 = ‖x‖2.

Therefore U is an isometry. For any y ∈ H, Iy = UU∗y = U(U∗y) = y
and so U is surjective (onto).
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Proposition 4.34

Proposition 4.34 (continued)

Proposition 4.34. An element U ∈ B(H) is unitary if and only if it is a
surjective (onto) isometry.

Proof (continued). Next, suppose U is a surjective isometry. SinceU is
an isometry, then (as above)

‖Ux‖2 = 〈Ux ,Ux〉 = 〈U∗Ux , x〉
= ‖x‖2 since U is an isometry

= 〈x , x〉,

and so 〈U∗Ux , x〉 = 〈x , x〉 for all x ∈ H and by Corollary 4.25, U∗U = I.
Next, if x ∈ H, then x = Uy for some y ∈ H since U is surjective (onto)
and so

UU∗(x) = UU∗(Uy) = U(U∗Uy) = Uy = x

and so UU∗ = I. Therefore U is unitary.
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Proposition 4.34 (continued)
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