Introduction to Functional Analysis

Chapter 4. Hilbert Spaces

4.7. Order Relation on Self-Adjoint Operators-Proofs of Theorems

Table of contents

Proposition 4.38. Given two closed subspaces M and N, the projection P_M and P_N satisfy $P_M \leq P_N$ if and only if $M \subseteq N$.

Proof. Suppose $M \subseteq N$.

Proposition 4.38. Given two closed subspaces M and N, the projection P_M and P_N satisfy $P_M \leq P_N$ if and only if $M \subseteq N$.

Proof. Suppose $M \subseteq N$. Then for any $x \in H$ we have

Proposition 4.38. Given two closed subspaces M and N, the projection P_M and P_N satisfy $P_M \leq P_N$ if and only if $M \subseteq N$.

Proof. Suppose $M \subseteq N$. Then for any $x \in H$ we have

So $\langle P_N x, x \rangle - \langle P_M x, x \rangle \ge 0$, or $\langle (P_N - P_M) x, x, \rangle \ge 0$ for all $x \in H$, and hence $P_M \le P_N$.

Proposition 4.38. Given two closed subspaces M and N, the projection P_M and P_N satisfy $P_M \leq P_N$ if and only if $M \subseteq N$.

Proof. Suppose $M \subseteq N$. Then for any $x \in H$ we have

So $\langle P_N x, x \rangle - \langle P_M x, x \rangle \ge 0$, or $\langle (P_N - P_M) x, x, \rangle \ge 0$ for all $x \in H$, and hence $P_M \le P_N$.

Proposition 4.38. Given two closed subspaces M and N, the projection P_M and P_N satisfy $P_M \leq P_N$ if and only if $M \subseteq N$.

Proof (continued). For the converse, we consider the contrapositive. Suppose $M \not\subseteq N$. Then for some unit vector $x \in M$ we have that $x \notin N$.

Proposition 4.38. Given two closed subspaces M and N, the projection P_M and P_N satisfy $P_M \leq P_N$ if and only if $M \subseteq N$.

Proof (continued). For the converse, we consider the contrapositive. Suppose $M \not\subseteq N$. Then for some unit vector $x \in M$ we have that $x \notin N$. Then $\langle P_M x, x \rangle = \langle x, x \rangle = 1$, but

$$\begin{array}{ll} \langle P_n x, x \rangle &=& \langle P_N x, P_N x \rangle \text{ (as above)} \\ &+& \|P_N x\|^2 < 1 \text{ since } x \not\in N. \end{array}$$

Proposition 4.38. Given two closed subspaces M and N, the projection P_M and P_N satisfy $P_M \leq P_N$ if and only if $M \subseteq N$.

Proof (continued). For the converse, we consider the contrapositive. Suppose $M \not\subseteq N$. Then for some unit vector $x \in M$ we have that $x \notin N$. Then $\langle P_M x, x \rangle = \langle x, x \rangle = 1$, but

$$\begin{array}{rcl} \langle P_n x, x \rangle & = & \langle P_N x, P_N x \rangle \text{ (as above)} \\ & + & \| P_N x \|^2 < 1 \text{ since } x \not\in N. \end{array}$$

Then for this x we have that

$$\langle (P_N - P_M)x, x \rangle = \langle P_N x, x \rangle - \langle P_M x, x \rangle < 0$$

and so we do not have $P_M \leq P_N$. The result follows.

Proposition 4.38. Given two closed subspaces M and N, the projection P_M and P_N satisfy $P_M \leq P_N$ if and only if $M \subseteq N$.

Proof (continued). For the converse, we consider the contrapositive. Suppose $M \not\subseteq N$. Then for some unit vector $x \in M$ we have that $x \notin N$. Then $\langle P_M x, x \rangle = \langle x, x \rangle = 1$, but

$$\begin{array}{rcl} \langle P_n x, x \rangle &=& \langle P_N x, P_N x \rangle \text{ (as above)} \\ &+& \|P_N x\|^2 < 1 \text{ since } x \not\in N. \end{array}$$

Then for this x we have that

$$\langle (P_N - P_M)x, x \rangle = \langle P_N x, x \rangle - \langle P_M x, x \rangle < 0$$

and so we do not have $P_M \leq P_N$. The result follows.