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Lemma 1

Lemma 1

Lemma 1. Let H be a hyperplane in X . If H = f −1({α}) and
H = g−1({β}) for some linear functionals f and g , then f = γg for some
γ ∈ R.

Proof. Suppose x ′ + Y = H = f −1({α}) = g−1({β}).

Then for any
v ,w ∈ Y , β = g(x ′ + v) = g(x ′ + w), and g(v) = g(w) = β − g(x ′) and
so g is constant on Y . Since 0 ∈ Y (Y is a subspace), g(0) = 0 and so
g(y) = 0 for all y ∈ Y . So if x ′ 6= 0 then g(x ′) = g(x ′ + 0) = β.
Similarly, f (x ′) = α. Since for x ′ 6∈ H, span(T ∪ {x ′}) = X and for any
y + δx ′ ∈ X we have

f (y + δx ′) = f (y) + δf (x ′) = δf (x ′) = δα,

g(y + δx ′) = g(y) + δg(x ′) = δg(x ′) = δβ.

So for any x ∈ X we have f (x) = (α/β)g(x).
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Lemma 1

Lemma 1 (continued)

Lemma 1. Let H be a hyperplane in X . If H = f −1({α}) and
H = g−1({β}) for some linear functionals f and g , then f = γg for some
γ ∈ R.

Proof (continued). If x ′ = 0 and H is a subspace, then
H = f −1(0) = g−1(0).

Let x ∈ X and z 6∈ H. Since H is maximal,
X = span(Y ∪ {z}) and for any y + δz ∈ X we have, as above,
f (y + δz) = δf (z) and g(y + δz) = δg(z). So for any x ∈ X we have
g(x) = (g(z)/f (z))f (x) (where g(z) and f (z) are constant).
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Proposition 5.9

Proposition 5.9

Proposition 5.9. For a convex set in Rn, all internal points are interior.

Proof. By Theorem 2.31(b), all norms on Rn are equivalent, so we choose
the sup norm as the norm on Rn, without loss of generality. Let a be an
internal point of a convex set A ⊂ Rn. Recall that δi represents the ith
standard basis vector for Rn. Since a is an internal point of A then for all
vectors x ∈ Rn there exists rx > 0 such that a + trx ∈ A for 0 ≤ t ≤ rx (by
definition).

So we consider the parameters rδi
and r−δi

for each standard
basis vector and its negative and define r = min{rδi

, r−δi
| i = 1, 2, . . . , n}.

Then r > 0 (this is where finite dimensional is needed). Let v be any
vector in Rn with norm ‖v‖ < r/n; say v =

∑n
i=1 αiδi . Then

a + v =
1

n

n∑
i=1

(a + nαiδi ).

Now each |αi | ≤ r/n, or n|αi | ≤ r ≤ rδi
and n|αi | ≤ r ≤ r−δi

(we need to
consider the “direction” −δi since αi may be negative).

() Introduction to Functional Analysis May 6, 2017 5 / 27



Proposition 5.9

Proposition 5.9

Proposition 5.9. For a convex set in Rn, all internal points are interior.

Proof. By Theorem 2.31(b), all norms on Rn are equivalent, so we choose
the sup norm as the norm on Rn, without loss of generality. Let a be an
internal point of a convex set A ⊂ Rn. Recall that δi represents the ith
standard basis vector for Rn. Since a is an internal point of A then for all
vectors x ∈ Rn there exists rx > 0 such that a + trx ∈ A for 0 ≤ t ≤ rx (by
definition). So we consider the parameters rδi

and r−δi
for each standard

basis vector and its negative and define r = min{rδi
, r−δi

| i = 1, 2, . . . , n}.
Then r > 0 (this is where finite dimensional is needed).

Let v be any
vector in Rn with norm ‖v‖ < r/n; say v =

∑n
i=1 αiδi . Then

a + v =
1

n

n∑
i=1

(a + nαiδi ).

Now each |αi | ≤ r/n, or n|αi | ≤ r ≤ rδi
and n|αi | ≤ r ≤ r−δi

(we need to
consider the “direction” −δi since αi may be negative).

() Introduction to Functional Analysis May 6, 2017 5 / 27



Proposition 5.9

Proposition 5.9

Proposition 5.9. For a convex set in Rn, all internal points are interior.

Proof. By Theorem 2.31(b), all norms on Rn are equivalent, so we choose
the sup norm as the norm on Rn, without loss of generality. Let a be an
internal point of a convex set A ⊂ Rn. Recall that δi represents the ith
standard basis vector for Rn. Since a is an internal point of A then for all
vectors x ∈ Rn there exists rx > 0 such that a + trx ∈ A for 0 ≤ t ≤ rx (by
definition). So we consider the parameters rδi

and r−δi
for each standard

basis vector and its negative and define r = min{rδi
, r−δi

| i = 1, 2, . . . , n}.
Then r > 0 (this is where finite dimensional is needed). Let v be any
vector in Rn with norm ‖v‖ < r/n; say v =

∑n
i=1 αiδi . Then

a + v =
1

n

n∑
i=1

(a + nαiδi ).

Now each |αi | ≤ r/n, or n|αi | ≤ r ≤ rδi
and n|αi | ≤ r ≤ r−δi

(we need to
consider the “direction” −δi since αi may be negative).

() Introduction to Functional Analysis May 6, 2017 5 / 27



Proposition 5.9

Proposition 5.9

Proposition 5.9. For a convex set in Rn, all internal points are interior.

Proof. By Theorem 2.31(b), all norms on Rn are equivalent, so we choose
the sup norm as the norm on Rn, without loss of generality. Let a be an
internal point of a convex set A ⊂ Rn. Recall that δi represents the ith
standard basis vector for Rn. Since a is an internal point of A then for all
vectors x ∈ Rn there exists rx > 0 such that a + trx ∈ A for 0 ≤ t ≤ rx (by
definition). So we consider the parameters rδi

and r−δi
for each standard

basis vector and its negative and define r = min{rδi
, r−δi

| i = 1, 2, . . . , n}.
Then r > 0 (this is where finite dimensional is needed). Let v be any
vector in Rn with norm ‖v‖ < r/n; say v =

∑n
i=1 αiδi . Then

a + v =
1

n

n∑
i=1

(a + nαiδi ).

Now each |αi | ≤ r/n, or n|αi | ≤ r ≤ rδi
and n|αi | ≤ r ≤ r−δi

(we need to
consider the “direction” −δi since αi may be negative).

() Introduction to Functional Analysis May 6, 2017 5 / 27



Proposition 5.9

Proposition 5.9 (continued)

Proposition 5.9. For a convex set in Rn, all internal points are interior.

Proof (continued). Therefore a + nαiδi ∈ A for each i = 1, 2, . . . , n. The
convexity of A then implies, by Exercise 5.18(a), that

a + v =
n∑

i=1

1

n
(a + nαiδi ) ∈ A.

Since this holds for all v ∈ Rn with ‖v‖ < r/n, then B(a; r/n) ⊂ A.
Therefore, a is an interior point of A.
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Proposition 5.10

Proposition 5.10

Proposition 5.10. If A is convex, then Aoo = Ao .

Proof. Let a ∈ Ao and for each unit vector y define ry > 0 such that
a + ty ∈ A for all 0 ≤ t ≤ ry . We now show that each a + ty for
0 ≤ t ≤ ry/2 is itself internal to Ao .

Let z be a unit vector and define rz
as above. Then for 0 ≤ s ≤ rz/2 and for 0 ≤ t ≤ ry/2 we have
(a + ty) + sz = 1

2((a + 2ty) + (a + 2sz)). Now a + 2ty ∈ A for
0 ≤ t ≤ ry/2 and a + 2sz ∈ A for 0 ≤ t ≤ rz/2, so
1
2((a + 2ty) + (a + 2sz)) ∈ A since A is convex. So (a + ty) ∈ Ao for all
0 ≤ t ≤ ry/2. That is, a ∈ Aoo . So Ao ⊆ Aoo . Of course, Aoo ⊆ Ao , and
hence Ao = Aoo .
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Proposition 5.11

Proposition 5.11

Proposition 5.11. Given a Minkowski functional p, let
Kp = {x | p(x) < 1}. Then Kp is convex and 0 is an internal point of Kp.

Proof. Let x , y ∈ Kp and α ∈ [0, 1].

Then

p(αx + (1− α)y) ≤ p(αx) + p((1− α)y)

= αp(x) + (1− α)p(y) < α(1) + (1− α)(1) = 1,

so Kp is convex.
Next, fix x ∈ X and choose rx > 0 such that rxp(x) < 1. Then, for
0 ≤ t ≤ rx ,

(1) if p(x) ≥ 0 then p(0 + tx) = p(tx) = tp(x) ≤ rxp(x) < 1,

(2) if p(x) ≤ 0 then p(0 + tx) = p(tx) = tp(x) ≤ 0 < 1.

So 0 + tx ∈ Kp for 0 ≤ t ≤ rx , and 0 is internal to Kp.

() Introduction to Functional Analysis May 6, 2017 8 / 27



Proposition 5.11

Proposition 5.11

Proposition 5.11. Given a Minkowski functional p, let
Kp = {x | p(x) < 1}. Then Kp is convex and 0 is an internal point of Kp.

Proof. Let x , y ∈ Kp and α ∈ [0, 1]. Then

p(αx + (1− α)y) ≤ p(αx) + p((1− α)y)

= αp(x) + (1− α)p(y) < α(1) + (1− α)(1) = 1,

so Kp is convex.

Next, fix x ∈ X and choose rx > 0 such that rxp(x) < 1. Then, for
0 ≤ t ≤ rx ,

(1) if p(x) ≥ 0 then p(0 + tx) = p(tx) = tp(x) ≤ rxp(x) < 1,

(2) if p(x) ≤ 0 then p(0 + tx) = p(tx) = tp(x) ≤ 0 < 1.

So 0 + tx ∈ Kp for 0 ≤ t ≤ rx , and 0 is internal to Kp.

() Introduction to Functional Analysis May 6, 2017 8 / 27



Proposition 5.11

Proposition 5.11

Proposition 5.11. Given a Minkowski functional p, let
Kp = {x | p(x) < 1}. Then Kp is convex and 0 is an internal point of Kp.

Proof. Let x , y ∈ Kp and α ∈ [0, 1]. Then

p(αx + (1− α)y) ≤ p(αx) + p((1− α)y)

= αp(x) + (1− α)p(y) < α(1) + (1− α)(1) = 1,

so Kp is convex.
Next, fix x ∈ X and choose rx > 0 such that rxp(x) < 1.

Then, for
0 ≤ t ≤ rx ,

(1) if p(x) ≥ 0 then p(0 + tx) = p(tx) = tp(x) ≤ rxp(x) < 1,

(2) if p(x) ≤ 0 then p(0 + tx) = p(tx) = tp(x) ≤ 0 < 1.

So 0 + tx ∈ Kp for 0 ≤ t ≤ rx , and 0 is internal to Kp.

() Introduction to Functional Analysis May 6, 2017 8 / 27



Proposition 5.11

Proposition 5.11

Proposition 5.11. Given a Minkowski functional p, let
Kp = {x | p(x) < 1}. Then Kp is convex and 0 is an internal point of Kp.

Proof. Let x , y ∈ Kp and α ∈ [0, 1]. Then

p(αx + (1− α)y) ≤ p(αx) + p((1− α)y)

= αp(x) + (1− α)p(y) < α(1) + (1− α)(1) = 1,

so Kp is convex.
Next, fix x ∈ X and choose rx > 0 such that rxp(x) < 1. Then, for
0 ≤ t ≤ rx ,

(1) if p(x) ≥ 0 then p(0 + tx) = p(tx) = tp(x) ≤ rxp(x) < 1,

(2) if p(x) ≤ 0 then p(0 + tx) = p(tx) = tp(x) ≤ 0 < 1.

So 0 + tx ∈ Kp for 0 ≤ t ≤ rx , and 0 is internal to Kp.

() Introduction to Functional Analysis May 6, 2017 8 / 27



Proposition 5.11

Proposition 5.11

Proposition 5.11. Given a Minkowski functional p, let
Kp = {x | p(x) < 1}. Then Kp is convex and 0 is an internal point of Kp.

Proof. Let x , y ∈ Kp and α ∈ [0, 1]. Then

p(αx + (1− α)y) ≤ p(αx) + p((1− α)y)

= αp(x) + (1− α)p(y) < α(1) + (1− α)(1) = 1,

so Kp is convex.
Next, fix x ∈ X and choose rx > 0 such that rxp(x) < 1. Then, for
0 ≤ t ≤ rx ,

(1) if p(x) ≥ 0 then p(0 + tx) = p(tx) = tp(x) ≤ rxp(x) < 1,

(2) if p(x) ≤ 0 then p(0 + tx) = p(tx) = tp(x) ≤ 0 < 1.

So 0 + tx ∈ Kp for 0 ≤ t ≤ rx , and 0 is internal to Kp.

() Introduction to Functional Analysis May 6, 2017 8 / 27



Proposition 5.11

Proposition 5.11

Proposition 5.11. Given a Minkowski functional p, let
Kp = {x | p(x) < 1}. Then Kp is convex and 0 is an internal point of Kp.

Proof. Let x , y ∈ Kp and α ∈ [0, 1]. Then

p(αx + (1− α)y) ≤ p(αx) + p((1− α)y)

= αp(x) + (1− α)p(y) < α(1) + (1− α)(1) = 1,

so Kp is convex.
Next, fix x ∈ X and choose rx > 0 such that rxp(x) < 1. Then, for
0 ≤ t ≤ rx ,

(1) if p(x) ≥ 0 then p(0 + tx) = p(tx) = tp(x) ≤ rxp(x) < 1,

(2) if p(x) ≤ 0 then p(0 + tx) = p(tx) = tp(x) ≤ 0 < 1.

So 0 + tx ∈ Kp for 0 ≤ t ≤ rx , and 0 is internal to Kp.

() Introduction to Functional Analysis May 6, 2017 8 / 27



Proposition 5.12

Proposition 5.12

Proposition 5.12. In a real normed linear space with a given convex set
K which has 0 as an internal point. Define

p(x) = inf{t > 0 | x/t ∈ K}.

Then:

(a) p is a Minkowski functional,

(b) p(x) < 1 if and only if x is an internal point of K ,

(c) p(x) = 1 if and only if x is a bounding point of K , and

(d) p(x) > 1 if and only if x is an external point of K .
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Proposition 5.12

Proposition 5.12(a)

Proposition 5.12. In a real normed linear space with a given convex set
K which has 0 as an internal point. Define p(x) = inf{t > 0 | x/t ∈ K}.
Then:

(a) p is a Minkowski functional.

Proof. For α ≥ 0 we have

p(αx) = inf{t > 0 | αx/t ∈ K} = α inf{t > 0 | x/t ∈ K} = αp(x).

Given any x , y ∈ K , suppose x/t and y/s are in K for some t > 0 and
s > 0. Then

x + y

t + s
=

(
t

t + 2

)
x

t
+

(
s

t + s

)
y

s
∈ K

since K is convex (and the coefficients in parentheses sum to 1). So
p(x + y) = inf{r > 0 | (x + y)/r ∈ K} ≤ t + s. Taking infima over t and
s such that x/t ∈ K and y/s ∈ K we get p(x + y) ≤ p(x) + p(y).
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Proposition 5.12

Proposition 5.12(b)

Proposition 5.12. In a real normed linear space with a given convex set
K which has 0 as an internal point. Define p(x) = inf{t > 0 | x/t ∈ K}.
Then:

(b) p(x) < 1 if and only if x is an internal point of K .

Proof of (b). If x is internal to K , choose t > 0 such that
x + tx = (1 + t)x ∈ K . This shows that p(x) ≤ 1/(1 + t) < 1.

Conversely, suppose p(x) < 1. Given any y ∈ X , choose ry so that
p(x) + ryp(y) < 1. Then for 0 ≤ t ≤ ry we have

p(x + ty) ≤ p(x) + p(ty) since p is a Minkowski functional by (a)

= p(x) + tp(y) ≤ p(x) + ryp(y) < 1.

So, by Lemma 2, x + ty ∈ K . Therefore, x is internal to K .
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Proposition 5.12

Proposition 5.12(d)

Proposition 5.12. In a real normed linear space with a given convex set
K which has 0 as an internal point. Define p(x) = inf{t > 0 | x/t ∈ K}.
Then:

(d) p(x) > 1 if and only if x is an external point of K .

Proof of (d). If x is external to K , choose 0 < t < 1 such that
x − tx = (1− t)x 6∈ K . By Lemma 2, p((1− t)x) = (1− t)p(x) ≥ 1. So
p(x) ≥ 1/(1− t) > 1.

Conversely, suppose that p(x) > 1. For any y ∈ X , choose ry > 0 so that
p(x)− ryp(−y) > 1. Then for 0 ≤ t ≤ ry we have

p(x) = p(x + ty − ty) ≤ p(x + ty) + tp(−y) (∗)

so that

p(x + ty) ≥ p(x)− tp(−y) by (∗)
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Proposition 5.12

Proposition 5.12(d) continued, and (c)

Proposition 5.12. In a real normed linear space with a given convex set
K which has 0 as an internal point. Define p(x) = inf{t > 0 | x/t ∈ K}.
Then:

(c) p(x) = 1 if and only if x is a bounding point of K , and

(d) p(x) > 1 if and only if x is an external point of K .

Proof of (d) continued. . . . so that

p(x + ty) ≥ p(x)− tp(−y) by (∗)
≥ p(x)− ryp(−y) since − t ≥ −ry

> 1.

By Lemma 2, x + ty 6∈ K . So x is an internal point of K c = X \ K . That
is, x is an external point of K .

Proof of (c). This follows from (b) and (d) and the definition of
boundary point.
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Proposition 5.13

Proposition 5.13

Proposition 5.13. Let K be a convex set which has some internal point
and let f be a real valued linear functional on X . Then f (K o) is the
interior of the interval f (K ).

Proof. Since K is convex, for any x , y ∈ K we have αx + (1− α)y ∈ K
for α ∈ [0, 1].

So

f (αx + (1− α)y) ∈ f (K ), or αf (x) + (1− α)f (y) ∈ f (K ).

So f (K ) is convex and since f (K ) ⊆ R, then f (K ) is an interval, I . Let
a = inf(I ) and b = sup(I ). We will show that f (K o) = (a, b). By
translation, we can translate an internal point to 0, so without loss of
generality 0 is an internal point.
Suppose x ∈ K o . Choose t > 0 such that x + tx = (1 + t)x ∈ K . Then

f (x + tx) = f ((1 + t)x) = (1 + t)f (x) ∈ f (K ) = I .

So (1 + t)f (x) ≤ b and f (x) < b. Similarly choose t > 0 such that
x + t(−x) = (1− t)x ∈ K .
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Proposition 5.13

Proposition 5.13 (Part 2)

Proof (Part 2). Then

f (x + t(−x)) = f ((1− t)x) = (1− t)f (x) ∈ f (x) = I .

So (1 + t)f (x) ≤ b and f (x) < b. Similarly choose t > 0 such that
x + t(−x) = (1− t)f (x) ∈ f (K ) = I . So (1− t)f (x) ≥ z and f (x) < a.
So f (x) ∈ I .

Conversely, suppose c ∈ (a, b). If c ≥ 0, pick c1 such that c < c1 < b,
and choose x ∈ K such that f (x) = c1. Let x = (c/c1)x . Then
f (z) = f ((c/c1)x) = c

c1
f (x) = c

c1
c1 = c . Also, pK (x) ≤ 1 since x ∈ K (by

Proposition 5.12) and so

pK (z) = pK ((c/c1)x) = (c/c1)pK (x)

< 1 since c/c1 < 1 and pK (x) < 1.

So z is an internal point of K by Proposition 5.12.
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< 1 since c/c1 < 1 and pK (x) < 1.
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Proposition 5.13

Proposition 5.13 (Part 3)

Proposition 5.13. Let K be a convex set which has some internal point
and let f be a real valued linear functional on X . Then f (K o) is the
interior of the interval f (K ).

Proof (Part 3). If c < 0, pick c2 such that a < c2 < c < 0 and choose
x ∈ K such that f (x) = c2. Let z = (c/c2)x . Then
f (z) = f ((c/c2)x) = (c/c2)f (x) = (c/c2)c2 = c . Also, pK (x) ≤ 1 since
x ∈ K (by Proposition 5.12), and so

pK (z) = pK ((c/c2)x) = (c/c2)pK (x)

< 1 since c2 < c < 0 implies 1 > c/c2 > 0 and pK (x) ≤ 1.

Again, z is an internal point of K by Proposition 5.12. So
f (K o) = (a, b) = (f (K ))o .
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Proposition 5.14, Geometric Hahn-Banach Extension Theorem

Proposition 5.14

Theorem 5.14. Geometric Hahn-Banach Extension Theorem.
We consider a real normed linear space. Let K be a convex set with an
internal point, and let P be a linear manifold such that P ∩K o = ∅. Then
there is a hyperplane H containing P such that H ∩ K o = ∅.

Proof. Without loss of generality, 0 is an internal point of K (since
everything can be translated such that the internal point is translated to
0). Let P = x0 + Y be the linear manifold (where Y is a subspace). We
have x0 6= 0 since we hypothesized P ∩ K o = ∅ and 0 ∈ K o .

Define f0 a real valued linear functional on span(Y ∪ {x0}) as
f0(y + αx0) = α for all y ∈ Y and α ∈ R. Then for any y ∈ Y we have
y + x0 6∈ K o since P ∩ K o = ∅, so by Proposition 5.12 we have
f0(y + x0) = 1 ≤ pK (y + x0). Also, f0(y − x0) = −1 ≤ pK (y − x0) (since
pK ≥ 0). So we have f0(y + αx0) ≤ pK (y + αx0) for any y ∈ Y and for
α = ±1. As in the proof of Theorem 5.1, this is sufficient to show that for
all z ∈ span(Y ∪ {x0}) we have f0(z) ≤ pK (z).
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Proposition 5.14, Geometric Hahn-Banach Extension Theorem

Theorem 5.14 (continued)

Theorem 5.14. Geometric Hahn-Banach Extension Theorem.
We consider a real normed linear space. Let K be a convex set with an
internal point, and let P be a linear manifold such that P ∩K o = ∅. Then
there is a hyperplane H containing P such that H ∩ K o = ∅.

Proof (continued). We can extend f0 to a linear functional f on all of X
such that f is dominated by pK , by the Hahn-Banach Extension Theorem
(Theorem 5.1).

Let H = f −1({1}). Then H contains all of P (since
P = 1x0 + Y and f maps all of P to 1), and H is a hyperplane by the note
above (or the text on page 109). For all x ∈ K o , we have
f (x) ≤ pK (x) < 1, so H ∩ K o is empty.
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Theorem 5.15, The Hahn-Banach Separation Theorem

Theorem 5.15

Theorem 5.15. The Hahn-Banach Separation Theorem.
We consider a real normed linear space. Let K and L be convex sets such
that K has some internal point and L ∩ K o = ∅. Then there is a
hyperplane separating K and L.

Proof. By Proposition 5.12, K o = p−1
K [0, 1).

So for x , y ∈ K o we have for
α ∈ [0, 1],

pK (αx + (1− α)y) = αpK (x) + (1− α)pK (y) < α(1) + (1− α)(1) = 1.

So αx + (1− α)y ∈ K o and K o is convex. Consider the set J = K o − L.
Let j1, j2 ∈ J. Then j1 = k1 − `1 and j2 = k2 − `2 for some k1, k2 ∈ K o

and some `1, `2 ∈ L. So for any α ∈ [0, 1],

αj1 + (1− α)j2 = α(k1 − `1) + (1− α)(k2 − `2)

= (αk1 + (1− α)k2)− (α`1 + (1− α)`2) ∈ K o − L,

and so J = K o − L is convex.
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Theorem 5.15, The Hahn-Banach Separation Theorem

Theorem 5.15 (continued)

Proof (continued). First, we show Jo = J. Of course, Jo ⊆ J. Let
k − ` ∈ J where k ∈ K o and ` ∈ L.

Since K oo = K o (Proposition 5.10), k
is internal to K o , so for all x ∈ X there is rx > 0 such that for 0 ≤ α ≤ rx
we have k + αx ∈ K o . Therefore
(k + αx)− ` = (k − `) + αx ∈ K o − L = J, or k − ` ∈ Jo . So J ⊆ Jo and
Jo = J.
Since we hypothesize that L ∩ K o = ∅, then 0 6∈ K o − L = J. Consider
{0} as a linear manifold; by the Geometric Hahn-Banach Extension
Theorem (Theorem 5.14), there is a hyperplane H containing 0 and not
intersecting J = Jo . Since H is a hyperplane containing 0, then there is a
linear functional f on the whole space such that the nullspace N(f ) = H
(see page 109). So N(f ) ∩ J = ∅. As in the proof of Proposition 5.13,
f (K o) and f (L) are intervals of real numbers. These intervals are disjoint
because, otherwise f (k) = f (`) for some k ∈ K o and ` ∈ L and then
f (k − `) = f (k)− f (`) = 0, implying k − ` ∈ N(f ), but k − ` ∈ J = K − L
and N(f ) ∩ J = ∅ as shown above.
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Since we hypothesize that L ∩ K o = ∅, then 0 6∈ K o − L = J.

Consider
{0} as a linear manifold; by the Geometric Hahn-Banach Extension
Theorem (Theorem 5.14), there is a hyperplane H containing 0 and not
intersecting J = Jo . Since H is a hyperplane containing 0, then there is a
linear functional f on the whole space such that the nullspace N(f ) = H
(see page 109). So N(f ) ∩ J = ∅. As in the proof of Proposition 5.13,
f (K o) and f (L) are intervals of real numbers. These intervals are disjoint
because, otherwise f (k) = f (`) for some k ∈ K o and ` ∈ L and then
f (k − `) = f (k)− f (`) = 0, implying k − ` ∈ N(f ), but k − ` ∈ J = K − L
and N(f ) ∩ J = ∅ as shown above.
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Theorem 5.15, The Hahn-Banach Separation Theorem

Theorem 5.15 (continued again)

Theorem 5.15. The Hahn-Banach Separation Theorem.
We consider a real normed linear space. Let K and L be convex sets such
that K has some internal point and L ∩ K o = ∅. Then there is a
hyperplane separating K and L.

Proof (continued again). For any two disjoint intervals, there is some
real number between the two. Possibly by replacing f with −f (which
preserves all the needed properties of f ; −f is linear and N(f ) = N(−f ))
there is c > 0 such that f (K o) < c ≤ f (L).

In Proposition 5.13 it is
shown that f (K ) and f (K o) are both intervals of real numbers and differ
at most by the inclusion/exclusion of endpoints. So we have
f (K ) ≤ c ≤ f (L), since f (K ) and f (K o) can only differ by endpoints. So
the hyperplane f −1({c}) separates f (K ) and f (L), since they lie in
different half spaces. (Since we do not have a strict inequality, we may not
have a strict separation and open half spaces).
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Theorem 5.16

Theorem 5.16

Theorem 5.16. We consider a real normed linear space. Let K be a
convex set with as internal point such that K contains all its bounding
points. Then K is the intersection of all the half spaces containing K that
are determined by the supporting hyperplanes.

Proof. By translation, we can assume 0 is internal to K . Let K1 be the
intersection of all supporting hyperplanes containing K . Since all these
hyperplanes contain K , then K ⊆ K1.

Suppose y 6∈ K . Let x = y/pK (y).
Then pK (x) = 1 and so by Proposition 5.12, x is a boundary point of K .
So (by the Hahn-Banach Separation Theorem, Theorem 5.15) there is a
supporting hyperplane H to K through x .
Choose a linear functional f such that H = f −1(α) for some given α ∈ R
(as can be done by the comments on page 109). By replacing f with −f if
necessary, we can have f (K ) ⊆ (−∞, α] (recall that f (K ) is an interval of
real numbers as shown in Proposition 5.13).
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Theorem 5.16

Theorem 5.16 (continued)

Theorem 5.16. We consider a real normed linear space. Let K be a
convex set with as internal point such that K contains all its bounding
points. Then K is the intersection of all the half spaces containing K that
are determined by the supporting hyperplanes.

Proof (continued). Since 0 ∈ K and 0 ∈ f −1({0}) = N(f ), then α ≥ 0.
Since x ∈ H, then f (x) = α. Since y 6∈ K and K contains all its boundary
points, then y is not a boundary point of K . So pK (y) > 1 by Proposition
5.12, and hence

f (y) = f (pK (y)x) = pK (y)f (x) = αp+K (y) > α.

So y is not in the half space containing K determined by H (since
H = f −1({α}) and f (K ) ⊆ (−∞, α]). So y 6∈ K1. We have shown the
contrapositive of y ∈ K1 ⇒ y ∈ K . That is, K1 ⊆ K . Therefore
K = K1.
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Theorem 5.17

Theorem 5.17

Theorem 5.17. If K and L are disjoint convex sets of a real normed linear
space X , where K is compact and L is closed, then there is a hyperplane
strictly separating K and L.
Proof. As argued in the proof of the Hahn-Banach Separation Theorem
(Theorem 5.15), the difference of two convex sets is convex, so the set
K − L is convex. By Lemma 3, K − L is closed.

Since K and L are
disjoint, 0 6∈ K − L and since K − L is closed, for some r > 0 we have
B(r) ∩ (K − L) = ∅. So K − L is convex and b(R) is convex with an
internal point and B(r)o = B(r). So by applying the Hahn-Banach
Separation Theorem (Theorem 5.15), there is a hyperplane separating
K − L and B(r)o = B(r). So there is a linear functional f such that the
interval in R of f (K − L) (we get intervals in R as seen in the proof of
Proposition 5.13) is disjoint from the interval in R of f (B(r)). (The
disjointness follows from the strict inequality in the first displaymath
equation on page 115). Since 0 = f (0) ∈ f (B(r)), we can assume
(possibly by replacing f with −f ) that f (K − L) ⊆ (0,∞).
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Theorem 5.17

Theorem 5.17 (continued)

Theorem 5.17. If K and L are disjoint convex sets of a real normed linear
space X , where K is compact and L is closed, then there is a hyperplane
strictly separating K and L.

Proof (continued). Let β = sup f (L) and γ = inf f (K ). It must be that
β < γ, or else we could find k ∈ K and ` ∈ L such that ‖k − `‖ is
arbitrarily small, but then we could have k − ` ∈ B(r), or
B(r) ∩ (K − L) 6= ∅, a contradiction.

Let δ satisfy β < δ < γ. Then
f −1({δ}) is a hyperplane separating K and L since f (K ) ⊆ (−∞, β] and
f (L) ⊆ [γ,∞).
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Theorem 5.18

Theorem 5.18

Theorem 5.18. Let K and L be two disjoint convex sets in Rn. Then
there is a hyperplane H separating K and L.

Proof. Without loss of generality (by translation) we may assume 0 ∈ K .

First, suppose dim(K ) = dim(span(K )) = n. Then by Exercise 5.18, K
contains an internal point. By the Hahn-Banach Separation Theorem
(Theorem 5.15) there is a hyperplane separating K and L.
Second, suppose dim(K ) = dim(span(K )) = m < n and suppose the result
holds for dim(K ) ∈ {m + 1,m + 2, . . . , n} (the text calls the technique
used here “backwards induction”). Choose x 6∈ span(K ). Let
K+ = {k + αx | k ∈ K , α ∈ [0, 1} and K− = {k − αx | k ∈ K , α ∈ [0, 1]}.
Both K+ and K− are convex and dim(K+) = dim(K−) = m + 1. Notice
that set L cannot intersect both K+ and K−, or else we could find
`1, `2 ∈ L, k1, k2 ∈ K , and α1, α2 ∈ [0, 1] such that `1 = k1 + α1x and
`2 = k2 − α2x .
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there is a hyperplane H separating K and L.
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Theorem 5.18

Theorem 5.18 (continued)

Theorem 5.18. Let K and L be two disjoint convex sets in Rn. Then
there is a hyperplane H separating K and L.

Proof (continued). Then for β = α2/(α1 + α2) ∈ [0, 1] and
1− β = α1/(α1 + α2) we have β`1 = α2(k1 + α1x)/(α1 + α2) and
(1− β)`2 = α1(k2 − α2x)/(α1 + α2) and so

β`1 + (1− β)`2 =
α1(k1 + α1x)

α1 + α2
+

α2(k2 − α2x)

α1 + α2

= α1k1/(α1 + α2) + α2k2/(α1 + α2) = βk1 + (1− β)k2.

But since β ∈ [0, 1] and K and L are convex, then
β` + (1− β)`2 = βk1 + (1− β)k2 is in both L and K , contradicting the
hypothesis of disjointness. Therefore, either L ∪ K− = ∅ or L ∩ K+ = ∅.
Without loss of generality, suppose L ∩ K− = ∅. Then by the induction
hypothesis, there is a hyperplane H that separates K− and L. Since
K ⊆ K−, then H separates K and L. The result now follows by
“backwards induction.”
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