Introduction to Functional Analysis

Chapter 5. Hahn-Banach Theorem

5.5. Geometric Version of Hahn-Banach Theorem—Proofs of Theorems

Table of contents

- 🚺 Lemma 1
- Proposition 5.9
- 3 Proposition 5.10
- Proposition 5.11
- 5 Proposition 5.12
- 6 Proposition 5.13
- Proposition 5.14, Geometric Hahn-Banach Extension Theorem
- Theorem 5.15, The Hahn-Banach Separation Theorem
- 9 Theorem 5.16
- D Theorem 5.17
- Theorem 5.18

Lemma 1. Let *H* be a hyperplane in *X*. If $H = f^{-1}(\{\alpha\})$ and $H = g^{-1}(\{\beta\})$ for some linear functionals *f* and *g*, then $f = \gamma g$ for some $\gamma \in \mathbb{R}$.

Proof. Suppose $x' + Y = H = f^{-1}(\{\alpha\}) = g^{-1}(\{\beta\})$.

Lemma 1. Let *H* be a hyperplane in *X*. If $H = f^{-1}(\{\alpha\})$ and $H = g^{-1}(\{\beta\})$ for some linear functionals *f* and *g*, then $f = \gamma g$ for some $\gamma \in \mathbb{R}$.

Proof. Suppose $x' + Y = H = f^{-1}(\{\alpha\}) = g^{-1}(\{\beta\})$. Then for any $v, w \in Y, \beta = g(x' + v) = g(x' + w)$, and $g(v) = g(w) = \beta - g(x')$ and so g is constant on Y.

Lemma 1

Lemma 1. Let *H* be a hyperplane in *X*. If $H = f^{-1}(\{\alpha\})$ and $H = g^{-1}(\{\beta\})$ for some linear functionals *f* and *g*, then $f = \gamma g$ for some $\gamma \in \mathbb{R}$.

Proof. Suppose $x' + Y = H = f^{-1}(\{\alpha\}) = g^{-1}(\{\beta\})$. Then for any $v, w \in Y, \beta = g(x' + v) = g(x' + w)$, and $g(v) = g(w) = \beta - g(x')$ and so g is constant on Y. Since $0 \in Y$ (Y is a subspace), g(0) = 0 and so g(y) = 0 for all $y \in Y$. So if $x' \neq 0$ then $g(x') = g(x' + 0) = \beta$. Similarly, $f(x') = \alpha$.

Lemma 1. Let *H* be a hyperplane in *X*. If $H = f^{-1}(\{\alpha\})$ and $H = g^{-1}(\{\beta\})$ for some linear functionals *f* and *g*, then $f = \gamma g$ for some $\gamma \in \mathbb{R}$.

Proof. Suppose $x' + Y = H = f^{-1}(\{\alpha\}) = g^{-1}(\{\beta\})$. Then for any $v, w \in Y, \beta = g(x' + v) = g(x' + w)$, and $g(v) = g(w) = \beta - g(x')$ and so g is constant on Y. Since $0 \in Y$ (Y is a subspace), g(0) = 0 and so g(y) = 0 for all $y \in Y$. So if $x' \neq 0$ then $g(x') = g(x' + 0) = \beta$. Similarly, $f(x') = \alpha$. Since for $x' \notin H$, span($T \cup \{x'\}) = X$ and for any $y + \delta x' \in X$ we have

$$f(y + \delta x') = f(y) + \delta f(x') = \delta f(x') = \delta \alpha,$$

 $g(y + \delta x') = g(y) + \delta g(x') = \delta g(x') = \delta \beta.$

So for any $x \in X$ we have $f(x) = (\alpha/\beta)g(x)$.

Lemma 1. Let *H* be a hyperplane in *X*. If $H = f^{-1}(\{\alpha\})$ and $H = g^{-1}(\{\beta\})$ for some linear functionals *f* and *g*, then $f = \gamma g$ for some $\gamma \in \mathbb{R}$.

Proof. Suppose $x' + Y = H = f^{-1}(\{\alpha\}) = g^{-1}(\{\beta\})$. Then for any $v, w \in Y, \beta = g(x' + v) = g(x' + w)$, and $g(v) = g(w) = \beta - g(x')$ and so g is constant on Y. Since $0 \in Y$ (Y is a subspace), g(0) = 0 and so g(y) = 0 for all $y \in Y$. So if $x' \neq 0$ then $g(x') = g(x' + 0) = \beta$. Similarly, $f(x') = \alpha$. Since for $x' \notin H$, span $(T \cup \{x'\}) = X$ and for any $y + \delta x' \in X$ we have

$$f(y + \delta x') = f(y) + \delta f(x') = \delta f(x') = \delta \alpha,$$

$$g(y + \delta x') = g(y) + \delta g(x') = \delta g(x') = \delta \beta.$$

So for any $x \in X$ we have $f(x) = (\alpha/\beta)g(x)$.

Lemma 1 (continued)

Lemma 1. Let *H* be a hyperplane in *X*. If $H = f^{-1}(\{\alpha\})$ and $H = g^{-1}(\{\beta\})$ for some linear functionals *f* and *g*, then $f = \gamma g$ for some $\gamma \in \mathbb{R}$.

Introduction to Functional Analysis

Proof (continued). If x' = 0 and H is a subspace, then $H = f^{-1}(0) = g^{-1}(0)$.

Lemma 1 (continued)

Lemma 1. Let *H* be a hyperplane in *X*. If $H = f^{-1}(\{\alpha\})$ and $H = g^{-1}(\{\beta\})$ for some linear functionals *f* and *g*, then $f = \gamma g$ for some $\gamma \in \mathbb{R}$.

Proof (continued). If x' = 0 and H is a subspace, then $H = f^{-1}(0) = g^{-1}(0)$. Let $x \in X$ and $z \notin H$. Since H is maximal, $X = \text{span}(Y \cup \{z\})$ and for any $y + \delta z \in X$ we have, as above, $f(y + \delta z) = \delta f(z)$ and $g(y + \delta z) = \delta g(z)$.

Lemma 1 (continued)

Lemma 1. Let *H* be a hyperplane in *X*. If $H = f^{-1}(\{\alpha\})$ and $H = g^{-1}(\{\beta\})$ for some linear functionals *f* and *g*, then $f = \gamma g$ for some $\gamma \in \mathbb{R}$.

Proof (continued). If x' = 0 and H is a subspace, then $H = f^{-1}(0) = g^{-1}(0)$. Let $x \in X$ and $z \notin H$. Since H is maximal, $X = \text{span}(Y \cup \{z\})$ and for any $y + \delta z \in X$ we have, as above, $f(y + \delta z) = \delta f(z)$ and $g(y + \delta z) = \delta g(z)$. So for any $x \in X$ we have g(x) = (g(z)/f(z))f(x) (where g(z) and f(z) are constant).

Lemma 1 (continued)

Lemma 1. Let *H* be a hyperplane in *X*. If $H = f^{-1}(\{\alpha\})$ and $H = g^{-1}(\{\beta\})$ for some linear functionals *f* and *g*, then $f = \gamma g$ for some $\gamma \in \mathbb{R}$.

Proof (continued). If x' = 0 and H is a subspace, then $H = f^{-1}(0) = g^{-1}(0)$. Let $x \in X$ and $z \notin H$. Since H is maximal, $X = \text{span}(Y \cup \{z\})$ and for any $y + \delta z \in X$ we have, as above, $f(y + \delta z) = \delta f(z)$ and $g(y + \delta z) = \delta g(z)$. So for any $x \in X$ we have g(x) = (g(z)/f(z))f(x) (where g(z) and f(z) are constant).

Proposition 5.9. For a convex set in \mathbb{R}^n , all internal points are interior.

Proof. By Theorem 2.31(b), all norms on \mathbb{R}^n are equivalent, so we choose the sup norm as the norm on \mathbb{R}^n , without loss of generality. Let *a* be an internal point of a convex set $A \subset \mathbb{R}^n$. Recall that δ_i represents the *i*th standard basis vector for \mathbb{R}^n . Since *a* is an internal point of *A* then for all vectors $x \in \mathbb{R}^n$ there exists $r_x > 0$ such that $a + tr_x \in A$ for $0 \le t \le r_x$ (by definition).

Proposition 5.9. For a convex set in \mathbb{R}^n , all internal points are interior.

Proof. By Theorem 2.31(b), all norms on \mathbb{R}^n are equivalent, so we choose the sup norm as the norm on \mathbb{R}^n , without loss of generality. Let *a* be an internal point of a convex set $A \subset \mathbb{R}^n$. Recall that δ_i represents the *i*th standard basis vector for \mathbb{R}^n . Since *a* is an internal point of *A* then for all vectors $x \in \mathbb{R}^n$ there exists $r_x > 0$ such that $a + tr_x \in A$ for $0 \le t \le r_x$ (by definition). So we consider the parameters r_{δ_i} and $r_{-\delta_i}$ for each standard basis vector and its negative and define $r = \min\{r_{\delta_i}, r_{-\delta_i} \mid i = 1, 2, ..., n\}$. Then r > 0 (this is where finite dimensional is needed).

Proposition 5.9. For a convex set in \mathbb{R}^n , all internal points are interior.

Proof. By Theorem 2.31(b), all norms on \mathbb{R}^n are equivalent, so we choose the sup norm as the norm on \mathbb{R}^n , without loss of generality. Let *a* be an internal point of a convex set $A \subset \mathbb{R}^n$. Recall that δ_i represents the *i*th standard basis vector for \mathbb{R}^n . Since *a* is an internal point of *A* then for all vectors $x \in \mathbb{R}^n$ there exists $r_x > 0$ such that $a + tr_x \in A$ for $0 \le t \le r_x$ (by definition). So we consider the parameters r_{δ_i} and $r_{-\delta_i}$ for each standard basis vector and its negative and define $r = \min\{r_{\delta_i}, r_{-\delta_i} \mid i = 1, 2, ..., n\}$. Then r > 0 (this is where finite dimensional is needed). Let *v* be any vector in \mathbb{R}^n with norm ||v|| < r/n; say $v = \sum_{i=1}^n \alpha_i \delta_i$. Then

$$a + v = \frac{1}{n} \sum_{i=1}^{n} (a + n\alpha_i \delta_i).$$

Now each $|\alpha_i| \leq r/n$, or $n|\alpha_i| \leq r \leq r_{\delta_i}$ and $n|\alpha_i| \leq r \leq r_{-\delta_i}$ (we need to consider the "direction" $-\delta_i$ since α_i may be negative).

Proposition 5.9. For a convex set in \mathbb{R}^n , all internal points are interior.

Proof. By Theorem 2.31(b), all norms on \mathbb{R}^n are equivalent, so we choose the sup norm as the norm on \mathbb{R}^n , without loss of generality. Let *a* be an internal point of a convex set $A \subset \mathbb{R}^n$. Recall that δ_i represents the *i*th standard basis vector for \mathbb{R}^n . Since *a* is an internal point of *A* then for all vectors $x \in \mathbb{R}^n$ there exists $r_x > 0$ such that $a + tr_x \in A$ for $0 \le t \le r_x$ (by definition). So we consider the parameters r_{δ_i} and $r_{-\delta_i}$ for each standard basis vector and its negative and define $r = \min\{r_{\delta_i}, r_{-\delta_i} \mid i = 1, 2, ..., n\}$. Then r > 0 (this is where finite dimensional is needed). Let *v* be any vector in \mathbb{R}^n with norm ||v|| < r/n; say $v = \sum_{i=1}^n \alpha_i \delta_i$. Then

$$a + v = \frac{1}{n} \sum_{i=1}^{n} (a + n\alpha_i \delta_i).$$

Now each $|\alpha_i| \leq r/n$, or $n|\alpha_i| \leq r \leq r_{\delta_i}$ and $n|\alpha_i| \leq r \leq r_{-\delta_i}$ (we need to consider the "direction" $-\delta_i$ since α_i may be negative).

Proposition 5.9 (continued)

Proposition 5.9. For a convex set in \mathbb{R}^n , all internal points are interior.

Proof (continued). Therefore $a + n\alpha_i\delta_i \in A$ for each i = 1, 2, ..., n. The convexity of A then implies, by Exercise 5.18(a), that

$$a+v=\sum_{i=1}^n \frac{1}{n}(a+n\alpha_i\delta_i)\in A.$$

Proposition 5.9 (continued)

Proposition 5.9. For a convex set in \mathbb{R}^n , all internal points are interior.

Proof (continued). Therefore $a + n\alpha_i\delta_i \in A$ for each i = 1, 2, ..., n. The convexity of A then implies, by Exercise 5.18(a), that

$$a+v=\sum_{i=1}^nrac{1}{n}(a+nlpha_i\delta_i)\in A.$$

Since this holds for all $v \in \mathbb{R}^n$ with ||v|| < r/n, then $B(a; r/n) \subset A$. Therefore, *a* is an interior point of *A*.

Proposition 5.9 (continued)

Proposition 5.9. For a convex set in \mathbb{R}^n , all internal points are interior.

Proof (continued). Therefore $a + n\alpha_i\delta_i \in A$ for each i = 1, 2, ..., n. The convexity of A then implies, by Exercise 5.18(a), that

$$a+v=\sum_{i=1}^n \frac{1}{n}(a+n\alpha_i\delta_i)\in A.$$

Since this holds for all $v \in \mathbb{R}^n$ with ||v|| < r/n, then $B(a; r/n) \subset A$. Therefore, *a* is an interior point of *A*.

Proposition 5.10. If A is convex, then $A^{oo} = A^o$.

Proof. Let $a \in A^{\circ}$ and for each unit vector y define $r_y > 0$ such that $a + ty \in A$ for all $0 \le t \le r_y$. We now show that each a + ty for $0 \le t \le r_y/2$ is itself internal to A° .

Proof. Let $a \in A^o$ and for each unit vector y define $r_y > 0$ such that $a + ty \in A$ for all $0 \le t \le r_y$. We now show that each a + ty for $0 \le t \le r_y/2$ is itself internal to A^o . Let z be a unit vector and define r_z as above. Then for $0 \le s \le r_z/2$ and for $0 \le t \le r_y/2$ we have $(a + ty) + sz = \frac{1}{2}((a + 2ty) + (a + 2sz))$.

Proof. Let $a \in A^{o}$ and for each unit vector y define $r_{y} > 0$ such that $a + ty \in A$ for all $0 \le t \le r_{y}$. We now show that each a + ty for $0 \le t \le r_{y}/2$ is itself internal to A^{o} . Let z be a unit vector and define r_{z} as above. Then for $0 \le s \le r_{z}/2$ and for $0 \le t \le r_{y}/2$ we have $(a + ty) + sz = \frac{1}{2}((a + 2ty) + (a + 2sz))$. Now $a + 2ty \in A$ for $0 \le t \le r_{y}/2$ and $a + 2sz \in A$ for $0 \le t \le r_{z}/2$, so $\frac{1}{2}((a + 2ty) + (a + 2sz)) \in A$ since A is convex. So $(a + ty) \in A^{o}$ for all $0 \le t \le r_{y}/2$. That is, $a \in A^{oo}$.

Proof. Let $a \in A^{o}$ and for each unit vector y define $r_{y} > 0$ such that $a + ty \in A$ for all $0 \le t \le r_{y}$. We now show that each a + ty for $0 \le t \le r_{y}/2$ is itself internal to A^{o} . Let z be a unit vector and define r_{z} as above. Then for $0 \le s \le r_{z}/2$ and for $0 \le t \le r_{y}/2$ we have $(a + ty) + sz = \frac{1}{2}((a + 2ty) + (a + 2sz))$. Now $a + 2ty \in A$ for $0 \le t \le r_{y}/2$ and $a + 2sz \in A$ for $0 \le t \le r_{z}/2$, so $\frac{1}{2}((a + 2ty) + (a + 2sz)) \in A$ since A is convex. So $(a + ty) \in A^{o}$ for all $0 \le t \le r_{y}/2$. That is, $a \in A^{oo}$. So $A^{o} \subseteq A^{oo}$. Of course, $A^{oo} \subseteq A^{o}$, and hence $A^{o} = A^{oo}$.

Proof. Let $a \in A^o$ and for each unit vector y define $r_y > 0$ such that $a + ty \in A$ for all $0 \le t \le r_y$. We now show that each a + ty for $0 \le t \le r_y/2$ is itself internal to A^o . Let z be a unit vector and define r_z as above. Then for $0 \le s \le r_z/2$ and for $0 \le t \le r_y/2$ we have $(a + ty) + sz = \frac{1}{2}((a + 2ty) + (a + 2sz))$. Now $a + 2ty \in A$ for $0 \le t \le r_y/2$ and $a + 2sz \in A$ for $0 \le t \le r_z/2$, so $\frac{1}{2}((a + 2ty) + (a + 2sz)) \in A$ since A is convex. So $(a + ty) \in A^o$ for all $0 \le t \le r_y/2$. That is, $a \in A^{oo}$. So $A^o \subseteq A^{oo}$. Of course, $A^{oo} \subseteq A^o$, and hence $A^o = A^{oo}$.

Proposition 5.11. Given a Minkowski functional p, let $K_p = \{x \mid p(x) < 1\}$. Then K_p is convex and 0 is an internal point of K_p .

Proof. Let $x, y \in K_p$ and $\alpha \in [0, 1]$.

Proposition 5.11. Given a Minkowski functional p, let $K_p = \{x \mid p(x) < 1\}$. Then K_p is convex and 0 is an internal point of K_p .

Proof. Let $x, y \in K_p$ and $\alpha \in [0, 1]$. Then

$$p(\alpha x + (1 - \alpha)y) \le p(\alpha x) + p((1 - \alpha)y)$$

 $= \alpha p(x) + (1 - \alpha)p(y) < \alpha(1) + (1 - \alpha)(1) = 1,$

so K_p is convex.

Proposition 5.11. Given a Minkowski functional p, let $K_p = \{x \mid p(x) < 1\}$. Then K_p is convex and 0 is an internal point of K_p .

Proof. Let $x, y \in K_p$ and $\alpha \in [0, 1]$. Then

 $p(\alpha x + (1 - \alpha)y) \le p(\alpha x) + p((1 - \alpha)y)$

$$= \alpha p(x) + (1 - \alpha)p(y) < \alpha(1) + (1 - \alpha)(1) = 1,$$

so K_p is convex.

Next, fix $x \in X$ and choose $r_x > 0$ such that $r_x p(x) < 1$.

Proposition 5.11. Given a Minkowski functional p, let $K_p = \{x \mid p(x) < 1\}$. Then K_p is convex and 0 is an internal point of K_p .

Proof. Let $x, y \in K_p$ and $\alpha \in [0, 1]$. Then

$$p(\alpha x + (1 - \alpha)y) \le p(\alpha x) + p((1 - \alpha)y)$$
$$= \alpha p(x) + (1 - \alpha)p(y) < \alpha(1) + (1 - \alpha)(1) = 1,$$

so K_p is convex.

Next, fix $x \in X$ and choose $r_x > 0$ such that $r_x p(x) < 1$. Then, for $0 \le t \le r_x$,

(1) if $p(x) \ge 0$ then $p(0 + tx) = p(tx) = tp(x) \le r_x p(x) < 1$, (2) if $p(x) \le 0$ then $p(0 + tx) = p(tx) = tp(x) \le 0 < 1$.

Proposition 5.11. Given a Minkowski functional p, let $K_p = \{x \mid p(x) < 1\}$. Then K_p is convex and 0 is an internal point of K_p .

Proof. Let $x, y \in K_p$ and $\alpha \in [0, 1]$. Then

$$p(\alpha x + (1 - \alpha)y) \le p(\alpha x) + p((1 - \alpha)y)$$
$$= \alpha p(x) + (1 - \alpha)p(y) < \alpha(1) + (1 - \alpha)(1) = 1,$$

so K_p is convex.

Next, fix $x \in X$ and choose $r_x > 0$ such that $r_x p(x) < 1$. Then, for $0 \le t \le r_x$,

(1) if
$$p(x) \ge 0$$
 then $p(0 + tx) = p(tx) = tp(x) \le r_x p(x) < 1$,

(2) if
$$p(x) \le 0$$
 then $p(0 + tx) = p(tx) = tp(x) \le 0 < 1$

So $0 + tx \in K_p$ for $0 \le t \le r_x$, and 0 is internal to K_p .

Proposition 5.11. Given a Minkowski functional p, let $K_p = \{x \mid p(x) < 1\}$. Then K_p is convex and 0 is an internal point of K_p .

Proof. Let $x, y \in K_p$ and $\alpha \in [0, 1]$. Then

$$p(\alpha x + (1 - \alpha)y) \le p(\alpha x) + p((1 - \alpha)y)$$
$$= \alpha p(x) + (1 - \alpha)p(y) < \alpha(1) + (1 - \alpha)(1) = 1,$$

so K_p is convex.

Next, fix $x \in X$ and choose $r_x > 0$ such that $r_x p(x) < 1$. Then, for $0 \le t \le r_x$,

(1) if
$$p(x) \ge 0$$
 then $p(0 + tx) = p(tx) = tp(x) \le r_x p(x) < 1$,
(2) if $p(x) \le 0$ then $p(0 + tx) = p(tx) = tp(x) \le 0 < 1$.

So $0 + tx \in K_p$ for $0 \le t \le r_x$, and 0 is internal to K_p .

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define

$$p(x) = \inf\{t > 0 \mid x/t \in K\}.$$

Then:

(a) p is a Minkowski functional,
(b) p(x) < 1 if and only if x is an internal point of K,
(c) p(x) = 1 if and only if x is a bounding point of K, and
(d) p(x) > 1 if and only if x is an external point of K.

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(a) p is a Minkowski functional.

Proof. For $\alpha \geq 0$ we have

 $p(\alpha x) = \inf\{t > 0 \mid \alpha x/t \in K\} = \alpha \inf\{t > 0 \mid x/t \in K\} = \alpha p(x).$

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(a) *p* is a Minkowski functional.

Proof. For $\alpha \geq 0$ we have

 $p(\alpha x) = \inf\{t > 0 \mid \alpha x/t \in K\} = \alpha \inf\{t > 0 \mid x/t \in K\} = \alpha p(x).$

Given any $x, y \in K$, suppose x/t and y/s are in K for some t > 0 and s > 0. Then

$$\frac{x+y}{t+s} = \left(\frac{t}{t+2}\right)\frac{x}{t} + \left(\frac{s}{t+s}\right)\frac{y}{s} \in K$$

since K is convex (and the coefficients in parentheses sum to 1).

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(a) *p* is a Minkowski functional.

Proof. For $\alpha \geq 0$ we have

$$p(\alpha x) = \inf\{t > 0 \mid \alpha x/t \in K\} = \alpha \inf\{t > 0 \mid x/t \in K\} = \alpha p(x).$$

Given any $x, y \in K$, suppose x/t and y/s are in K for some t > 0 and s > 0. Then

$$rac{x+y}{t+s} = \left(rac{t}{t+2}
ight)rac{x}{t} + \left(rac{s}{t+s}
ight)rac{y}{s} \in K$$

since K is convex (and the coefficients in parentheses sum to 1). So $p(x+y) = \inf\{r > 0 \mid (x+y)/r \in K\} \le t+s$.

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(a) *p* is a Minkowski functional.

Proof. For $\alpha \geq 0$ we have

$$p(\alpha x) = \inf\{t > 0 \mid \alpha x/t \in K\} = \alpha \inf\{t > 0 \mid x/t \in K\} = \alpha p(x).$$

Given any $x, y \in K$, suppose x/t and y/s are in K for some t > 0 and s > 0. Then

$$rac{x+y}{t+s} = \left(rac{t}{t+2}
ight)rac{x}{t} + \left(rac{s}{t+s}
ight)rac{y}{s} \in K$$

since K is convex (and the coefficients in parentheses sum to 1). So $p(x + y) = \inf\{r > 0 \mid (x + y)/r \in K\} \le t + s$. Taking infima over t and s such that $x/t \in K$ and $y/s \in K$ we get $p(x + y) \le p(x) + p(y)$.

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(a) *p* is a Minkowski functional.

Proof. For $\alpha \geq 0$ we have

$$p(\alpha x) = \inf\{t > 0 \mid \alpha x/t \in K\} = \alpha \inf\{t > 0 \mid x/t \in K\} = \alpha p(x).$$

Given any $x, y \in K$, suppose x/t and y/s are in K for some t > 0 and s > 0. Then

$$rac{x+y}{t+s} = \left(rac{t}{t+2}
ight)rac{x}{t} + \left(rac{s}{t+s}
ight)rac{y}{s} \in K$$

since K is convex (and the coefficients in parentheses sum to 1). So $p(x + y) = \inf\{r > 0 \mid (x + y)/r \in K\} \le t + s$. Taking infima over t and s such that $x/t \in K$ and $y/s \in K$ we get $p(x + y) \le p(x) + p(y)$.

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(b) p(x) < 1 if and only if x is an internal point of K.

Proof of (b). If x is internal to K, choose t > 0 such that $x + tx = (1 + t)x \in K$. This shows that $p(x) \le 1/(1 + t) < 1$.
Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(b) p(x) < 1 if and only if x is an internal point of K.

Proof of (b). If x is internal to K, choose t > 0 such that $x + tx = (1 + t)x \in K$. This shows that $p(x) \le 1/(1 + t) < 1$. Conversely, suppose p(x) < 1. Given any $y \in X$, choose r_y so that $p(x) + r_y p(y) < 1$.

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(b) p(x) < 1 if and only if x is an internal point of K.

Proof of (b). If x is internal to K, choose t > 0 such that $x + tx = (1 + t)x \in K$. This shows that $p(x) \le 1/(1 + t) < 1$. Conversely, suppose p(x) < 1. Given any $y \in X$, choose r_y so that $p(x) + r_y p(y) < 1$. Then for $0 \le t \le r_y$ we have

 $\begin{array}{ll} p(x+ty) &\leq & p(x)+p(ty) \text{ since } p \text{ is a Minkowski functional by (a)} \\ &= & p(x)+tp(y) \leq p(x)+r_y p(y) < 1. \end{array}$

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(b) p(x) < 1 if and only if x is an internal point of K.

Proof of (b). If x is internal to K, choose t > 0 such that $x + tx = (1 + t)x \in K$. This shows that $p(x) \le 1/(1 + t) < 1$. Conversely, suppose p(x) < 1. Given any $y \in X$, choose r_y so that $p(x) + r_y p(y) < 1$. Then for $0 \le t \le r_y$ we have

$$p(x + ty) \leq p(x) + p(ty)$$
 since p is a Minkowski functional by (a)
= $p(x) + tp(y) \leq p(x) + r_y p(y) < 1.$

So, by Lemma 2, $x + ty \in K$. Therefore, x is internal to K.

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(b) p(x) < 1 if and only if x is an internal point of K.

Proof of (b). If x is internal to K, choose t > 0 such that $x + tx = (1 + t)x \in K$. This shows that $p(x) \le 1/(1 + t) < 1$. Conversely, suppose p(x) < 1. Given any $y \in X$, choose r_y so that $p(x) + r_y p(y) < 1$. Then for $0 \le t \le r_y$ we have

$$p(x + ty) \leq p(x) + p(ty)$$
 since p is a Minkowski functional by (a)
= $p(x) + tp(y) \leq p(x) + r_y p(y) < 1.$

So, by Lemma 2, $x + ty \in K$. Therefore, x is internal to K.

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(d) p(x) > 1 if and only if x is an external point of K.

Proof of (d). If x is external to K, choose 0 < t < 1 such that $x - tx = (1 - t)x \notin K$. By Lemma 2, $p((1 - t)x) = (1 - t)p(x) \ge 1$. So $p(x) \ge 1/(1 - t) > 1$.

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(d) p(x) > 1 if and only if x is an external point of K.

Proof of (d). If x is external to K, choose 0 < t < 1 such that $x - tx = (1 - t)x \notin K$. By Lemma 2, $p((1 - t)x) = (1 - t)p(x) \ge 1$. So $p(x) \ge 1/(1 - t) > 1$. Conversely, suppose that p(x) > 1. For any $y \in X$, choose $r_y > 0$ so that $p(x) - r_y p(-y) > 1$.

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(d) p(x) > 1 if and only if x is an external point of K.

Proof of (d). If x is external to K, choose 0 < t < 1 such that $x - tx = (1 - t)x \notin K$. By Lemma 2, $p((1 - t)x) = (1 - t)p(x) \ge 1$. So $p(x) \ge 1/(1 - t) > 1$. Conversely, suppose that p(x) > 1. For any $y \in X$, choose $r_y > 0$ so that $p(x) - r_y p(-y) > 1$. Then for $0 \le t \le r_y$ we have

$$p(x) = p(x + ty - ty) \le p(x + ty) + tp(-y) \qquad (*)$$

so that

$$p(x + ty) \geq p(x) - tp(-y)$$
 by (*)

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(d) p(x) > 1 if and only if x is an external point of K.

Proof of (d). If x is external to K, choose 0 < t < 1 such that $x - tx = (1 - t)x \notin K$. By Lemma 2, $p((1 - t)x) = (1 - t)p(x) \ge 1$. So $p(x) \ge 1/(1 - t) > 1$. Conversely, suppose that p(x) > 1. For any $y \in X$, choose $r_y > 0$ so that $p(x) - r_y p(-y) > 1$. Then for $0 \le t \le r_y$ we have

$$p(x) = p(x + ty - ty) \le p(x + ty) + tp(-y) \qquad (*)$$

so that

$$p(x + ty) \geq p(x) - tp(-y)$$
 by (*)

Proposition 5.12(d) continued, and (c)

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(c) p(x) = 1 if and only if x is a bounding point of K, and

(d) p(x) > 1 if and only if x is an external point of K.

Proof of (d) continued. ... so that

$$\begin{array}{rcl} p(x+ty) & \geq & p(x)-tp(-y) \text{ by } (*) \\ & \geq & p(x)-r_yp(-y) \text{ since } -t \geq -r_y \\ & > & 1. \end{array}$$

By Lemma 2, $x + ty \notin K$. So x is an internal point of $K^c = X \setminus K$. That is, x is an external point of K.

Proposition 5.12(d) continued, and (c)

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(c) p(x) = 1 if and only if x is a bounding point of K, and

(d) p(x) > 1 if and only if x is an external point of K.

Proof of (d) continued. ... so that

$$\begin{array}{rcl} p(x+ty) & \geq & p(x)-tp(-y) \text{ by } (*) \\ & \geq & p(x)-r_yp(-y) \text{ since } -t \geq -r_y \\ & > & 1. \end{array}$$

By Lemma 2, $x + ty \notin K$. So x is an internal point of $K^c = X \setminus K$. That is, x is an external point of K.

Proof of (c). This follows from (b) and (d) and the definition of boundary point.

C

Proposition 5.12(d) continued, and (c)

Proposition 5.12. In a real normed linear space with a given convex set K which has 0 as an internal point. Define $p(x) = \inf\{t > 0 \mid x/t \in K\}$. Then:

(c) p(x) = 1 if and only if x is a bounding point of K, and

(d) p(x) > 1 if and only if x is an external point of K.

Proof of (d) continued. ... so that

$$\begin{array}{rcl} p(x+ty) & \geq & p(x)-tp(-y) \text{ by } (*) \\ & \geq & p(x)-r_yp(-y) \text{ since } -t \geq -r_y \\ & > & 1. \end{array}$$

By Lemma 2, $x + ty \notin K$. So x is an internal point of $K^c = X \setminus K$. That is, x is an external point of K.

Proof of (c). This follows from (b) and (d) and the definition of boundary point.

C

Proposition 5.13. Let K be a convex set which has some internal point and let f be a real valued linear functional on X. Then $f(K^o)$ is the interior of the interval f(K).

Proof. Since K is convex, for any $x, y \in K$ we have $\alpha x + (1 - \alpha)y \in K$ for $\alpha \in [0, 1]$.

Proposition 5.13. Let K be a convex set which has some internal point and let f be a real valued linear functional on X. Then $f(K^o)$ is the interior of the interval f(K).

Proof. Since K is convex, for any $x, y \in K$ we have $\alpha x + (1 - \alpha)y \in K$ for $\alpha \in [0, 1]$. So

 $f(\alpha x + (1 - \alpha)y) \in f(K)$, or $\alpha f(x) + (1 - \alpha)f(y) \in f(K)$.

So f(K) is convex and since $f(K) \subseteq \mathbb{R}$, then f(K) is an interval, *I*. Let $a = \inf(I)$ and $b = \sup(I)$.

Proposition 5.13. Let K be a convex set which has some internal point and let f be a real valued linear functional on X. Then $f(K^o)$ is the interior of the interval f(K).

Proof. Since K is convex, for any $x, y \in K$ we have $\alpha x + (1 - \alpha)y \in K$ for $\alpha \in [0, 1]$. So

$$f(\alpha x + (1 - \alpha)y) \in f(K)$$
, or $\alpha f(x) + (1 - \alpha)f(y) \in f(K)$.

So f(K) is convex and since $f(K) \subseteq \mathbb{R}$, then f(K) is an interval, *I*. Let $a = \inf(I)$ and $b = \sup(I)$. We will show that $f(K^{\circ}) = (a, b)$. By translation, we can translate an internal point to 0, so without loss of generality 0 is an internal point.

Proposition 5.13. Let K be a convex set which has some internal point and let f be a real valued linear functional on X. Then $f(K^o)$ is the interior of the interval f(K).

Proof. Since K is convex, for any $x, y \in K$ we have $\alpha x + (1 - \alpha)y \in K$ for $\alpha \in [0, 1]$. So

$$f(\alpha x + (1 - \alpha)y) \in f(K)$$
, or $\alpha f(x) + (1 - \alpha)f(y) \in f(K)$.

So f(K) is convex and since $f(K) \subseteq \mathbb{R}$, then f(K) is an interval, *I*. Let $a = \inf(I)$ and $b = \sup(I)$. We will show that $f(K^o) = (a, b)$. By translation, we can translate an internal point to 0, so without loss of generality 0 is an internal point.

Suppose $x \in K^{\circ}$. Choose t > 0 such that $x + tx = (1 + t)x \in K$.

Proposition 5.13. Let K be a convex set which has some internal point and let f be a real valued linear functional on X. Then $f(K^o)$ is the interior of the interval f(K).

Proof. Since K is convex, for any $x, y \in K$ we have $\alpha x + (1 - \alpha)y \in K$ for $\alpha \in [0, 1]$. So

$$f(\alpha x + (1 - \alpha)y) \in f(K)$$
, or $\alpha f(x) + (1 - \alpha)f(y) \in f(K)$.

So f(K) is convex and since $f(K) \subseteq \mathbb{R}$, then f(K) is an interval, *I*. Let $a = \inf(I)$ and $b = \sup(I)$. We will show that $f(K^o) = (a, b)$. By translation, we can translate an internal point to 0, so without loss of generality 0 is an internal point.

Suppose $x \in K^o$. Choose t > 0 such that $x + tx = (1 + t)x \in K$. Then

$$f(x + tx) = f((1 + t)x) = (1 + t)f(x) \in f(K) = I.$$

So $(1+t)f(x) \le b$ and f(x) < b. Similarly choose t > 0 such that $x + t(-x) = (1-t)x \in K$.

Proposition 5.13. Let K be a convex set which has some internal point and let f be a real valued linear functional on X. Then $f(K^o)$ is the interior of the interval f(K).

Proof. Since K is convex, for any $x, y \in K$ we have $\alpha x + (1 - \alpha)y \in K$ for $\alpha \in [0, 1]$. So

$$f(\alpha x + (1 - \alpha)y) \in f(K)$$
, or $\alpha f(x) + (1 - \alpha)f(y) \in f(K)$.

So f(K) is convex and since $f(K) \subseteq \mathbb{R}$, then f(K) is an interval, *I*. Let $a = \inf(I)$ and $b = \sup(I)$. We will show that $f(K^o) = (a, b)$. By translation, we can translate an internal point to 0, so without loss of generality 0 is an internal point.

Suppose $x \in K^o$. Choose t > 0 such that $x + tx = (1 + t)x \in K$. Then

$$f(x + tx) = f((1 + t)x) = (1 + t)f(x) \in f(K) = I.$$

So $(1+t)f(x) \le b$ and f(x) < b. Similarly choose t > 0 such that $x + t(-x) = (1-t)x \in K$.

Proof (Part 2). Then

$$f(x + t(-x)) = f((1 - t)x) = (1 - t)f(x) \in f(x) = I.$$

So $(1+t)f(x) \le b$ and f(x) < b. Similarly choose t > 0 such that $x + t(-x) = (1-t)f(x) \in f(K) = I$. So $(1-t)f(x) \ge z$ and f(x) < a. So $f(x) \in I$.

Proof (Part 2). Then

$$f(x + t(-x)) = f((1 - t)x) = (1 - t)f(x) \in f(x) = I.$$

So $(1 + t)f(x) \le b$ and f(x) < b. Similarly choose t > 0 such that $x + t(-x) = (1 - t)f(x) \in f(K) = I$. So $(1 - t)f(x) \ge z$ and f(x) < a. So $f(x) \in I$. Conversely, suppose $c \in (a, b)$.

Proof (Part 2). Then

$$f(x + t(-x)) = f((1 - t)x) = (1 - t)f(x) \in f(x) = I.$$

So $(1 + t)f(x) \le b$ and f(x) < b. Similarly choose t > 0 such that $x + t(-x) = (1 - t)f(x) \in f(K) = I$. So $(1 - t)f(x) \ge z$ and f(x) < a. So $f(x) \in I$. Conversely, suppose $c \in (a, b)$. If $c \ge 0$, pick c_1 such that $c < c_1 < b$, and choose $x \in K$ such that $f(x) = c_1$. Let $x = (c/c_1)x$. Then $f(z) = f((c/c_1)x) = \frac{c}{c_1}f(x) = \frac{c}{c_1}c_1 = c$.

Proof (Part 2). Then

$$f(x + t(-x)) = f((1 - t)x) = (1 - t)f(x) \in f(x) = I.$$

So $(1+t)f(x) \le b$ and f(x) < b. Similarly choose t > 0 such that $x + t(-x) = (1-t)f(x) \in f(K) = I$. So $(1-t)f(x) \ge z$ and f(x) < a. So $f(x) \in I$.

Conversely, suppose $c \in (a, b)$. If $c \ge 0$, pick c_1 such that $c < c_1 < b$, and choose $x \in K$ such that $f(x) = c_1$. Let $x = (c/c_1)x$. Then $f(z) = f((c/c_1)x) = \frac{c}{c_1}f(x) = \frac{c}{c_1}c_1 = c$. Also, $p_K(x) \le 1$ since $x \in K$ (by Proposition 5.12) and so

$$\begin{array}{ll} p_{K}(z) & = & p_{K}((c/c_{1})x) = (c/c_{1})p_{K}(x) \\ & < & 1 \mbox{ since } c/c_{1} < 1 \mbox{ and } p_{K}(x) < 1. \end{array}$$

So z is an internal point of K by Proposition 5.12.

Proof (Part 2). Then

$$f(x + t(-x)) = f((1 - t)x) = (1 - t)f(x) \in f(x) = I.$$

So $(1+t)f(x) \le b$ and f(x) < b. Similarly choose t > 0 such that $x + t(-x) = (1-t)f(x) \in f(K) = I$. So $(1-t)f(x) \ge z$ and f(x) < a. So $f(x) \in I$.

Conversely, suppose $c \in (a, b)$. If $c \ge 0$, pick c_1 such that $c < c_1 < b$, and choose $x \in K$ such that $f(x) = c_1$. Let $x = (c/c_1)x$. Then $f(z) = f((c/c_1)x) = \frac{c}{c_1}f(x) = \frac{c}{c_1}c_1 = c$. Also, $p_K(x) \le 1$ since $x \in K$ (by Proposition 5.12) and so

$$\begin{array}{lll} p_{K}(z) & = & p_{K}((c/c_{1})x) = (c/c_{1})p_{K}(x) \\ & < & 1 \text{ since } c/c_{1} < 1 \text{ and } p_{K}(x) < 1. \end{array}$$

So z is an internal point of K by Proposition 5.12.

Proposition 5.13. Let K be a convex set which has some internal point and let f be a real valued linear functional on X. Then $f(K^o)$ is the interior of the interval f(K).

Proof (Part 3). If c < 0, pick c_2 such that $a < c_2 < c < 0$ and choose $x \in K$ such that $f(x) = c_2$. Let $z = (c/c_2)x$. Then $f(z) = f((c/c_2)x) = (c/c_2)f(x) = (c/c_2)c_2 = c$. Also, $p_K(x) \le 1$ since $x \in K$ (by Proposition 5.12), and so

$$\begin{array}{ll} p_{\mathcal{K}}(z) &=& p_{\mathcal{K}}((c/c_2)x) = (c/c_2)p_{\mathcal{K}}(x) \\ &<& 1 \text{ since } c_2 < c < 0 \text{ implies } 1 > c/c_2 > 0 \text{ and } p_{\mathcal{K}}(x) \leq 1. \end{array}$$

Proposition 5.13. Let K be a convex set which has some internal point and let f be a real valued linear functional on X. Then $f(K^o)$ is the interior of the interval f(K).

Proof (Part 3). If c < 0, pick c_2 such that $a < c_2 < c < 0$ and choose $x \in K$ such that $f(x) = c_2$. Let $z = (c/c_2)x$. Then $f(z) = f((c/c_2)x) = (c/c_2)f(x) = (c/c_2)c_2 = c$. Also, $p_K(x) \le 1$ since $x \in K$ (by Proposition 5.12), and so

$$\begin{array}{lll} p_{\mathcal{K}}(z) & = & p_{\mathcal{K}}((c/c_2)x) = (c/c_2)p_{\mathcal{K}}(x) \\ & < & 1 \text{ since } c_2 < c < 0 \text{ implies } 1 > c/c_2 > 0 \text{ and } p_{\mathcal{K}}(x) \leq 1. \end{array}$$

Again, z is an internal point of K by Proposition 5.12. So $f(K^{\circ}) = (a, b) = (f(K))^{\circ}$.

Proposition 5.13. Let K be a convex set which has some internal point and let f be a real valued linear functional on X. Then $f(K^o)$ is the interior of the interval f(K).

Proof (Part 3). If c < 0, pick c_2 such that $a < c_2 < c < 0$ and choose $x \in K$ such that $f(x) = c_2$. Let $z = (c/c_2)x$. Then $f(z) = f((c/c_2)x) = (c/c_2)f(x) = (c/c_2)c_2 = c$. Also, $p_K(x) \le 1$ since $x \in K$ (by Proposition 5.12), and so

$$\begin{array}{rcl} p_{\mathcal{K}}(z) &=& p_{\mathcal{K}}((c/c_2)x) = (c/c_2)p_{\mathcal{K}}(x) \\ &<& 1 \text{ since } c_2 < c < 0 \text{ implies } 1 > c/c_2 > 0 \text{ and } p_{\mathcal{K}}(x) \leq 1. \end{array}$$

Again, z is an internal point of K by Proposition 5.12. So $f(K^o) = (a, b) = (f(K))^o$.

Theorem 5.14. Geometric Hahn-Banach Extension Theorem. We consider a real normed linear space. Let K be a convex set with an internal point, and let P be a linear manifold such that $P \cap K^o = \emptyset$. Then there is a hyperplane H containing P such that $H \cap K^o = \emptyset$.

Proof. Without loss of generality, 0 is an internal point of K (since everything can be translated such that the internal point is translated to 0). Let $P = x_0 + Y$ be the linear manifold (where Y is a subspace). We have $x_0 \neq 0$ since we hypothesized $P \cap K^o = \emptyset$ and $0 \in K^o$.

Theorem 5.14. Geometric Hahn-Banach Extension Theorem. We consider a real normed linear space. Let K be a convex set with an internal point, and let P be a linear manifold such that $P \cap K^o = \emptyset$. Then there is a hyperplane H containing P such that $H \cap K^o = \emptyset$.

Proof. Without loss of generality, 0 is an internal point of K (since everything can be translated such that the internal point is translated to 0). Let $P = x_0 + Y$ be the linear manifold (where Y is a subspace). We have $x_0 \neq 0$ since we hypothesized $P \cap K^o = \emptyset$ and $0 \in K^o$. Define f_0 a real valued linear functional on span $(Y \cup \{x_0\})$ as $f_0(y + \alpha x_0) = \alpha$ for all $y \in Y$ and $\alpha \in \mathbb{R}$. Then for any $y \in Y$ we have $y + x_0 \notin K^o$ since $P \cap K^o = \emptyset$, so by Proposition 5.12 we have $f_0(y + x_0) = 1 \leq p_K(y + x_0)$.

Theorem 5.14. Geometric Hahn-Banach Extension Theorem. We consider a real normed linear space. Let K be a convex set with an internal point, and let P be a linear manifold such that $P \cap K^o = \emptyset$. Then there is a hyperplane H containing P such that $H \cap K^o = \emptyset$.

Proof. Without loss of generality, 0 is an internal point of K (since everything can be translated such that the internal point is translated to 0). Let $P = x_0 + Y$ be the linear manifold (where Y is a subspace). We have $x_0 \neq 0$ since we hypothesized $P \cap K^o = \emptyset$ and $0 \in K^o$. Define f_0 a real valued linear functional on span $(Y \cup \{x_0\})$ as $f_0(y + \alpha x_0) = \alpha$ for all $y \in Y$ and $\alpha \in \mathbb{R}$. Then for any $y \in Y$ we have $y + x_0 \notin K^o$ since $P \cap K^o = \emptyset$, so by Proposition 5.12 we have $f_0(y + x_0) = 1 \leq p_K(y + x_0)$. Also, $f_0(y - x_0) = -1 \leq p_K(y - x_0)$ (since $p_K \geq 0$). So we have $f_0(y + \alpha x_0) \leq p_K(y + \alpha x_0)$ for any $y \in Y$ and for $\alpha = \pm 1$.

Theorem 5.14. Geometric Hahn-Banach Extension Theorem. We consider a real normed linear space. Let K be a convex set with an internal point, and let P be a linear manifold such that $P \cap K^o = \emptyset$. Then there is a hyperplane H containing P such that $H \cap K^o = \emptyset$.

Proof. Without loss of generality, 0 is an internal point of K (since everything can be translated such that the internal point is translated to 0). Let $P = x_0 + Y$ be the linear manifold (where Y is a subspace). We have $x_0 \neq 0$ since we hypothesized $P \cap K^o = \emptyset$ and $0 \in K^o$. Define f_0 a real valued linear functional on span($Y \cup \{x_0\}$) as $f_0(y + \alpha x_0) = \alpha$ for all $y \in Y$ and $\alpha \in \mathbb{R}$. Then for any $y \in Y$ we have $y + x_0 \notin K^o$ since $P \cap K^o = \emptyset$, so by Proposition 5.12 we have $f_0(y + x_0) = 1 \le p_K(y + x_0)$. Also, $f_0(y - x_0) = -1 \le p_K(y - x_0)$ (since $p_{K} \geq 0$). So we have $f_{0}(y + \alpha x_{0}) \leq p_{K}(y + \alpha x_{0})$ for any $y \in Y$ and for $\alpha = \pm 1$. As in the proof of Theorem 5.1, this is sufficient to show that for all $z \in \text{span}(Y \cup \{x_0\})$ we have $f_0(z) \leq p_K(z)$.

Theorem 5.14. Geometric Hahn-Banach Extension Theorem. We consider a real normed linear space. Let K be a convex set with an internal point, and let P be a linear manifold such that $P \cap K^o = \emptyset$. Then there is a hyperplane H containing P such that $H \cap K^o = \emptyset$.

Proof. Without loss of generality, 0 is an internal point of K (since everything can be translated such that the internal point is translated to 0). Let $P = x_0 + Y$ be the linear manifold (where Y is a subspace). We have $x_0 \neq 0$ since we hypothesized $P \cap K^o = \emptyset$ and $0 \in K^o$. Define f_0 a real valued linear functional on span($Y \cup \{x_0\}$) as $f_0(y + \alpha x_0) = \alpha$ for all $y \in Y$ and $\alpha \in \mathbb{R}$. Then for any $y \in Y$ we have $y + x_0 \notin K^o$ since $P \cap K^o = \emptyset$, so by Proposition 5.12 we have $f_0(y+x_0) = 1 \le p_K(y+x_0)$. Also, $f_0(y-x_0) = -1 \le p_K(y-x_0)$ (since $p_{\mathcal{K}} > 0$). So we have $f_0(y + \alpha x_0) \le p_{\mathcal{K}}(y + \alpha x_0)$ for any $y \in Y$ and for $\alpha = \pm 1$. As in the proof of Theorem 5.1, this is sufficient to show that for all $z \in \text{span}(Y \cup \{x_0\})$ we have $f_0(z) \leq p_K(z)$.

Theorem 5.14. Geometric Hahn-Banach Extension Theorem. We consider a real normed linear space. Let K be a convex set with an internal point, and let P be a linear manifold such that $P \cap K^o = \emptyset$. Then there is a hyperplane H containing P such that $H \cap K^o = \emptyset$.

Proof (continued). We can extend f_0 to a linear functional f on all of X such that f is dominated by p_K , by the Hahn-Banach Extension Theorem (Theorem 5.1).

Theorem 5.14. Geometric Hahn-Banach Extension Theorem. We consider a real normed linear space. Let K be a convex set with an internal point, and let P be a linear manifold such that $P \cap K^o = \emptyset$. Then there is a hyperplane H containing P such that $H \cap K^o = \emptyset$.

Proof (continued). We can extend f_0 to a linear functional f on all of X such that f is dominated by p_K , by the Hahn-Banach Extension Theorem (Theorem 5.1). Let $H = f^{-1}(\{1\})$. Then H contains all of P (since $P = 1x_0 + Y$ and f maps all of P to 1), and H is a hyperplane by the note above (or the text on page 109).

Theorem 5.14. Geometric Hahn-Banach Extension Theorem. We consider a real normed linear space. Let K be a convex set with an internal point, and let P be a linear manifold such that $P \cap K^o = \emptyset$. Then there is a hyperplane H containing P such that $H \cap K^o = \emptyset$.

Proof (continued). We can extend f_0 to a linear functional f on all of X such that f is dominated by p_K , by the Hahn-Banach Extension Theorem (Theorem 5.1). Let $H = f^{-1}(\{1\})$. Then H contains all of P (since $P = 1x_0 + Y$ and f maps all of P to 1), and H is a hyperplane by the note above (or the text on page 109). For all $x \in K^o$, we have $f(x) \le p_K(x) < 1$, so $H \cap K^o$ is empty.

Theorem 5.14. Geometric Hahn-Banach Extension Theorem. We consider a real normed linear space. Let K be a convex set with an internal point, and let P be a linear manifold such that $P \cap K^o = \emptyset$. Then there is a hyperplane H containing P such that $H \cap K^o = \emptyset$.

Proof (continued). We can extend f_0 to a linear functional f on all of X such that f is dominated by p_K , by the Hahn-Banach Extension Theorem (Theorem 5.1). Let $H = f^{-1}(\{1\})$. Then H contains all of P (since $P = 1x_0 + Y$ and f maps all of P to 1), and H is a hyperplane by the note above (or the text on page 109). For all $x \in K^o$, we have $f(x) \le p_K(x) < 1$, so $H \cap K^o$ is empty.

Theorem 5.15

Theorem 5.15. The Hahn-Banach Separation Theorem.

We consider a real normed linear space. Let K and L be convex sets such that K has some internal point and $L \cap K^o = \emptyset$. Then there is a hyperplane separating K and L.

Proof. By Proposition 5.12, $K^o = p_K^{-1}[0, 1)$.

Theorem 5.15

Theorem 5.15. The Hahn-Banach Separation Theorem.

We consider a real normed linear space. Let K and L be convex sets such that K has some internal point and $L \cap K^o = \emptyset$. Then there is a hyperplane separating K and L.

Proof. By Proposition 5.12, $K^o = p_K^{-1}[0, 1)$. So for $x, y \in K^o$ we have for $\alpha \in [0, 1]$,

 $p_{K}(\alpha x + (1 - \alpha)y) = \alpha p_{K}(x) + (1 - \alpha)p_{K}(y) < \alpha(1) + (1 - \alpha)(1) = 1.$

So $\alpha x + (1 - \alpha)y \in K^o$ and K^o is convex.
Theorem 5.15. The Hahn-Banach Separation Theorem.

We consider a real normed linear space. Let K and L be convex sets such that K has some internal point and $L \cap K^o = \emptyset$. Then there is a hyperplane separating K and L.

Proof. By Proposition 5.12, $K^o = p_K^{-1}[0, 1)$. So for $x, y \in K^o$ we have for $\alpha \in [0, 1]$,

$$p_{\mathcal{K}}(\alpha x + (1-\alpha)y) = \alpha p_{\mathcal{K}}(x) + (1-\alpha)p_{\mathcal{K}}(y) < \alpha(1) + (1-\alpha)(1) = 1.$$

So $\alpha x + (1 - \alpha)y \in K^o$ and K^o is convex. Consider the set $J = K^o - L$. Let $j_1, j_2 \in J$. Then $j_1 = k_1 - \ell_1$ and $j_2 = k_2 - \ell_2$ for some $k_1, k_2 \in K^o$ and some $\ell_1, \ell_2 \in L$.

Theorem 5.15. The Hahn-Banach Separation Theorem.

We consider a real normed linear space. Let K and L be convex sets such that K has some internal point and $L \cap K^o = \emptyset$. Then there is a hyperplane separating K and L.

Proof. By Proposition 5.12, $K^o = p_K^{-1}[0, 1)$. So for $x, y \in K^o$ we have for $\alpha \in [0, 1]$,

$$p_{\mathcal{K}}(\alpha x + (1-\alpha)y) = \alpha p_{\mathcal{K}}(x) + (1-\alpha)p_{\mathcal{K}}(y) < \alpha(1) + (1-\alpha)(1) = 1.$$

So $\alpha x + (1 - \alpha)y \in K^o$ and K^o is convex. Consider the set $J = K^o - L$. Let $j_1, j_2 \in J$. Then $j_1 = k_1 - \ell_1$ and $j_2 = k_2 - \ell_2$ for some $k_1, k_2 \in K^o$ and some $\ell_1, \ell_2 \in L$. So for any $\alpha \in [0, 1]$,

$$\alpha j_1 + (1 - \alpha) j_2 = \alpha (k_1 - \ell_1) + (1 - \alpha) (k_2 - \ell_2)$$

$$= (\alpha k_1 + (1-\alpha)k_2) - (\alpha \ell_1 + (1-\alpha)\ell_2) \in K^{\circ} - L,$$

and so $J = K^o - L$ is convex.

()

Theorem 5.15. The Hahn-Banach Separation Theorem.

We consider a real normed linear space. Let K and L be convex sets such that K has some internal point and $L \cap K^o = \emptyset$. Then there is a hyperplane separating K and L.

Proof. By Proposition 5.12, $K^o = p_K^{-1}[0, 1)$. So for $x, y \in K^o$ we have for $\alpha \in [0, 1]$,

$$p_{\mathcal{K}}(\alpha x + (1-\alpha)y) = \alpha p_{\mathcal{K}}(x) + (1-\alpha)p_{\mathcal{K}}(y) < \alpha(1) + (1-\alpha)(1) = 1.$$

So $\alpha x + (1 - \alpha)y \in K^{o}$ and K^{o} is convex. Consider the set $J = K^{o} - L$. Let $j_{1}, j_{2} \in J$. Then $j_{1} = k_{1} - \ell_{1}$ and $j_{2} = k_{2} - \ell_{2}$ for some $k_{1}, k_{2} \in K^{o}$ and some $\ell_{1}, \ell_{2} \in L$. So for any $\alpha \in [0, 1]$,

$$\alpha j_1 + (1 - \alpha) j_2 = \alpha (k_1 - \ell_1) + (1 - \alpha) (k_2 - \ell_2)$$

$$= (\alpha k_1 + (1 - \alpha)k_2) - (\alpha \ell_1 + (1 - \alpha)\ell_2) \in K^{\circ} - L,$$

and so $J = K^o - L$ is convex.

Proof (continued). First, we show $J^o = J$. Of course, $J^o \subseteq J$. Let $k - \ell \in J$ where $k \in K^o$ and $\ell \in L$.

Proof (continued). First, we show $J^o = J$. Of course, $J^o \subseteq J$. Let $k - \ell \in J$ where $k \in K^o$ and $\ell \in L$. Since $K^{oo} = K^o$ (Proposition 5.10), k is internal to K^o , so for all $x \in X$ there is $r_x > 0$ such that for $0 \le \alpha \le r_x$ we have $k + \alpha x \in K^o$. Therefore $(k + \alpha x) - \ell = (k - \ell) + \alpha x \in K^o - L = J$, or $k - \ell \in J^o$. So $J \subseteq J^o$ and $J^o = J$

Proof (continued). First, we show $J^o = J$. Of course, $J^o \subseteq J$. Let $k - \ell \in J$ where $k \in K^o$ and $\ell \in L$. Since $K^{oo} = K^o$ (Proposition 5.10), k is internal to K^o , so for all $x \in X$ there is $r_x > 0$ such that for $0 \le \alpha \le r_x$ we have $k + \alpha x \in K^o$. Therefore $(k + \alpha x) - \ell = (k - \ell) + \alpha x \in K^o - L = J$, or $k - \ell \in J^o$. So $J \subseteq J^o$ and $J^o = J$.

Since we hypothesize that $L \cap K^o = \emptyset$, then $0 \notin K^o - L = J$.

Proof (continued). First, we show $J^o = J$. Of course, $J^o \subseteq J$. Let $k - \ell \in J$ where $k \in K^o$ and $\ell \in L$. Since $K^{oo} = K^o$ (Proposition 5.10), k is internal to K^o , so for all $x \in X$ there is $r_X > 0$ such that for $0 \le \alpha \le r_X$ we have $k + \alpha x \in K^o$. Therefore $(k + \alpha x) = \ell = (k - \ell) + \alpha x \in K^o = l = -\ell$ or $k = \ell \in -\ell^o$. So $\ell \subseteq -\ell^o$ and

 $(k + \alpha x) - \ell = (k - \ell) + \alpha x \in K^{\circ} - L = J$, or $k - \ell \in J^{\circ}$. So $J \subseteq J^{\circ}$ and $J^{\circ} = J$.

Since we hypothesize that $L \cap K^o = \emptyset$, then $0 \notin K^o - L = J$. Consider $\{0\}$ as a linear manifold; by the Geometric Hahn-Banach Extension Theorem (Theorem 5.14), there is a hyperplane H containing 0 and not intersecting $J = J^o$. Since H is a hyperplane containing 0, then there is a linear functional f on the whole space such that the nullspace N(f) = H (see page 109). So $N(f) \cap J = \emptyset$.

Proof (continued). First, we show $J^o = J$. Of course, $J^o \subseteq J$. Let $k - \ell \in J$ where $k \in K^o$ and $\ell \in L$. Since $K^{oo} = K^o$ (Proposition 5.10), k is internal to K^o , so for all $x \in X$ there is $r_x > 0$ such that for $0 \le \alpha \le r_x$ we have $k + \alpha x \in K^o$. Therefore

 $(k + \alpha x) - \ell = (k - \ell) + \alpha x \in K^{o} - L = J$, or $k - \ell \in J^{o}$. So $J \subseteq J^{o}$ and $J^{o} = J$.

Since we hypothesize that $L \cap K^o = \emptyset$, then $0 \notin K^o - L = J$. Consider $\{0\}$ as a linear manifold; by the Geometric Hahn-Banach Extension Theorem (Theorem 5.14), there is a hyperplane H containing 0 and not intersecting $J = J^o$. Since H is a hyperplane containing 0, then there is a linear functional f on the whole space such that the nullspace N(f) = H(see page 109). So $N(f) \cap J = \emptyset$. As in the proof of Proposition 5.13, $f(K^o)$ and f(L) are intervals of real numbers. These intervals are disjoint because, otherwise $f(k) = f(\ell)$ for some $k \in K^o$ and $\ell \in L$ and then $f(k - \ell) = f(k) - f(\ell) = 0$, implying $k - \ell \in N(f)$, but $k - \ell \in J = K - L$ and $N(f) \cap J = \emptyset$ as shown above.

Proof (continued). First, we show $J^o = J$. Of course, $J^o \subseteq J$. Let $k - \ell \in J$ where $k \in K^o$ and $\ell \in L$. Since $K^{oo} = K^o$ (Proposition 5.10), k is internal to K^o , so for all $x \in X$ there is $r_x > 0$ such that for $0 \le \alpha \le r_x$ we have $k + \alpha x \in K^o$. Therefore

 $(k + \alpha x) - \ell = (k - \ell) + \alpha x \in K^{o} - L = J$, or $k - \ell \in J^{o}$. So $J \subseteq J^{o}$ and $J^{o} = J$.

Since we hypothesize that $L \cap K^o = \emptyset$, then $0 \notin K^o - L = J$. Consider $\{0\}$ as a linear manifold; by the Geometric Hahn-Banach Extension Theorem (Theorem 5.14), there is a hyperplane H containing 0 and not intersecting $J = J^o$. Since H is a hyperplane containing 0, then there is a linear functional f on the whole space such that the nullspace N(f) = H(see page 109). So $N(f) \cap J = \emptyset$. As in the proof of Proposition 5.13, $f(K^o)$ and f(L) are intervals of real numbers. These intervals are disjoint because, otherwise $f(k) = f(\ell)$ for some $k \in K^o$ and $\ell \in L$ and then $f(k - \ell) = f(k) - f(\ell) = 0$, implying $k - \ell \in N(f)$, but $k - \ell \in J = K - L$ and $N(f) \cap J = \emptyset$ as shown above.

Theorem 5.15. The Hahn-Banach Separation Theorem.

We consider a real normed linear space. Let K and L be convex sets such that K has some internal point and $L \cap K^o = \emptyset$. Then there is a hyperplane separating K and L.

Proof (continued again). For any two disjoint intervals, there is some real number between the two. Possibly by replacing f with -f (which preserves all the needed properties of f; -f is linear and N(f) = N(-f)) there is c > 0 such that $f(K^o) < c \le f(L)$.

Theorem 5.15. The Hahn-Banach Separation Theorem.

We consider a real normed linear space. Let K and L be convex sets such that K has some internal point and $L \cap K^o = \emptyset$. Then there is a hyperplane separating K and L.

Proof (continued again). For any two disjoint intervals, there is some real number between the two. Possibly by replacing f with -f (which preserves all the needed properties of f; -f is linear and N(f) = N(-f)) there is c > 0 such that $f(K^o) < c \le f(L)$. In Proposition 5.13 it is shown that f(K) and $f(K^o)$ are both intervals of real numbers and differ at most by the inclusion/exclusion of endpoints. So we have $f(K) \le c \le f(L)$, since f(K) and $f(K^o)$ can only differ by endpoints.

Theorem 5.15. The Hahn-Banach Separation Theorem.

We consider a real normed linear space. Let K and L be convex sets such that K has some internal point and $L \cap K^o = \emptyset$. Then there is a hyperplane separating K and L.

Proof (continued again). For any two disjoint intervals, there is some real number between the two. Possibly by replacing f with -f (which preserves all the needed properties of f; -f is linear and N(f) = N(-f)) there is c > 0 such that $f(K^o) < c \le f(L)$. In Proposition 5.13 it is shown that f(K) and $f(K^o)$ are both intervals of real numbers and differ at most by the inclusion/exclusion of endpoints. So we have $f(K) \le c \le f(L)$, since f(K) and $f(K^o)$ can only differ by endpoints. So the hyperplane $f^{-1}(\{c\})$ separates f(K) and f(L), since they lie in different half spaces. (Since we do not have a strict inequality, we may not have a strict separation and open half spaces).

Theorem 5.15. The Hahn-Banach Separation Theorem.

We consider a real normed linear space. Let K and L be convex sets such that K has some internal point and $L \cap K^o = \emptyset$. Then there is a hyperplane separating K and L.

Proof (continued again). For any two disjoint intervals, there is some real number between the two. Possibly by replacing f with -f (which preserves all the needed properties of f; -f is linear and N(f) = N(-f)) there is c > 0 such that $f(K^o) < c \le f(L)$. In Proposition 5.13 it is shown that f(K) and $f(K^o)$ are both intervals of real numbers and differ at most by the inclusion/exclusion of endpoints. So we have $f(K) \le c \le f(L)$, since f(K) and $f(K^o)$ can only differ by endpoints. So the hyperplane $f^{-1}(\{c\})$ separates f(K) and f(L), since they lie in different half spaces. (Since we do not have a strict inequality, we may not have a strict separation and open half spaces).

Theorem 5.16. We consider a real normed linear space. Let K be a convex set with as internal point such that K contains all its bounding points. Then K is the intersection of all the half spaces containing K that are determined by the supporting hyperplanes.

Proof. By translation, we can assume 0 is internal to K. Let K_1 be the intersection of all supporting hyperplanes containing K. Since all these hyperplanes contain K, then $K \subseteq K_1$.

Theorem 5.16. We consider a real normed linear space. Let K be a convex set with as internal point such that K contains all its bounding points. Then K is the intersection of all the half spaces containing K that are determined by the supporting hyperplanes.

Proof. By translation, we can assume 0 is internal to K. Let K_1 be the intersection of all supporting hyperplanes containing K. Since all these hyperplanes contain K, then $K \subseteq K_1$. Suppose $y \notin K$. Let $x = y/p_K(y)$. Then $p_K(x) = 1$ and so by Proposition 5.12, x is a boundary point of K. So (by the Hahn-Banach Separation Theorem, Theorem 5.15) there is a supporting hyperplane H to K through x.

Theorem 5.16. We consider a real normed linear space. Let K be a convex set with as internal point such that K contains all its bounding points. Then K is the intersection of all the half spaces containing K that are determined by the supporting hyperplanes.

Proof. By translation, we can assume 0 is internal to K. Let K_1 be the intersection of all supporting hyperplanes containing K. Since all these hyperplanes contain K, then $K \subseteq K_1$. Suppose $y \notin K$. Let $x = y/p_K(y)$. Then $p_K(x) = 1$ and so by Proposition 5.12, x is a boundary point of K. So (by the Hahn-Banach Separation Theorem, Theorem 5.15) there is a supporting hyperplane H to K through x.

Choose a linear functional f such that $H = f^{-1}(\alpha)$ for some given $\alpha \in \mathbb{R}$ (as can be done by the comments on page 109). By replacing f with -f if necessary, we can have $f(K) \subseteq (-\infty, \alpha]$ (recall that f(K) is an interval of real numbers as shown in Proposition 5.13).

Theorem 5.16. We consider a real normed linear space. Let K be a convex set with as internal point such that K contains all its bounding points. Then K is the intersection of all the half spaces containing K that are determined by the supporting hyperplanes.

Proof. By translation, we can assume 0 is internal to K. Let K_1 be the intersection of all supporting hyperplanes containing K. Since all these hyperplanes contain K, then $K \subseteq K_1$. Suppose $y \notin K$. Let $x = y/p_K(y)$. Then $p_K(x) = 1$ and so by Proposition 5.12, x is a boundary point of K. So (by the Hahn-Banach Separation Theorem, Theorem 5.15) there is a supporting hyperplane H to K through x.

Choose a linear functional f such that $H = f^{-1}(\alpha)$ for some given $\alpha \in \mathbb{R}$ (as can be done by the comments on page 109). By replacing f with -f if necessary, we can have $f(K) \subseteq (-\infty, \alpha]$ (recall that f(K) is an interval of real numbers as shown in Proposition 5.13).

Theorem 5.16. We consider a real normed linear space. Let K be a convex set with as internal point such that K contains all its bounding points. Then K is the intersection of all the half spaces containing K that are determined by the supporting hyperplanes.

Proof (continued). Since $0 \in K$ and $0 \in f^{-1}(\{0\}) = N(f)$, then $\alpha \ge 0$. Since $x \in H$, then $f(x) = \alpha$. Since $y \notin K$ and K contains all its boundary points, then y is not a boundary point of K. So $p_K(y) > 1$ by Proposition 5.12, and hence

$$f(y) = f(p_{\mathcal{K}}(y)x) = p_{\mathcal{K}}(y)f(x) = \alpha p_{+}\mathcal{K}(y) > \alpha.$$

Theorem 5.16. We consider a real normed linear space. Let K be a convex set with as internal point such that K contains all its bounding points. Then K is the intersection of all the half spaces containing K that are determined by the supporting hyperplanes.

Proof (continued). Since $0 \in K$ and $0 \in f^{-1}(\{0\}) = N(f)$, then $\alpha \ge 0$. Since $x \in H$, then $f(x) = \alpha$. Since $y \notin K$ and K contains all its boundary points, then y is not a boundary point of K. So $p_K(y) > 1$ by Proposition 5.12, and hence

$$f(y) = f(p_{\mathcal{K}}(y)x) = p_{\mathcal{K}}(y)f(x) = \alpha p_{+}\mathcal{K}(y) > \alpha.$$

So y is not in the half space containing K determined by H (since $H = f^{-1}(\{\alpha\})$ and $f(K) \subseteq (-\infty, \alpha]$). So $y \notin K_1$.

Theorem 5.16. We consider a real normed linear space. Let K be a convex set with as internal point such that K contains all its bounding points. Then K is the intersection of all the half spaces containing K that are determined by the supporting hyperplanes.

Proof (continued). Since $0 \in K$ and $0 \in f^{-1}(\{0\}) = N(f)$, then $\alpha \ge 0$. Since $x \in H$, then $f(x) = \alpha$. Since $y \notin K$ and K contains all its boundary points, then y is not a boundary point of K. So $p_K(y) > 1$ by Proposition 5.12, and hence

$$f(y) = f(p_{\mathcal{K}}(y)x) = p_{\mathcal{K}}(y)f(x) = \alpha p_{+}\mathcal{K}(y) > \alpha.$$

So y is not in the half space containing K determined by H (since $H = f^{-1}(\{\alpha\})$ and $f(K) \subseteq (-\infty, \alpha]$). So $y \notin K_1$. We have shown the contrapositive of $y \in K_1 \Rightarrow y \in K$. That is, $K_1 \subseteq K$. Therefore $K = K_1$.

Theorem 5.16. We consider a real normed linear space. Let K be a convex set with as internal point such that K contains all its bounding points. Then K is the intersection of all the half spaces containing K that are determined by the supporting hyperplanes.

Proof (continued). Since $0 \in K$ and $0 \in f^{-1}(\{0\}) = N(f)$, then $\alpha \ge 0$. Since $x \in H$, then $f(x) = \alpha$. Since $y \notin K$ and K contains all its boundary points, then y is not a boundary point of K. So $p_K(y) > 1$ by Proposition 5.12, and hence

$$f(y) = f(p_{\mathcal{K}}(y)x) = p_{\mathcal{K}}(y)f(x) = \alpha p_{+}\mathcal{K}(y) > \alpha.$$

So y is not in the half space containing K determined by H (since $H = f^{-1}(\{\alpha\})$ and $f(K) \subseteq (-\infty, \alpha]$). So $y \notin K_1$. We have shown the contrapositive of $y \in K_1 \Rightarrow y \in K$. That is, $K_1 \subseteq K$. Therefore $K = K_1$.

Theorem 5.17. If K and L are disjoint convex sets of a real normed linear space X, where K is compact and L is closed, then there is a hyperplane strictly separating K and L.

Proof. As argued in the proof of the Hahn-Banach Separation Theorem (Theorem 5.15), the difference of two convex sets is convex, so the set K - L is convex. By Lemma 3, K - L is closed.

Theorem 5.17. If K and L are disjoint convex sets of a real normed linear space X, where K is compact and L is closed, then there is a hyperplane strictly separating K and L.

Proof. As argued in the proof of the Hahn-Banach Separation Theorem (Theorem 5.15), the difference of two convex sets is convex, so the set K - L is convex. By Lemma 3, K - L is closed. Since K and L are disjoint, $0 \notin K - L$ and since K - L is closed, for some r > 0 we have $B(r) \cap (K - L) = \emptyset$. So K - L is convex and b(R) is convex with an internal point and $B(r)^{\circ} = B(r)$.

Theorem 5.17. If K and L are disjoint convex sets of a real normed linear space X, where K is compact and L is closed, then there is a hyperplane strictly separating K and L.

Proof. As argued in the proof of the Hahn-Banach Separation Theorem (Theorem 5.15), the difference of two convex sets is convex, so the set K - L is convex. By Lemma 3, K - L is closed. Since K and L are disjoint, $0 \notin K - L$ and since K - L is closed, for some r > 0 we have $B(r) \cap (K - L) = \emptyset$. So K - L is convex and b(R) is convex with an internal point and $B(r)^{\circ} = B(r)$. So by applying the Hahn-Banach Separation Theorem (Theorem 5.15), there is a hyperplane separating K - L and $B(r)^{\circ} = B(r)$. So there is a linear functional f such that the interval in \mathbb{R} of f(K - L) (we get intervals in \mathbb{R} as seen in the proof of Proposition 5.13) is disjoint from the interval in \mathbb{R} of f(B(r)).

Theorem 5.17. If K and L are disjoint convex sets of a real normed linear space X, where K is compact and L is closed, then there is a hyperplane strictly separating K and L.

Proof. As argued in the proof of the Hahn-Banach Separation Theorem (Theorem 5.15), the difference of two convex sets is convex, so the set K - L is convex. By Lemma 3, K - L is closed. Since K and L are disjoint, $0 \notin K - L$ and since K - L is closed, for some r > 0 we have $B(r) \cap (K-L) = \emptyset$. So K-L is convex and b(R) is convex with an internal point and $B(r)^o = B(r)$. So by applying the Hahn-Banach Separation Theorem (Theorem 5.15), there is a hyperplane separating K - L and $B(r)^o = B(r)$. So there is a linear functional f such that the interval in \mathbb{R} of f(K - L) (we get intervals in \mathbb{R} as seen in the proof of Proposition 5.13) is disjoint from the interval in \mathbb{R} of f(B(r)). (The disjointness follows from the strict inequality in the first displaymath equation on page 115). Since $0 = f(0) \in f(B(r))$, we can assume (possibly by replacing f with -f) that $f(K - L) \subseteq (0, \infty)$.

()

Theorem 5.17. If K and L are disjoint convex sets of a real normed linear space X, where K is compact and L is closed, then there is a hyperplane strictly separating K and L.

Proof. As argued in the proof of the Hahn-Banach Separation Theorem (Theorem 5.15), the difference of two convex sets is convex, so the set K - L is convex. By Lemma 3, K - L is closed. Since K and L are disjoint, $0 \notin K - L$ and since K - L is closed, for some r > 0 we have $B(r) \cap (K-L) = \emptyset$. So K-L is convex and b(R) is convex with an internal point and $B(r)^o = B(r)$. So by applying the Hahn-Banach Separation Theorem (Theorem 5.15), there is a hyperplane separating K - L and $B(r)^o = B(r)$. So there is a linear functional f such that the interval in \mathbb{R} of f(K - L) (we get intervals in \mathbb{R} as seen in the proof of Proposition 5.13) is disjoint from the interval in \mathbb{R} of f(B(r)). (The disjointness follows from the strict inequality in the first displaymath equation on page 115). Since $0 = f(0) \in f(B(r))$, we can assume (possibly by replacing f with -f) that $f(K - L) \subseteq (0, \infty)$.

Theorem 5.17. If K and L are disjoint convex sets of a real normed linear space X, where K is compact and L is closed, then there is a hyperplane strictly separating K and L.

Proof (continued). Let $\beta = \sup f(L)$ and $\gamma = \inf f(K)$. It must be that $\beta < \gamma$, or else we could find $k \in K$ and $\ell \in L$ such that $||k - \ell||$ is arbitrarily small, but then we could have $k - \ell \in B(r)$, or $B(r) \cap (K - L) \neq \emptyset$, a contradiction.

Theorem 5.17. If K and L are disjoint convex sets of a real normed linear space X, where K is compact and L is closed, then there is a hyperplane strictly separating K and L.

Proof (continued). Let $\beta = \sup f(L)$ and $\gamma = \inf f(K)$. It must be that $\beta < \gamma$, or else we could find $k \in K$ and $\ell \in L$ such that $||k - \ell||$ is arbitrarily small, but then we could have $k - \ell \in B(r)$, or $B(r) \cap (K - L) \neq \emptyset$, a contradiction. Let δ satisfy $\beta < \delta < \gamma$. Then $f^{-1}(\{\delta\})$ is a hyperplane separating K and L since $f(K) \subseteq (-\infty, \beta]$ and $f(L) \subseteq [\gamma, \infty)$.

Theorem 5.17. If K and L are disjoint convex sets of a real normed linear space X, where K is compact and L is closed, then there is a hyperplane strictly separating K and L.

Proof (continued). Let $\beta = \sup f(L)$ and $\gamma = \inf f(K)$. It must be that $\beta < \gamma$, or else we could find $k \in K$ and $\ell \in L$ such that $||k - \ell||$ is arbitrarily small, but then we could have $k - \ell \in B(r)$, or $B(r) \cap (K - L) \neq \emptyset$, a contradiction. Let δ satisfy $\beta < \delta < \gamma$. Then $f^{-1}(\{\delta\})$ is a hyperplane separating K and L since $f(K) \subseteq (-\infty, \beta]$ and $f(L) \subseteq [\gamma, \infty)$.

Theorem 5.18. Let K and L be two disjoint convex sets in \mathbb{R}^n . Then there is a hyperplane H separating K and L.

Proof. Without loss of generality (by translation) we may assume $0 \in K$.

Theorem 5.18. Let K and L be two disjoint convex sets in \mathbb{R}^n . Then there is a hyperplane H separating K and L.

Proof. Without loss of generality (by translation) we may assume $0 \in K$. First, suppose dim(K) = dim(span(K)) = n. Then by Exercise 5.18, K contains an internal point. By the Hahn-Banach Separation Theorem (Theorem 5.15) there is a hyperplane separating K and L.

Theorem 5.18. Let K and L be two disjoint convex sets in \mathbb{R}^n . Then there is a hyperplane H separating K and L.

Proof. Without loss of generality (by translation) we may assume $0 \in K$. First, suppose dim $(K) = \dim(\text{span}(K)) = n$. Then by Exercise 5.18, K contains an internal point. By the Hahn-Banach Separation Theorem (Theorem 5.15) there is a hyperplane separating K and L. Second, suppose dim $(K) = \dim(\text{span}(K)) = m < n$ and suppose the result holds for dim $(K) \in \{m + 1, m + 2, ..., n\}$ (the text calls the technique used here "backwards induction").

Theorem 5.18. Let K and L be two disjoint convex sets in \mathbb{R}^n . Then there is a hyperplane H separating K and L.

Proof. Without loss of generality (by translation) we may assume $0 \in K$. First, suppose dim $(K) = \dim(\text{span}(K)) = n$. Then by Exercise 5.18, K contains an internal point. By the Hahn-Banach Separation Theorem (Theorem 5.15) there is a hyperplane separating K and L. Second, suppose dim $(K) = \dim(\text{span}(K)) = m < n$ and suppose the result holds for dim $(K) \in \{m + 1, m + 2, ..., n\}$ (the text calls the technique used here "backwards induction"). Choose $x \notin \text{span}(K)$. Let $K_+ = \{k + \alpha x \mid k \in K, \alpha \in [0, 1] \text{ and } K_- = \{k - \alpha x \mid k \in K, \alpha \in [0, 1]\}$. Both K_+ and K_- are convex and dim $(K_+) = \dim(K_-) = m + 1$.

Theorem 5.18. Let K and L be two disjoint convex sets in \mathbb{R}^n . Then there is a hyperplane H separating K and L.

Proof. Without loss of generality (by translation) we may assume $0 \in K$. First, suppose dim(K) = dim(span(K)) = n. Then by Exercise 5.18, K contains an internal point. By the Hahn-Banach Separation Theorem (Theorem 5.15) there is a hyperplane separating K and L. Second, suppose dim(K) = dim(span(K)) = m < n and suppose the result holds for dim $(K) \in \{m + 1, m + 2, ..., n\}$ (the text calls the technique used here "backwards induction"). Choose $x \notin \text{span}(K)$. Let $K_{+} = \{k + \alpha x \mid k \in K, \alpha \in [0, 1\} \text{ and } K_{-} = \{k - \alpha x \mid k \in K, \alpha \in [0, 1]\}.$ Both K_+ and K_- are convex and dim $(K_+) = \dim(K_-) = m + 1$. Notice that set L cannot intersect both K_{+} and K_{-} , or else we could find $\ell_1, \ell_2 \in L, k_1, k_2 \in K$, and $\alpha_1, \alpha_2 \in [0, 1]$ such that $\ell_1 = k_1 + \alpha_1 x$ and $l_2 = k_2 - \alpha_2 x$.

Theorem 5.18. Let K and L be two disjoint convex sets in \mathbb{R}^n . Then there is a hyperplane H separating K and L.

Proof. Without loss of generality (by translation) we may assume $0 \in K$. First, suppose dim(K) = dim(span(K)) = n. Then by Exercise 5.18, K contains an internal point. By the Hahn-Banach Separation Theorem (Theorem 5.15) there is a hyperplane separating K and L. Second, suppose dim(K) = dim(span(K)) = m < n and suppose the result holds for dim $(K) \in \{m + 1, m + 2, ..., n\}$ (the text calls the technique used here "backwards induction"). Choose $x \notin \text{span}(K)$. Let $K_{+} = \{k + \alpha x \mid k \in K, \alpha \in [0, 1\} \text{ and } K_{-} = \{k - \alpha x \mid k \in K, \alpha \in [0, 1]\}.$ Both K_+ and K_- are convex and dim $(K_+) = \dim(K_-) = m + 1$. Notice that set L cannot intersect both K_+ and K_- , or else we could find $\ell_1, \ell_2 \in L, k_1, k_2 \in K$, and $\alpha_1, \alpha_2 \in [0, 1]$ such that $\ell_1 = k_1 + \alpha_1 x$ and $\ell_2 = k_2 - \alpha_2 x.$

()

Theorem 5.18. Let K and L be two disjoint convex sets in \mathbb{R}^n . Then there is a hyperplane H separating K and L.

Proof (continued). Then for $\beta = \alpha_2/(\alpha_1 + \alpha_2) \in [0, 1]$ and $1 - \beta = \alpha_1/(\alpha_1 + \alpha_2)$ we have $\beta \ell_1 = \alpha_2(k_1 + \alpha_1 x)/(\alpha_1 + \alpha_2)$ and $(1 - \beta)\ell_2 = \alpha_1(k_2 - \alpha_2 x)/(\alpha_1 + \alpha_2)$ and so

$$\beta \ell_1 + (1-\beta)\ell_2 = \frac{\alpha_1(k_1 + \alpha_1 x)}{\alpha_1 + \alpha_2} + \frac{\alpha_2(k_2 - \alpha_2 x)}{\alpha_1 + \alpha_2}$$

 $= \alpha_1 k_1 / (\alpha_1 + \alpha_2) + \alpha_2 k_2 / (\alpha_1 + \alpha_2) = \beta k_1 + (1 - \beta) k_2.$

Theorem 5.18 (continued)

Theorem 5.18. Let K and L be two disjoint convex sets in \mathbb{R}^n . Then there is a hyperplane H separating K and L.

Proof (continued). Then for $\beta = \alpha_2/(\alpha_1 + \alpha_2) \in [0, 1]$ and $1 - \beta = \alpha_1/(\alpha_1 + \alpha_2)$ we have $\beta \ell_1 = \alpha_2(k_1 + \alpha_1 x)/(\alpha_1 + \alpha_2)$ and $(1 - \beta)\ell_2 = \alpha_1(k_2 - \alpha_2 x)/(\alpha_1 + \alpha_2)$ and so $\beta \ell_1 + (1 - \beta)\ell_2 = \frac{\alpha_1(k_1 + \alpha_1 x)}{\alpha_1 + \alpha_2} + \frac{\alpha_2(k_2 - \alpha_2 x)}{\alpha_1 + \alpha_2}$ $= \alpha_1 k_1/(\alpha_1 + \alpha_2) + \alpha_2 k_2/(\alpha_1 + \alpha_2) = \beta k_1 + (1 - \beta)k_2.$ But since $\beta \in [0, 1]$ and K and L are convex, then $\beta \ell + (1 - \beta)\ell_2 = \beta k_1 + (1 - \beta)k_2$ is in both L and K, contradicting the

hypothesis of disjointness. Therefore, either $L \cup K_{-} = \emptyset$ or $L \cap K_{+} = \emptyset$. Without loss of generality, suppose $L \cap K_{-} = \emptyset$.

Theorem 5.18 (continued)

Theorem 5.18. Let K and L be two disjoint convex sets in \mathbb{R}^n . Then there is a hyperplane H separating K and L.

Proof (continued). Then for $\beta = \alpha_2/(\alpha_1 + \alpha_2) \in [0, 1]$ and $1-\beta = \alpha_1/(\alpha_1+\alpha_2)$ we have $\beta \ell_1 = \alpha_2(k_1+\alpha_1 x)/(\alpha_1+\alpha_2)$ and $(1-\beta)\ell_2 = \alpha_1(k_2 - \alpha_2 x)/(\alpha_1 + \alpha_2)$ and so $\beta \ell_1 + (1-\beta)\ell_2 = \frac{\alpha_1(k_1 + \alpha_1 x)}{\alpha_1 + \alpha_2} + \frac{\alpha_2(k_2 - \alpha_2 x)}{\alpha_1 + \alpha_2}$ $= \alpha_1 k_1 / (\alpha_1 + \alpha_2) + \alpha_2 k_2 / (\alpha_1 + \alpha_2) = \beta k_1 + (1 - \beta) k_2.$ But since $\beta \in [0, 1]$ and K and L are convex, then $\beta \ell + (1 - \beta) \ell_2 = \beta k_1 + (1 - \beta) k_2$ is in both L and K, contradicting the hypothesis of disjointness. Therefore, either $L \cup K_{-} = \emptyset$ or $L \cap K_{+} = \emptyset$. Without loss of generality, suppose $L \cap K_{-} = \emptyset$. Then by the induction hypothesis, there is a hyperplane H that separates K_{-} and L. Since $K \subseteq K_{-}$, then H separates K and L. The result now follows by "backwards induction."

()

Theorem 5.18 (continued)

Theorem 5.18. Let K and L be two disjoint convex sets in \mathbb{R}^n . Then there is a hyperplane H separating K and L.

Proof (continued). Then for $\beta = \alpha_2/(\alpha_1 + \alpha_2) \in [0, 1]$ and $1-\beta = \alpha_1/(\alpha_1+\alpha_2)$ we have $\beta \ell_1 = \alpha_2(k_1+\alpha_1 x)/(\alpha_1+\alpha_2)$ and $(1 - \beta)\ell_2 = \alpha_1(k_2 - \alpha_2 x)/(\alpha_1 + \alpha_2)$ and so $\beta \ell_1 + (1-\beta)\ell_2 = \frac{\alpha_1(k_1 + \alpha_1 x)}{\alpha_1 + \alpha_2} + \frac{\alpha_2(k_2 - \alpha_2 x)}{\alpha_1 + \alpha_2}$ $= \alpha_1 k_1 / (\alpha_1 + \alpha_2) + \alpha_2 k_2 / (\alpha_1 + \alpha_2) = \beta k_1 + (1 - \beta) k_2.$ But since $\beta \in [0, 1]$ and K and L are convex, then $\beta \ell + (1 - \beta)\ell_2 = \beta k_1 + (1 - \beta)k_2$ is in both L and K, contradicting the hypothesis of disjointness. Therefore, either $L \cup K_{-} = \emptyset$ or $L \cap K_{+} = \emptyset$. Without loss of generality, suppose $L \cap K_{-} = \emptyset$. Then by the induction hypothesis, there is a hyperplane H that separates K_{-} and L. Since

 $K \subseteq K_{-}$, then *H* separates *K* and *L*. The result now follows by "hadwards induction"

"backwards induction."