Therefore f is linear over all complex scalars.

\[
\begin{align*}
(\lambda_1 f)(x) + (\lambda_2 f)(x) &= \lambda_1 f(x) + \lambda_2 f(x) \\
&= \lambda_1 (x) + \lambda_2 (x) \\
&= \lambda_1 (x) + \lambda_2 (x) \\
&= (\lambda_1 + \lambda_2) f(x) \\
\end{align*}
\]

That is, \(f \) is linear over all complex scalars. We have shown this equals \(f(x) \). For complex scalars, we need only consider \(f(x) \) and \(f(x) \).

Theorem 5.3: The Complex Hahn-Banach Extension Theorem

Proposition 5.2 (continued): A function \(f : X \rightarrow \mathbb{C} \) is in \(X \) if and only if \(\Re(f) \) and \(\Im(f) \) are both linear real valued functionals.

\[
\begin{align*}
(\Re(f))(x) &= (x)(f) \\
(\Im(f))(x) &= (x)(f) \\
\end{align*}
\]
So for all \(x \in \mathcal{X} \),

\[
\|x\| = \|x_{\theta \varepsilon}\| \leq \|x\|
\]

Since \(f \) is linear, \(f(x_{\theta \varepsilon}) = (f(x))_{\theta \varepsilon} \) is real, and so for all \(x \in \mathcal{X} \),

\[
(f(x))_{\theta \varepsilon} = f(x)_{\theta \varepsilon} = f(x) = |(x)|
\]

Proof (continued). Then that for all \(y \in \mathcal{X} \),

\[
|\langle x, y \rangle| = |(x)_{\theta \varepsilon} y_{\theta \varepsilon}| = |f(x)_{\theta \varepsilon} y_{\theta \varepsilon}| = |f(x) y_{\theta \varepsilon}| = |(x) y_{\theta \varepsilon}|
\]

Define a complex linear functional on a complex linear space \(\mathcal{X} \) and that \(g \) is a linear functional defined on a subspace \(\mathcal{Y} \) of such that for all \(y \in \mathcal{Y} \),

\[
|\langle x, y \rangle| \leq \|x\| \|y\|
\]

Suppose that for all \(x \in \mathcal{X} \),

\[
\|x\| \geq |(x)|
\]

Theorem 5.3. Complex Hahn-Banach Extension Theorem (continued)