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Theorem 6.6, Properties of the Adjoint in the Normed
Linear Space Setting

Theorem 6.6. Properties of the Adjoint in the Normed Linear Space
Setting.
For all S ,T ∈ B(X ,Y ), A ∈ B(Y ,Z ), and α ∈ F, we have

(a) (S + T )∗ = S∗ + T ∗,

(b) (αT )∗ = αT ∗ (notice the absence of a conjugate of α),

(c) (AT )∗ = T ∗A∗, and

(d) ‖T ∗‖ = ‖T‖.
Proof of (a). Let S ,T ∈ B(X , y) and f ∈ Y ∗.

Then for all x ∈ X

((S + T )∗f )x = f ((S + Tx)) by the definition of adjoint

= f (Sx + Tx)by definition of operator addition

= f (Sx) + f (Tx) since f is linear

= (S∗f )(x) + (T ∗f )(x) by definition of adjoint.

So (S + T )∗ = S∗ + T ∗.
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Theorem 6.6. Properties of the Adjoint in the Normed Linear Space
Setting.
For all S ,T ∈ B(X ,Y ), A ∈ B(Y ,Z ), and α ∈ F, we have

(b) (αT )∗ = αT ∗ (notice the absence of a conjugate of α).

Proof of (b). Let T ∈ B(X ,Y ), α ∈ F, and f ∈ Y ∗. Then for all x ∈ X
we have

((αT )∗f )(x) = f ((αT )x) by the definition of adjoint

= f (α(Tx)) by the definition of scalar multiplication

on an operator

= αf (Tx) since f is linear

= α(T ∗f )(x) by the definition of adjoint.

So (αT )∗ = αT ∗.
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Theorem 6.6. Properties of Adjoint in Normed Linear Space Setting.
For all S ,T ∈ B(X ,Y ), A ∈ B(Y ,Z ), and α ∈ F, we have

(c) (AT )∗ = T ∗A∗.

Proof of (c). Let A ∈ B(Y ,Z ), T ∈ B(X ,Y ), and f ∈ Z ∗. We need to
show that (AT )∗f = T ∗(A∗f ). For all x ∈ X we have

((AT )∗f )(x) = f ((AT )(x)) by the definition of adjoint (AT )∗

(notice that (AT )(x) ∈ Z and f ∈ Z ∗)

= f (A(T (x)))

= (A∗f )(T (x)) by the definition of adjoint A∗

(notice T (x) ∈ Y and Af ∈ Y ∗)

= (T ∗(A∗f ))(x) by definition of adjoint T ∗ in terms of A∗f : Y ∗ → F
(notice T ∗(A∗f ) ∈ X ∗ and so T ∗(A∗f ) : X → F)

= ((T ∗A∗)f )(x) since operator composition is associative.

So (AT )∗ = T ∗A∗.
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Properties of the Adjoint in the Normed Linear Space Setting
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Theorem 6.6. Properties of Adjoint in Normed Linear Space Setting.
For all S ,T ∈ B(X ,Y ), A ∈ B(Y ,Z ), and α ∈ F, we have

(d) ‖T ∗‖ = ‖T‖.
Proof of (d). We can scale to assume without loss of generality that
‖T‖ = 1. Then for any unit vectors f ∈ Y ∗ and x ∈ X , we have

‖(T ∗f )(x)‖ = |f (Tx)‖ by the definition of adjoint T ∗

≤ ‖f ‖‖Tx‖ by definition of norm of functional f

≤ ‖f ‖‖T‖‖x‖ by definition of ‖T‖, since ‖T‖ = ‖x‖ = 1,

so taking a supremum over all such x ∈ X , we have ‖T ∗f ‖ ≤ 1, and
taking a supremum over all such f , we have ‖T ∗‖ ≤ 1.

Conversely, given
any ε > 0, choose a unit vector x ∈ X such that ‖Tx‖ ≥ 1− ε (this can
be done since ‖T‖ = 1). As seen in the proof of Corollary 5.7 (with Y ∗

replacing X and Y replacing X ∗) there is a unit vector f ∈ Y ∗ such that
|f (Tx)| = ‖Tx‖.
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Theorem 6.6. Properties of Adjoint in Normed Linear Space Setting.
For all S ,T ∈ B(X ,Y ), A ∈ B(Y ,Z ), and α ∈ F, we have

(d) ‖T ∗‖ = ‖T‖.

Proof of (d) continued. So

|f (Tx)| = |(T ∗f )(x)| by the definition of T ∗

= ‖Tx‖ ≥ 1− ε.

Taking a supremum over all unit vectors x ∈ X gives ‖fT‖ ≥ 1− ε.
Taking a supremum over all unit vectors f ∈ Y ∗ implies that
‖ft‖ = ‖T ∗‖ ≥ 1− ε.

Since ε > 0 is arbitrary, ‖T ∗‖ ≥ 1. Therefore
‖T ∗‖ = 1, or ‖T ∗‖ = ‖T‖.
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