Introduction to Functional Analysis

Chapter 5. Hahn-Banach Theorem

5.4. Application to Normed Linear Spaces-Proofs of Theorems

INormed Linear Space Version of Hahn-Banach Extension Theorem

- 2 Corollary 5.5
- 3 Corollary 5.6

Theorem 5.4. Normed Linear Space Version of Hahn-Banach Extension Theorem.

Suppose that f_0 is a bounded linear functional defined on a subspace Y of a normed linear space X. Then f_0 has an extension to a bounded linear functional f on X such that $||f|| = ||f_0||$.

Proof. Define the seminorm (in fact, norm) $||x||_s = ||f_0|| ||x||$.

Theorem 5.4. Normed Linear Space Version of Hahn-Banach Extension Theorem.

Suppose that f_0 is a bounded linear functional defined on a subspace Y of a normed linear space X. Then f_0 has an extension to a bounded linear functional f on X such that $||f|| = ||f_0||$.

Proof. Define the seminorm (in fact, norm) $||x||_s = ||f_0|| ||x||$. By the Complex Hahn-Banach Extension Theorem (Theorem 5.3), since $|f_0(y)| \le ||y||_s = ||f_0|| ||y||$ (by the definition of $||f_0||$), there is a linear functional f on X such that for all $x \in X$, $|f(x)| \le ||x||_s = ||f_0|| ||x||$. So $||f|| \le ||f_0||$.

Theorem 5.4. Normed Linear Space Version of Hahn-Banach Extension Theorem.

Suppose that f_0 is a bounded linear functional defined on a subspace Y of a normed linear space X. Then f_0 has an extension to a bounded linear functional f on X such that $||f|| = ||f_0||$.

Proof. Define the seminorm (in fact, norm) $||x||_s = ||f_0|| ||x||$. By the Complex Hahn-Banach Extension Theorem (Theorem 5.3), since $|f_0(y)| \le ||y||_s = ||f_0|| ||y||$ (by the definition of $||f_0||$), there is a linear functional f on X such that for all $x \in X$, $|f(x)| \le ||x||_s = ||f_0|| ||x||$. So $||f|| \le ||f_0||$. Since f is an extension of f_0 , then $||f|| \ge ||f_0||$ (by the definition of the operator norm). So $||f|| = ||f_0||$.

Theorem 5.4. Normed Linear Space Version of Hahn-Banach Extension Theorem.

Suppose that f_0 is a bounded linear functional defined on a subspace Y of a normed linear space X. Then f_0 has an extension to a bounded linear functional f on X such that $||f|| = ||f_0||$.

Proof. Define the seminorm (in fact, norm) $||x||_s = ||f_0|| ||x||$. By the Complex Hahn-Banach Extension Theorem (Theorem 5.3), since $|f_0(y)| \le ||y||_s = ||f_0|| ||y||$ (by the definition of $||f_0||$), there is a linear functional f on X such that for all $x \in X$, $|f(x)| \le ||x||_s = ||f_0|| ||x||$. So $||f|| \le ||f_0||$. Since f is an extension of f_0 , then $||f|| \ge ||f_0||$ (by the definition of the operator norm). So $||f|| = ||f_0||$.

Corollary 5.5. Given any closed subspace Y of a normed linear space X and $x \notin Y$, there is a bounded linear functional f on X (i.e., $f \in X^*$) such that f(Y) = 0 and f(x) = 1.

Proof. Define f_0 on span $(Y \cup \{x\})$ as $f_0(y + \alpha x) = \alpha$ for all $y \in Y$ and all scalars $\alpha \in \mathbb{F}$.

Corollary 5.5. Given any closed subspace Y of a normed linear space X and $x \notin Y$, there is a bounded linear functional f on X (i.e., $f \in X^*$) such that f(Y) = 0 and f(x) = 1.

Proof. Define f_0 on span $(Y \cup \{x\})$ as $f_0(y + \alpha x) = \alpha$ for all $y \in Y$ and all scalars $\alpha \in \mathbb{F}$. The nullspace of f_0 is Y (the nullspace results when $\alpha = 0$). Y is, by hypothesis, closed in X, and so closed in any subspace containing Y (such as span $(Y \cup \{x\})$).

Corollary 5.5. Given any closed subspace Y of a normed linear space X and $x \notin Y$, there is a bounded linear functional f on X (i.e., $f \in X^*$) such that f(Y) = 0 and f(x) = 1.

Proof. Define f_0 on span $(Y \cup \{x\})$ as $f_0(y + \alpha x) = \alpha$ for all $y \in Y$ and all scalars $\alpha \in \mathbb{F}$. The nullspace of f_0 is Y (the nullspace results when $\alpha = 0$). Y is, by hypothesis, closed in X, and so closed in any subspace containing Y (such as span $(Y \cup \{x\})$). Also, f(x) = 1 since $x = y + \alpha x$ for y = 0 and $\alpha = 1$.

Corollary 5.5. Given any closed subspace Y of a normed linear space X and $x \notin Y$, there is a bounded linear functional f on X (i.e., $f \in X^*$) such that f(Y) = 0 and f(x) = 1.

Proof. Define f_0 on span $(Y \cup \{x\})$ as $f_0(y + \alpha x) = \alpha$ for all $y \in Y$ and all scalars $\alpha \in \mathbb{F}$. The nullspace of f_0 is Y (the nullspace results when $\alpha = 0$). Y is, by hypothesis, closed in X, and so closed in any subspace containing Y (such as span $(Y \cup \{x\})$). Also, f(x) = 1 since $x = y + \alpha x$ for y = 0 and $\alpha = 1$. By the Normed Linear Space Version of Hahn-Banach Extension Theorem (Theorem 5.4), there is a bounded extension f of f_0 (on span $(Y \cup \{x\})$) to all of X with $||f|| = ||f_0||$.

Corollary 5.5. Given any closed subspace Y of a normed linear space X and $x \notin Y$, there is a bounded linear functional f on X (i.e., $f \in X^*$) such that f(Y) = 0 and f(x) = 1.

Proof. Define f_0 on span $(Y \cup \{x\})$ as $f_0(y + \alpha x) = \alpha$ for all $y \in Y$ and all scalars $\alpha \in \mathbb{F}$. The nullspace of f_0 is Y (the nullspace results when $\alpha = 0$). Y is, by hypothesis, closed in X, and so closed in any subspace containing Y (such as span $(Y \cup \{x\})$). Also, f(x) = 1 since $x = y + \alpha x$ for y = 0 and $\alpha = 1$. By the Normed Linear Space Version of Hahn-Banach Extension Theorem (Theorem 5.4), there is a bounded extension f of f_0 (on span $(Y \cup \{x\})$) to all of X with $||f|| = ||f_0||$.

Corollary 5.6. Given a normed linear space X and two points $x \neq y$, there is a bounded linear functional (i.e., $f \in X^*$) such that $f(x) \neq f(y)$.

Proof. Consider the subspace $\{0\}$ of X and the point $x - y \notin \{0\}$. By Corollary 5.5, there is a bounded linear f on X such that f(x - y) = f(x) - f(y) = 1 and so $f(x) \neq f(y)$.

Corollary 5.6. Given a normed linear space X and two points $x \neq y$, there is a bounded linear functional (i.e., $f \in X^*$) such that $f(x) \neq f(y)$.

Proof. Consider the subspace $\{0\}$ of X and the point $x - y \notin \{0\}$. By Corollary 5.5, there is a bounded linear f on X such that f(x - y) = f(x) - f(y) = 1 and so $f(x) \neq f(y)$.

Corollary 5.7. Consider linear space X with dual space X^* . The closed unit ball in X^* consists of all bounded linear functionals on X of functional norm less than or equal to 1. For any $x \in X$, we have

 $||x|| = \sup\{|f(x)| \mid f \text{ is in the closed unit ball of } X^*\}.$

Proof. Since $|f(x)| \le ||f|| ||x||$ by definition of ||f|| and we have $||f|| \le 1$, then $|f(x)| \le ||x||$, and so $||x|| \ge \sup\{|f(x)| \mid ||f|| \le 1\}$.

Corollary 5.7. Consider linear space X with dual space X^* . The closed unit ball in X^* consists of all bounded linear functionals on X of functional norm less than or equal to 1. For any $x \in X$, we have

 $||x|| = \sup\{|f(x)| \mid f \text{ is in the closed unit ball of } X^*\}.$

Proof. Since $|f(x)| \leq ||f|| ||x||$ by definition of ||f|| and we have $||f|| \leq 1$, then $|f(x)| \leq ||x||$, and so $||x|| \geq \sup\{|f(x)| \mid ||f|| \leq 1\}$. For $x \in X$, define f_0 on span $(\{x\})$ as $f_0(\alpha x) = \alpha ||x||$ for scalar $\alpha \in \mathbb{F}$. Then $||f_0|| = 1$ since $|f_0(y)| = ||y||$ for all $y \in \operatorname{span}(\{x\})$.

Corollary 5.7. Consider linear space X with dual space X^* . The closed unit ball in X^* consists of all bounded linear functionals on X of functional norm less than or equal to 1. For any $x \in X$, we have

 $||x|| = \sup\{|f(x)| \mid f \text{ is in the closed unit ball of } X^*\}.$

Proof. Since $|f(x)| \le ||f|| ||x||$ by definition of ||f|| and we have $||f|| \le 1$, then $|f(x)| \le ||x||$, and so $||x|| \ge \sup\{|f(x)| \mid ||f|| \le 1\}$. For $x \in X$, define f_0 on span($\{x\}$) as $f_0(\alpha x) = \alpha ||x||$ for scalar $\alpha \in \mathbb{F}$. Then $||f_0|| = 1$ since $|f_0(y)| = ||y||$ for all $y \in \operatorname{span}(\{x\})$. By the Normed Linear Space Version of Hahn-Banach Extension Theorem (Theorem 5.4), f_0 extends to f on X where $||f|| = ||f_0|| = 1$. So for our $x \in X$ we have |f(x)| = ||f|| ||x|| = ||x|| and so $\sup\{|f(x)| \mid ||f|| \le 1|| \ge ||x||$. Equality follows.

Corollary 5.7. Consider linear space X with dual space X^* . The closed unit ball in X^* consists of all bounded linear functionals on X of functional norm less than or equal to 1. For any $x \in X$, we have

 $||x|| = \sup\{|f(x)| \mid f \text{ is in the closed unit ball of } X^*\}.$

Proof. Since $|f(x)| \le ||f|| ||x||$ by definition of ||f|| and we have $||f|| \le 1$, then $|f(x)| \le ||x||$, and so $||x|| \ge \sup\{|f(x)| \mid ||f|| \le 1\}$. For $x \in X$, define f_0 on span($\{x\}$) as $f_0(\alpha x) = \alpha ||x||$ for scalar $\alpha \in \mathbb{F}$. Then $||f_0|| = 1$ since $|f_0(y)| = ||y||$ for all $y \in \text{span}(\{x\})$. By the Normed Linear Space Version of Hahn-Banach Extension Theorem (Theorem 5.4), f_0 extends to f on X where $||f|| = ||f_0|| = 1$. So for our $x \in X$ we have |f(x)| = ||f|| ||x|| = ||x|| and so $\sup\{|f(x)| \mid ||f|| \le 1|| \ge ||x||$. Equality follows.