Theorem 6.5(c)

\[(\forall x)(x \in \mathbb{F})\]

...

Proof of (b):

For all \(x \in \mathbb{F} \) and \(f \in \mathbb{F} \), then for all \(x \in \mathbb{F} \).

\[(\forall x)(\forall f)(x \in \mathbb{F}) \land (f \in \mathbb{F}) \rightarrow (f \in \mathbb{F}) \land (x \in \mathbb{F}) \]

We have

...

Setting:

Theorem 6.6. Properties of the Adjoints in the Normed Linear Space

\[(\forall x)(x \in \mathbb{F})\]

...

Proof of (a):

For all \(x \in \mathbb{F} \).

\[(\forall x)(\forall y)(x \in \mathbb{F}) \land (y \in \mathbb{F}) \rightarrow (y \in \mathbb{F}) \land (x \in \mathbb{F}) \]

We have

...

Setting:

Theorem 6.6. Properties of the Adjoints in the Normed Linear Space
\[\| T^* \| = \| T \|, \text{ for all } T. \]

Therefore, \(\| T \| \leq \| T^* \| \). Since \(\epsilon > 0 \) is arbitrary, this implies that

\[\| T \| \leq \| T^* \| - \epsilon, \quad \text{for all unit vectors } x \in \mathcal{X}. \]

Taking a supremum over all unit vectors gives

\[\| T \| \leq \| T^* \| - \epsilon. \]

So, taking a supremum over all such \(\epsilon > 0 \), we have \(\| T \| \leq \| T^* \| \).

Proof of (p) continued.

For all \(f \in X \), \(\| f \| \leq \| T \| \| f \| \). Since \(X \) is a normed linear space, by the definition of norm of functional \(f \),

\[\| f \| \leq \| f \| \| T \| \| f \|. \]

By the definition of norm of functional \(f \),

\[\| x \| = \| f \| \| T \| \| f \|. \]

Thus, for all \(f \in X \), \(\| f \| \leq \| T \| \| f \|. \)

Thus, for all \(f \in X \), \(\| f \| \leq \| T \| \| f \|. \)

Proof of (p).

For all \(f \in X \), \(\| f \| \leq \| T \| \| f \|. \)

Then for any unit vectors \(f \in X \) and \(x \in \mathcal{X} \), we have

\[\| f \| \leq \| T \| \| f \|. \]

Thus, for all \(f \in X \), \(\| f \| \leq \| T \| \| f \|. \)

Thus, for all \(f \in X \), \(\| f \| \leq \| T \| \| f \|. \)

Theorem 5.6. Properties of Adjoint in Normed Linear Space Setting.