Introduction to Functional Analysis

Chapter 5. Hahn-Banach Theorem

5.3. Complex Version of the Hahn-Banach Theorem—Proofs of Theorems

2 Theorem 5.3, The Complex Hahn-Banach Extension Theorem

Proposition 5.2. A function $f : X \to \mathbb{C}$ is in $X^{\mathbb{C}}$ (i.e., f is a complex valued linear functional) if and only if $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are both linear real valued functionals on X and, for all $x \in X$, $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$.

Proof. We have f = Re(f) + iIm(f) and if f is linear, then Re(f) and Im(f) are linear and for all $x \in X$, f(ix) = if(x) or Re(f(ix)) + iIm(f(ix)) = iRe(f(x)) - Im(f(x)) and so Im(f(x)) = -Re(f(ix)).

Proposition 5.2. A function $f : X \to \mathbb{C}$ is in $X^{\mathbb{C}}$ (i.e., f is a complex valued linear functional) if and only if $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are both linear real valued functionals on X and, for all $x \in X$, $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$.

Proof. We have $f = \operatorname{Re}(f) + i\operatorname{Im}(f)$ and if f is linear, then $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are linear and for all $x \in X$, f(ix) = if(x) or $\operatorname{Re}(f(ix)) + i\operatorname{Im}(f(ix)) = i\operatorname{Re}(f(x)) - \operatorname{Im}(f(x))$ and so $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$. Conversely, suppose $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are both linear real valued functionals and for all $x \in X$, $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(x))$.

Proposition 5.2. A function $f : X \to \mathbb{C}$ is in $X^{\mathbb{C}}$ (i.e., f is a complex valued linear functional) if and only if $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are both linear real valued functionals on X and, for all $x \in X$, $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$.

Proof. We have $f = \operatorname{Re}(f) + i\operatorname{Im}(f)$ and if f is linear, then $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are linear and for all $x \in X$, f(ix) = if(x) or $\operatorname{Re}(f(ix)) + i\operatorname{Im}(f(ix)) = i\operatorname{Re}(f(x)) - \operatorname{Im}(f(x))$ and so $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$. Conversely, suppose $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are both linear real valued functionals and for all $x \in X$, $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(x))$. Then for real scalars a and b,

$$f(ax_1 + bx_2) = \operatorname{Re}(f(zx_1 + bx_2)) + i\operatorname{Im}(f(zx_1 + bx_2))$$

= $\operatorname{Re}(af(x_1) + bf(x_2)) + i\operatorname{Im}(af(x_1) + bf(x_2))$
= $a\operatorname{Re}(f(x_1)) + b\operatorname{Re}(f(x_2)) + ai\operatorname{Im}(f(x_1)) + bi\operatorname{Im}(f(x_2))$
= $\cdots = f(ax_1 + bx_2).$

Proposition 5.2. A function $f : X \to \mathbb{C}$ is in $X^{\mathbb{C}}$ (i.e., f is a complex valued linear functional) if and only if $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are both linear real valued functionals on X and, for all $x \in X$, $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$.

Proof. We have $f = \operatorname{Re}(f) + i\operatorname{Im}(f)$ and if f is linear, then $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are linear and for all $x \in X$, f(ix) = if(x) or $\operatorname{Re}(f(ix)) + i\operatorname{Im}(f(ix)) = i\operatorname{Re}(f(x)) - \operatorname{Im}(f(x))$ and so $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$. Conversely, suppose $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are both linear real valued functionals and for all $x \in X$, $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(x))$. Then for real scalars a and b,

$$f(ax_1 + bx_2) = \operatorname{Re}(f(zx_1 + bx_2)) + i\operatorname{Im}(f(zx_1 + bx_2))$$

= $\operatorname{Re}(af(x_1) + bf(x_2)) + i\operatorname{Im}(af(x_1) + bf(x_2))$
= $a\operatorname{Re}(f(x_1)) + b\operatorname{Re}(f(x_2)) + ai\operatorname{Im}(f(x_1)) + bi\operatorname{Im}(f(x_2))$
= $\cdots = f(ax_1 + bx_2).$

Proposition 5.2 (continued)

Proposition 5.2. A function $f : X \to \mathbb{C}$ is in $X^{\mathbb{C}}$ (i.e., f is a complex valued linear functional) if and only if $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are both linear real valued functionals on X and, for all $x \in X$, $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$.

Proof (continued). For complex scalars, we need only consider f(ix) and show this equals if(x). We have

$$f(ix) = \operatorname{Re}(f(ix)) + i\operatorname{Im}(f(ix))$$

= $-\operatorname{Im}(f(x)) + i\operatorname{Im}(f(ix))$ since $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$
= $-\operatorname{Im}(f(x)) + i\operatorname{Re}(f(x))$ since $\operatorname{Im}(f(ix)) = -\operatorname{Re}(f(i^2x))$
= $-\operatorname{Re}(f(-x)) = \operatorname{Re}(f(x))$
= $i(\operatorname{Re}(f(x)) + i\operatorname{Im}(f(x))$

= if (x).

Therefore f is linear over all complex scalars.

Proposition 5.2 (continued)

Proposition 5.2. A function $f : X \to \mathbb{C}$ is in $X^{\mathbb{C}}$ (i.e., f is a complex valued linear functional) if and only if $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are both linear real valued functionals on X and, for all $x \in X$, $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$.

Proof (continued). For complex scalars, we need only consider f(ix) and show this equals if(x). We have

$$f(ix) = \operatorname{Re}(f(ix)) + i\operatorname{Im}(f(ix))$$

= $-\operatorname{Im}(f(x)) + i\operatorname{Im}(f(ix))$ since $\operatorname{Im}(f(x)) = -\operatorname{Re}(f(ix))$
= $-\operatorname{Im}(f(x)) + i\operatorname{Re}(f(x))$ since $\operatorname{Im}(f(ix)) = -\operatorname{Re}(f(i^2x))$
= $-\operatorname{Re}(f(-x)) = \operatorname{Re}(f(x))$
= $i(\operatorname{Re}(f(x)) + i\operatorname{Im}(f(x)))$
= $if(x)$.

Therefore f is linear over all complex scalars.

Theorem 5.3. The Complex Hahn-Banach Extension Theorem

Theorem 5.3. Complex Hahn-Banach Extension Theorem.

Suppose $\|\cdot\|$ is a seminorm on a complex linear space X and that f_0 is a linear functional defined on a subspace Y of X such that $|f_0(y)| \le ||y||$ for all $y \in Y$. Then f_0 has an extension to a linear functional f on X such that $|f(x)| \le ||x||$ for all $x \in X$.

Proof. By Proposition 5.2, $\operatorname{Re}(f_0(y))$ is a real valued linear functional on Y and $\operatorname{Re}(f_0(y)) \leq |\operatorname{Re}(f_0(y))| \leq |f_0(y)| \leq ||y||$ for all $y \in Y$, so by the Hahn-Banach Extension Theorem (Theorem 5.1), there is a real linear functional g on X which extends $\operatorname{Re}(f_0)$ and satisfies $g(x) \leq ||x||$ for all $x \in X$.

Theorem 5.3. The Complex Hahn-Banach Extension Theorem

Theorem 5.3. Complex Hahn-Banach Extension Theorem.

Suppose $\|\cdot\|$ is a seminorm on a complex linear space X and that f_0 is a linear functional defined on a subspace Y of X such that $|f_0(y)| \le ||y||$ for all $y \in Y$. Then f_0 has an extension to a linear functional f on X such that $|f(x)| \le ||x||$ for all $x \in X$.

Proof. By Proposition 5.2, $\operatorname{Re}(f_0(y))$ is a real valued linear functional on Y and $\operatorname{Re}(f_0(y)) \leq |\operatorname{Re}(f_0(y))| \leq |f_0(y)| \leq ||y||$ for all $y \in Y$, so by the Hahn-Banach Extension Theorem (Theorem 5.1), there is a real linear functional g on X which extends $\operatorname{Re}(f_0)$ and satisfies $g(x) \leq ||x||$ for all $x \in X$. Define $f : X \to \mathbb{C}$ as f(x) = g(x) + ig(-ix). Since $\operatorname{Im}(f(x)) = g(-ix) = -g(ix) = -\operatorname{Re}(f(ix))$, then by Proposition 5.2, f is linear on X. Given $x \in X$, write $f(x) = re^{i\theta}$ where $r \geq 0$.

Theorem 5.3. The Complex Hahn-Banach Extension Theorem

Theorem 5.3. Complex Hahn-Banach Extension Theorem.

Suppose $\|\cdot\|$ is a seminorm on a complex linear space X and that f_0 is a linear functional defined on a subspace Y of X such that $|f_0(y)| \le ||y||$ for all $y \in Y$. Then f_0 has an extension to a linear functional f on X such that $|f(x)| \le ||x||$ for all $x \in X$.

Proof. By Proposition 5.2, $\operatorname{Re}(f_0(y))$ is a real valued linear functional on Y and $\operatorname{Re}(f_0(y)) \leq |\operatorname{Re}(f_0(y))| \leq |f_0(y)| \leq ||y||$ for all $y \in Y$, so by the Hahn-Banach Extension Theorem (Theorem 5.1), there is a real linear functional g on X which extends $\operatorname{Re}(f_0)$ and satisfies $g(x) \leq ||x||$ for all $x \in X$. Define $f : X \to \mathbb{C}$ as f(x) = g(x) + ig(-ix). Since $\operatorname{Im}(f(x)) = g(-ix) = -g(ix) = -\operatorname{Re}(f(ix))$, then by Proposition 5.2, f is linear on X. Given $x \in X$, write $f(x) = re^{i\theta}$ where $r \geq 0$.

Theorem 5.3 (continued)

Theorem 5.3. Complex Hahn-Banach Extension Theorem. Suppose $\|\cdot\|$ is a seminorm on a complex linear space X and that f_0 is a linear functional defined on a subspace Y of X such that $|f_0(y)| \le ||y||$ for all $y \in Y$. Then f_0 has an extension to a linear functional f on X such that $|f(x)| \le ||x||$ for all $x \in X$.

Proof (continued). Then $|f(x)| = r = e^{-i\theta}re^{i\theta} = e^{-i\theta}f(x) = f(e^{-i\theta}x)$ since f is linear. Since |f(x)| is real, then $f(e^{-i\theta}x)$ is real and so for all $x \in X$,

$$|f(x)| = f(e^{-i\theta}x) = \operatorname{Re}(f(e^{-i\theta}x)) = g(e^{-i\theta}x)$$

$$\leq ||e^{i\theta}x|| \text{ by the bound on } g$$

$$= ||x||.$$

So $|f(x)| \leq ||x||$ for all $x \in X$.

Theorem 5.3 (continued)

Theorem 5.3. Complex Hahn-Banach Extension Theorem. Suppose $\|\cdot\|$ is a seminorm on a complex linear space X and that f_0 is a linear functional defined on a subspace Y of X such that $|f_0(y)| \le ||y||$ for all $y \in Y$. Then f_0 has an extension to a linear functional f on X such that $|f(x)| \le ||x||$ for all $x \in X$.

Proof (continued). Then $|f(x)| = r = e^{-i\theta}re^{i\theta} = e^{-i\theta}f(x) = f(e^{-i\theta}x)$ since f is linear. Since |f(x)| is real, then $f(e^{-i\theta}x)$ is real and so for all $x \in X$,

$$|f(x)| = f(e^{-i\theta}x) = \operatorname{Re}(f(e^{-i\theta}x)) = g(e^{-i\theta}x)$$

$$\leq ||e^{i\theta}x|| \text{ by the bound on } g$$

$$= ||x||.$$

So $|f(x)| \leq ||x||$ for all $x \in X$.