Introduction to Functional Analysis

Chapter 6. Duality 6.1. Examples of Dual Spaces—Proofs of Theorems

Table of contents

Theorem 6.2. If X^* is separable, then X is separable.

Proof. Let $\{f_n\}$ be a countable dense subset of X^* .

Theorem 6.2. If X^* is separable, then X is separable.

Proof. Let $\{f_n\}$ be a countable dense subset of X^* . For each $n \in \mathbb{N}$ choose a unit vector $x_n \in X$ such that $|f_n(x_n)| \ge ||f_n||/2$ (this can be done by the definition of the operator norm of f_n). Consider $M = \operatorname{span}\{x_n\}$.

Theorem 6.2. If X^* is separable, then X is separable.

Proof. Let $\{f_n\}$ be a countable dense subset of X^* . For each $n \in \mathbb{N}$ choose a unit vector $x_n \in X$ such that $|f_n(x_n)| \ge ||f_n||/2$ (this can be done by the definition of the operator norm of f_n). Consider $M = \text{span}\{x_n\}$. ASSUME M is not dense in X, then by Corollary 5.5 there is $g \in X^*$ such that g(M) = 0 but $g \neq 0$. Therefore, we can normalize g and without loss of generality ||g|| = 1.

Theorem 6.2. If X^* is separable, then X is separable.

Proof. Let $\{f_n\}$ be a countable dense subset of X^* . For each $n \in \mathbb{N}$ choose a unit vector $x_n \in X$ such that $|f_n(x_n)| \ge ||f_n||/2$ (this can be done by the definition of the operator norm of f_n). Consider $M = \text{span}\{x_n\}$. ASSUME M is not dense in X, then by Corollary 5.5 there is $g \in X^*$ such that g(M) = 0 but $g \neq 0$. Therefore, we can normalize g and without loss of generality ||g|| = 1. Now

 $\|f_n - g\| \geq |(f_n - g)(x_n)|$ by definition of operator norm

$$= |f_n(x_n) - g(x_n)| = |f_n(x_n)| \text{ since } g(x_n) = 0$$

 $\geq ||f_n||/2$ by the choice of x_n .

Theorem 6.2. If X^* is separable, then X is separable.

Proof. Let $\{f_n\}$ be a countable dense subset of X^* . For each $n \in \mathbb{N}$ choose a unit vector $x_n \in X$ such that $|f_n(x_n)| \ge ||f_n||/2$ (this can be done by the definition of the operator norm of f_n). Consider $M = \text{span}\{x_n\}$. ASSUME M is not dense in X, then by Corollary 5.5 there is $g \in X^*$ such that g(M) = 0 but $g \neq 0$. Therefore, we can normalize g and without loss of generality ||g|| = 1. Now

$$\begin{aligned} \|f_n - g\| &\geq |(f_n - g)(x_n)| \text{ by definition of operator norm} \\ &= |f_n(x_n) - g(x_n)| = |f_n(x_n)| \text{ since } g(x_n) = 0 \\ &\geq \|f_n\|/2 \text{ by the choice of } x_n. \end{aligned}$$

Theorem 6.2 (continued)

Theorem 6.2. If X^* is separable, then X is separable.

Proof (continued). Also,

$$\begin{split} 1 &= \|g\| &= \|g - f_n + f_n\| \\ &\leq \|g - f_n\| + \|f_n\| \text{ by the Triangle Inequality} \\ &\leq \|f_n\|/2 + \|f_n\| \text{ by above} \\ &= \frac{3}{2}\|f_n\|. \end{split}$$

Therefore, $||g - f_n|| \ge \frac{2}{3} ||f_n||$. But then $\{f_n\}$ is not dense in X^* (since no f_n is "close to" g).

Theorem 6.2 (continued)

Theorem 6.2. If X^* is separable, then X is separable.

Proof (continued). Also,

$$\begin{split} 1 &= \|g\| &= \|g - f_n + f_n\| \\ &\leq \|g - f_n\| + \|f_n\| \text{ by the Triangle Inequality} \\ &\leq \|f_n\|/2 + \|f_n\| \text{ by above} \\ &= \frac{3}{2}\|f_n\|. \end{split}$$

Therefore, $||g - f_n|| \ge \frac{2}{3} ||f_n||$. But then $\{f_n\}$ is not dense in X^* (since no f_n is "close to" g). This CONTRADICTS the assumption that M is not dense in X. Therefore M is dense in X and X is separable.

Theorem 6.2 (continued)

Theorem 6.2. If X^* is separable, then X is separable.

Proof (continued). Also,

$$\begin{split} 1 &= \|g\| &= \|g - f_n + f_n\| \\ &\leq \|g - f_n\| + \|f_n\| \text{ by the Triangle Inequality} \\ &\leq \|f_n\|/2 + \|f_n\| \text{ by above} \\ &= \frac{3}{2}\|f_n\|. \end{split}$$

Therefore, $||g - f_n|| \ge \frac{2}{3} ||f_n||$. But then $\{f_n\}$ is not dense in X^* (since no f_n is "close to" g). This CONTRADICTS the assumption that M is not dense in X. Therefore M is dense in X and X is separable.