Chapter 6. Duality
6.3. Double Duals and Reflexivity—Proofs of Theorems
Table of contents

1. Theorem 6.8
2. Theorem 6.9. General Uniform Boundedness Principle
3. Theorem 6.10
4. Theorem 6.11
5. Theorem 6.12
Theorem 6.8

Theorem 6.8. The mapping $x \mapsto \hat{x}$ (which maps X to X^{**}) is a linear isometry.

Proof. Let $x_1, x_2 \in X$ and $\alpha \in F$.

Theorem 6.8. The mapping \(x \rightarrow \hat{x} \) (which maps \(X \) to \(X^{**} \)) is a linear isometry.

Proof. Let \(x_1, x_2 \in X \) and \(\alpha \in \mathbb{F} \). Then for all \(f \in X^* \) we have that

\[
(x_1 + x_2)f = f(x_1 + x_2) \quad \text{by the definition of } \hat{x} \\
= f(x_1) + f(x_2) \quad \text{since } f \text{ is linear} \\
= \hat{x}_1 + \hat{x}_2 \quad \text{by the definition of } \hat{x},
\]
Theorem 6.8

Theorem 6.8. The mapping $x \rightarrow \hat{x}$ (which maps X to X^{**}) is a linear isometry.

Proof. Let $x_1, x_2 \in X$ and $\alpha \in \mathbb{F}$. Then for all $f \in X^*$ we have that

$$\hat{(x_1 + x_2)}f = f(x_1 + x_2) \text{ by the definition of } \hat{\cdot}$$
$$= f(x_1) + f(x_2) \text{ since } g \text{ is linear}$$
$$= \hat{x}_1 + \hat{x}_2 \text{ by the definition of } \hat{\cdot},$$

and

$$\hat{(\alpha x_1)}f = f(\alpha x_1) \text{ by the definition of } \hat{\cdot}$$
$$= \alpha f(x_1) \text{ since } f \text{ is linear}$$
$$= \alpha \hat{x}_1 \text{ by the definition of } \hat{\cdot}.$$

So the mapping is linear.
Theorem 6.8

Theorem 6.8. The mapping \(x \rightarrow \hat{x} \) (which maps \(X \) to \(X^{**} \)) is a linear isometry.

Proof. Let \(x_1, x_2 \in X \) and \(\alpha \in \mathbb{F} \). Then for all \(f \in X^* \) we have that

\[
(x_1 + x_2)f = f(x_1 + x_2) \quad \text{by the definition of } \hat{x} \\
= f(x_1) + f(x_2) \quad \text{since } g \text{ is linear} \\
= \hat{x}_1 + \hat{x}_2 \quad \text{by the definition of } \hat{x},
\]

and

\[
(\alpha x_1)f = f(\alpha x_1) \quad \text{by the definition of } \hat{x} \\
= \alpha f(x_1) \quad \text{since } f \text{ is linear} \\
= \alpha \hat{x}_1 \quad \text{by the definition of } \hat{x}.
\]

So the mapping is linear.
Theorem 6.8. The mapping \(x \to \hat{x} \) (which maps \(X \) to \(X^{**} \)) is a linear isometry.

Proof (continued). Next,

\[
\|x\| = \sup\{\|f(x)\| \mid f \in X^*, \|f\| \leq 1\} \text{ by Corollary 5.7}
\]
\[
= \sup\{\|\hat{x}(f)\| \mid f \in X^*, \|f\| \leq 1\} \text{ since } \hat{x}(f) = f(x)
\]
\[
= \|\hat{x}\| \text{ by the definition of } \|\hat{x}\|
\]
Theorem 6.8. The mapping $x \rightarrow \hat{x}$ (which maps X to X^{**}) is a linear isometry.

Proof (continued). Next,

$$||x|| = \sup\{||f(x)|| \mid f \in X^*, ||f|| \leq 1\} \text{ by Corollary 5.7}$$

$$= \sup\{||\hat{x}(f)|| \mid f \in X^*, ||f|| \leq 1\} \text{ since } \hat{x}(f) = f(x)$$

$$= ||\hat{x}|| \text{ by the definition of } ||\hat{x}||$$
Theorem 6.9. General Uniform Boundedness Principle

Let A be a subset of a normed linear space X such that for all $f \in X^*$ we have that $f(A)$ is a bounded set of scalars. Then A is bounded.

Proof. Let $A \subseteq X$ is a normed linear space X such that for all $f \in X^*$, we have $f(A) = \{f(a) \mid a \in A\}$ is bounded.

Let A be a subset of a normed linear space X such that for all $f \in X^*$ we have that $f(A)$ is a bounded set of scalars. Then A is bounded.

Proof. Let $A \subseteq X$ is a normed linear space X such that for all $f \in X^*$, we have $f(A) = \{f(a) \mid a \in A\}$ is bounded. Now for each $a \in A$, we have $f(a) = \hat{a}(f)$ where $\hat{a} \in X^{**}$.
Let \(A \) be a subset of a normed linear space \(X \) such that for all \(f \in X^* \) we have that \(f(A) \) is a bounded set of scalars. Then \(A \) is bounded.

Proof. Let \(A \subseteq X \) is a normed linear space \(X \) such that for all \(f \in X^* \), we have \(f(A) = \{ f(a) \mid a \in A \} \) is bounded. Now for each \(a \in A \), we have \(f(a) = \hat{a}(f) \) where \(\hat{a} \in X^{**} \). So for each \(f \in X^* \),

\[
f(A) = \{ f(a) \mid a \in A \} = \{ \hat{a}(f) \mid a \in A \}
\]

is bounded. So \(\{ \hat{a}(f) \mid a \in A \} \) is a bounded set for each \(f \in X^* \).
Theorem 6.9. General Uniform Boundedness Principle

Let A be a subset of a normed linear space X such that for all $f \in X^*$ we have that $f(A)$ is a bounded set of scalars. Then A is bounded.

Proof. Let $A \subseteq X$ is a normed linear space X such that for all $f \in X^*$, we have $f(A) = \{f(a) | a \in A\}$ is bounded. Now for each $a \in A$, we have $f(a) = \hat{a}(f)$ where $\hat{a} \in X^{**}$. So for each $f \in X^*$,

$$f(A) = \{f(a) | a \in A\} = \{\hat{a}(f) | a \in A\}$$

is bounded. So $\{\hat{a}(f) | a \in A\}$ is a bounded set for each $f \in X^*$. Also, by Theorem 2.15, X^* is complete. So by the Uniform Boundedness Principle (Theorem 3.10), $\{\hat{a}(f) | a \in A\}$ is bounded in X^{**} for all $f \in X^*$.
Theorem 6.9. General Uniform Boundedness Principle

Let A be a subset of a normed linear space X such that for all $f \in X^*$ we have that $f(A)$ is a bounded set of scalars. Then A is bounded.

Proof. Let $A \subseteq X$ is a normed linear space X such that for all $f \in X^*$, we have $f(A) = \{f(a) \mid a \in A\}$ is bounded. Now for each $a \in A$, we have $f(a) = \hat{a}(f)$ where $\hat{a} \in X^{**}$. So for each $f \in X^*$,

$$f(A) = \{f(a) \mid a \in A\} = \{\hat{a}(f) \mid a \in A\}$$

is bounded. So $\{\hat{a}(f) \mid a \in A\}$ is a bounded set for each $f \in X^*$. Also, by Theorem 2.15, X^* is complete. So by the Uniform Boundedness Principle (Theorem 3.10), $\{\hat{a}(f) \mid a \in A\}$ is bounded in X^{**} for all $f \in X^*$. Since there is an isometry between X and X^{**} (which maps a to \hat{a}) then set A is bounded. \qed

Let \(A \) be a subset of a normed linear space \(X \) such that for all \(f \in X^* \) we have that \(f(A) \) is a bounded set of scalars. Then \(A \) is bounded.

Proof. Let \(A \subseteq X \) is a normed linear space \(X \) such that for all \(f \in X^* \), we have \(f(A) = \{ f(a) \mid a \in A \} \) is bounded. Now for each \(a \in A \), we have \(f(a) = \hat{a}(f) \) where \(\hat{a} \in X^{**} \). So for each \(f \in X^* \),

\[
f(A) = \{ f(a) \mid a \in A \} = \{ \hat{a}(f) \mid a \in A \}
\]

is bounded. So \(\{ \hat{a}(f) \mid a \in A \} \) is a bounded set for each \(f \in X^* \). Also, by Theorem 2.15, \(X^* \) is complete. So by the Uniform Boundedness Principle (Theorem 3.10), \(\{ \hat{a}(f) \mid a \in A \} \) is bounded in \(X^{**} \) for all \(f \in X^* \). Since there is an isometry between \(X \) and \(X^{**} \) (which maps \(a \) to \(\hat{a} \)) then set \(A \) is bounded. \(
\)
Theorem 6.10. \(L^p \) is reflexive for \(1 < p < \infty \).

Proof. Let \(q \) satisfy the equation \(\frac{1}{p} + \frac{1}{q} = 1 \).
Theorem 6.10. \(L^p \) is reflexive for \(1 < p < \infty \).

Proof. Let \(q \) satisfy the equation \(\frac{1}{p} + \frac{1}{q} = 1 \). By Theorem 6.3, \((L^p)^* = L^q \) and \((L^p)^{**} = (L^q)^* = L^p \). So \(L^p \) is isometric to \((L^p)^{**} \). We need to explicitly find a surjective isometry from \(L^p \) to \((L^p)^{**} \).
Theorem 6.10. L^p is reflexive for $1 < p < \infty$.

Proof. Let q satisfy the equation $\frac{1}{p} + \frac{1}{q} = 1$. By Theorem 6.3, $(L^p)^* = L^q$ and $(L^p)^{**} = (L^q)^* = L^p$. So L^p is isometric to $(L^p)^{**}$. We need to explicitly find a surjective isometry from L^p to $(L^p)^{**}$. Let U be the surjective isometry from L^q to $(L^p)^*$ given in Theorem 6.3: For $g \in L^q$ define $U(g) = \varphi_g \in (L^p)^*$ where $\varphi_g(f) = \int_E fg \, d\mu$ for all $f \in L^p$. Let V be the surjective isometry from L^p to $(L^q)^*$.
Theorem 6.10. \(L^p \) is reflexive for \(1 < p < \infty \).

Proof. Let \(q \) satisfy the equation \(\frac{1}{p} + \frac{1}{q} = 1 \). By Theorem 6.3, \((L^p)^* = L^q \) and \((L^p)^{**} = (L^q)^* = L^p \). So \(L^p \) is isometric to \((L^p)^{**} \). We need to explicitly find a surjective isometry from \(L^p \) to \((L^p)^{**} \). Let \(U \) be the surjective isometry from \(L^q \) to \((L^p)^* \) given in Theorem 6.3: For \(g \in L^q \) define \(U(g) = \varphi_g \in (L^p)^* \) where \(\varphi_g(f) = \int_E fg \, d\mu \) for all \(f \in L^p \). Let \(V \) be the surjective isometry from \(L^p \) to \((L^q)^* \). Notice then that the adjoint \(U^* \) maps \((L^p)^{**} \) to \((L^q)^* \). Consider \((U^*)^{-1}V : L^p \to (L^p)^{**} \).
Theorem 6.10. \(L^p \) is reflexive for \(1 < p < \infty \).

Proof. Let \(q \) satisfy the equation \(\frac{1}{p} + \frac{1}{q} = 1 \). By Theorem 6.3, \((L^p)^* = L^q \) and \((L^p)^{**} = (L^q)^* = L^p \). So \(L^p \) is isometric to \((L^p)^{**} \). We need to explicitly find a surjective isometry from \(L^p \) to \((L^p)^{**} \). Let \(U \) be the surjective isometry from \(L^q \) to \((L^p)^* \) given in Theorem 6.3: For \(g \in L^q \) define \(U(g) = \varphi_g \in (L^p)^* \) where \(\varphi_g(f) = \int_E fg \, d\mu \) for all \(f \in L^p \). Let \(V \) be the surjective isometry from \(L^p \) to \((L^q)^* \). Notice then that the adjoint \(U^* \) maps \((L^p)^{**} \) to \((L^q)^* \). Consider \((U^*)^{-1}V : L^p \rightarrow (L^p)^{**} \).
Theorem 6.10. L^p is reflexive for $1 < p < \infty$.

Proof (continued). For all $f \in L^p$ and $g \in L^q$ we have

\[
(U^* \hat{f})(g) = \hat{f}(Ug) \text{ by the definition of adjoint } U^*
\]
\[
= (Ug)f \text{ by definition of } \hat{f}
\]
\[
= \int_E fg \, d\mu \text{ by definition of } U(g) = \varphi_g
\]
\[
= \int_E gf \, d\mu
\]
\[
= (Vf)(g) \text{ by definition of } V(f) = \varphi_f.
\]

So $(U^* \hat{f})(g) = (Vf)(g)$ for all $g \in L^q$ and hence $U^* \hat{f} = Vf$ (which are linear functionals from L^q to \mathbb{F}; that is, elements of $(L^q)^*$).
Theorem 6.10 (continued)

Theorem 6.10. \(L^p \) is reflexive for \(1 < p < \infty \).

Proof (continued). For all \(f \in L^p \) and \(g \in L^q \) we have

\[
(U^*\hat{f})(g) = \hat{f}(Ug) \quad \text{by the definition of adjoint } U^*
\]
\[
= (Ug)f \quad \text{by definition of } \hat{f}
\]
\[
= \int_E fg \, d\mu \quad \text{by definition of } U(g) = \varphi_g
\]
\[
= \int_E gf \, d\mu
\]
\[
= (Vf)(g) \quad \text{by definition of } V(f) = \varphi_f.
\]

So \((U^*\hat{f})(g) = (Vf)(g)\) for all \(g \in L^q \) and hence \(U^*\hat{f} = Vf \) (which are linear functionals from \(L^q \) to \(F \); that is, elements of \((L^q)^*\)). Therefore \((U^*)^{-1}U^*\hat{f} = (U^*)^{-1}Vf\) or \(\hat{f} = (U^*)^{-1}Vf \) and \((U^*)^{-1}V\) maps \(f \) to \(\hat{f} \). By Theorem 6.8, \((U^*)^{-1}V\) is a linear isometry from \(L^p \) (where \(f \) lives) to \((L^p)^{**}\) (where \(\hat{f} \) lives).
Theorem 6.10 (continued)

Theorem 6.10. \(L^p \) is reflexive for \(1 < p < \infty \).

Proof (continued). For all \(f \in L^p \) and \(g \in L^q \) we have

\[
(U^* \hat{f})(g) = \hat{f}(Ug) \text{ by the definition of adjoint } U^* \\
= (Ug)f \text{ by definition of } \hat{f} \\
= \int_E fg \ d\mu \text{ by definition of } U(g) = \varphi_g \\
= \int_E gf \ d\mu \\
= (Vf)(g) \text{ by definition of } V(f) = \varphi_f.
\]

So \((U^* \hat{f})(g) = (Vf)(g) \) for all \(g \in L^q \) and hence \(U^* \hat{f} = Vf \) (which are linear functionals from \(L^q \) to \(\mathbb{F} \); that is, elements of \((L^q)^* \)). Therefore \((U^*)^{-1} U^* \hat{f} = (U^*)^{-1} Vf \) or \(\hat{f} = (U^*)^{-1} Vf \) and \((U^*)^{-1} V \) maps \(f \) to \(\hat{f} \). By Theorem 6.8, \((U^*)^{-1} V \) is a linear isometry from \(L^p \) (where \(f \) lives) to \((L^p)^{**} \) (where \(\hat{f} \) lives).
Theorem 6.10. \(L^p \) is reflexive for \(1 < p < \infty \).

Proof (continued again). Finally, by the Riesz-Representation Theorem for \(L^p \) (not explicitly stated in our text, but see Royden and Fitzpatrick’s *Real Analysis* 4th Edition, Section 8.1) \(U \) and \(V \) are bijections (one to one and onto) and so \(U^* \) is bijective and \((U^*)^{-1} \) exists and is bijective. So \((U^*)^{-1}V \) is surjective (onto). Therefore, \((U^*)^{-1}V \) is the surjective isometry required.
Theorem 6.10. \(L^p \) is reflexive for \(1 < p < \infty \).

Proof (continued again). Finally, by the Riesz-Representation Theorem for \(L^p \) (not explicitly stated in our text, but see Royden and Fitzpatrick’s *Real Analysis* 4th Edition, Section 8.1) \(U \) and \(V \) are bijections (one to one and onto) and so \(U^* \) is bijective and \((U^*)^{-1}\) exists and is bijective. So \((U^*)^{-1}V\) is surjective (onto). Therefore, \((U^*)^{-1}V\) is the surjective isometry required.
Theorem 6.11

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X. Let $\varphi \in Z^{**}$.

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X. Let $\varphi \in Z^{**}$. To show that Z is reflexive, we must find $x \in Z$ such that $\hat{x} = \varphi$ (then show that the embedding of Z into Z^{**} given by $x \mapsto \hat{x}$ is surjective [onto]).
Theorem 6.11

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose \(Z \) is a closed subspace of reflexive Banach space \(X \). Let \(\varphi \in Z^{**} \). To show that \(Z \) is reflexive, we must find \(x \in Z \) such that \(\hat{x} = \varphi \) (then show that the embedding of \(Z \) into \(Z^{**} \) given by \(x \mapsto \hat{x} \) is surjective [onto]).

For \(f \in X^* \), denote the restriction of \(f \) to \(Z \) as \(f \mid Z \). Define \(\eta \in X^{**} \) as \(\eta(f) = \varphi(f \mid Z) \) for all \(f \in X^* \).
Theorem 6.11

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X. Let $\varphi \in Z^{**}$. To show that Z is reflexive, we must find $x \in Z$ such that $\hat{x} = \varphi$ (then show that the embedding of Z into Z^{**} given by $x \mapsto \hat{x}$ is surjective [onto]).

For $f \in X^*$, denote the restriction of f to Z as $f|Z$. Define $\eta \in X^{**}$ as $\eta(f) = \varphi(f|Z)$ for all $f \in X^*$. Since the norm of $f|Z$ is less than or equal to the norm of f (since the sup is taken over the smaller set Z in determining $\|f|Z\|$),

$$|\eta(f)| = |\varphi(f|Z)| \leq \|\varphi\| \|f|Z\| \leq \|\varphi\| \|f\| \text{ for all } f \in X^*,$$

and so $\|\eta\| = \sup\{|\eta(f)| \mid \|f\| = 1\} \leq \|\varphi\|$.

Theorem 6.11

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X. Let $\varphi \in Z^{**}$. To show that Z is reflexive, we must find $x \in Z$ such that $\hat{x} = \varphi$ (then show that the embedding of Z into Z^{**} given by $x \mapsto \hat{x}$ is surjective [onto]).

For $f \in X^*$, denote the restriction of f to Z as $f | Z$. Define $\eta \in X^{**}$ as $\eta(f) = \varphi(f | Z)$ for all $f \in X^*$. Since the norm of $f | Z$ is less than or equal to the norm of f (since the sup is taken over the smaller set Z in determining $\|f | Z\|$),

$$|\eta(f)| = |\varphi(f | Z)| \leq \|\varphi\| \|f | Z\| \leq \|\varphi\| \|f\|$$

for all $f \in X^*$, and so $\|\eta\| = \sup\{|\eta(f)| \mid \|f\| = 1\} \leq \|\varphi\|$. Since X is reflexive, there is $x \in X$ such that $\hat{x} = \eta$. Given any $f \in X^*$ with $f(Z) = 0$ (i.e., functional f is 0 on subspace Z), we have $\hat{x}(f) = \eta(f) = \varphi(f | Z) = 0$. So $\hat{x}(f) = f(x) = 0$ for all $f \in X^*$.
Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X. Let $\varphi \in Z^{**}$. To show that Z is reflexive, we must find $x \in Z$ such that $\hat{x} = \varphi$ (then show that the embedding of Z into Z^{**} given by $x \mapsto \hat{x}$ is surjective [onto]).

For $f \in X^*$, denote the restriction of f to Z as $f|Z$. Define $\eta \in X^{**}$ as $\eta(f) = \varphi(f|Z)$ for all $f \in X^*$. Since the norm of $f|Z$ is less than or equal to the norm of f (since the sup is taken over the smaller set Z in determining $\|f|Z\|$),

$$|\eta(f)| = |\varphi(f|Z)| \leq \|\varphi\| \|f|Z\| \leq \|\varphi\| \|f\| \text{ for all } f \in X^*,$$

and so $\|\eta\| = \sup\{|\eta(f)| \mid \|f\| = 1\} \leq \|\varphi\|$. Since X is reflexive, there is $x \in X$ such that $\hat{x} = \eta$. Given any $f \in X^*$ with $f(Z) = 0$ (i.e., functional f is 0 on subspace Z), we have $\hat{x}(f) = \eta(f) = \varphi(f|Z) = 0$. So

$\hat{x}(f) = f(x) = 0$ for all $f \in X^*$.
Theorem 6.11 (continued)

Proof (continued). By Corollary 5.5, since Z is a closed subspace of X, if $x \notin Z$ then there would be $f \in X^*$ for which $f(Z) = 0$ and $f(x) = 1$. Since this is not the case, it must be that $x \in Z$. We need to show that $\hat{x} = \varphi$ (where the hat indicated embedding Z in Z^{**}, whereas above the hat indicated embedding X in X^{**}). Let $g \in Z^*$ be arbitrary.
Theorem 6.11 (continued)

Proof (continued). By Corollary 5.5, since Z is a closed subspace of X, if $x \notin Z$ then there would be $f \in X^*$ for which $f(Z) = 0$ and $f(x) = 1$. Since this is not the case, it must be that $x \in Z$. We need to show that $\hat{x} = \varphi$ (where the hat indicated embedding Z in Z^{**}, whereas above the hat indicated embedding X in X^{**}). Let $g \in Z^*$ be arbitrary. By the Normed Linear Space Version of the Hahn-Banach Theorem (Theorem 5.4), there is an extension of g to all of X, say $f \in X^*$. Then

$$
\varphi(f) = \varphi(f|Z) \text{ since } f \text{ extends } g \text{ from } Z \text{ to } X^*,
$$

$$
= \eta(f) \text{ by the definition of } \eta,
$$

$$
= \hat{x}(f) \text{ by the choice of } x \text{ above},
$$

$$
= f(x) \text{ by definition of } \hat{\cdot} \text{ in the } X \text{ embedding},
$$

$$
= g(x) \text{ since } x \in Z \text{ as shown above and } f \text{ extends } g,
$$

$$
= \hat{x}(g) \text{ be the definition of } \hat{\cdot} \text{ in the } Z \text{ embedding}.
$$

So, $x \in Z$ and $\hat{x} = \varphi$, as desired. \qed
Theorem 6.11 (continued)

Proof (continued). By Corollary 5.5, since Z is a closed subspace of X, if $x \not\in Z$ then there would be $f \in X^*$ for which $f(Z) = 0$ and $f(x) = 1$. Since this is not the case, it must be that $x \in Z$. We need to show that $\hat{x} = \varphi$ (where the hat indicated embedding Z in Z^{**}, whereas above the hat indicated embedding X in X^{**}). Let $g \in Z^*$ be arbitrary. By the Normed Linear Space Version of the Hahn-Banach Theorem (Theorem 5.4), there is an extension of g to all of X, say $f \in X^*$. Then

$$
\varphi(f) = \varphi(f|Z) \text{ since } f \text{ extends } g \text{ from } Z \text{ to } X
$$

$$
= \eta(f) \text{ by the definition of } \eta
$$

$$
= \hat{x}(f) \text{ by the choice of } x \text{ above}
$$

$$
= f(x) \text{ by definition of } \hat{x} \text{ in the } X \text{ embedding}
$$

$$
= g(x) \text{ since } x \in Z \text{ as shown above and } f \text{ extends } g
$$

$$
= \hat{x}(g) \text{ be the definition of } \hat{x} \text{ in the } Z \text{ embedding.}
$$

So, $x \in Z$ and $\hat{x} = \varphi$, as desired. \qed
Theorem 6.12

Theorem 6.12. A Banach space X is reflexive if and only if X^* is reflexive.

Proof. Suppose X is reflexive.
Theorem 6.12

Theorem 6.12. A Banach space X is reflexive if and only if X^* is reflexive.

Proof. Suppose X is reflexive. For any $\Delta \in X^{***}$, define $g \in X^*$ as $g(x) = \Delta(\hat{x})$ (where $x \in X$ and $\hat{x} \in X^{**}$ where the correspondence of x and \hat{x} is as given at the beginning of this section).
Theorem 6.12. A Banach space X is reflexive if and only if X^* is reflexive.

Proof. Suppose X is reflexive. For any $\Delta \in X^{***}$, define $g \in X^*$ as $g(x) = \Delta(\hat{x})$ (where $x \in X$ and $\hat{x} \in X^{**}$ where the correspondence of x and \hat{x} is as given at the beginning of this section). We claim that $\hat{g} = \Delta$ (which would show that for any $\Delta \in X^{***}$, there is $g \in X^*$ such that $g \mapsto \hat{g} = \Delta$, and so the mapping is surjective [onto] and X^* is reflexive). Let $\varphi \in X^{**}$ be arbitrary.
Theorem 6.12

Theorem 6.12. A Banach space X is reflexive if and only if X^* is reflexive.

Proof. Suppose X is reflexive. For any $\Delta \in X^{***}$, define $g \in X^*$ as $g(x) = \Delta(\hat{x})$ (where $x \in X$ and $\hat{x} \in X^{**}$ where the correspondence of x and \hat{x} is as given at the beginning of this section). We claim that $\hat{g} = \Delta$ (which would show that for any $\Delta \in X^{***}$, there is $g \in X^*$ such that $g \mapsto \hat{g} = \Delta$, and so the mapping is surjective [onto] and X^* is reflexive). Let $\varphi \in X^{**}$ be arbitrary. There is $x \in X$ with $\hat{x} = \varphi$ since X is reflexive. Then

$$\Delta(\varphi) = \Delta(\hat{x}) \text{ since } \hat{x} = \varphi$$
$$= g(x) \text{ by the definition of } g$$
$$= \hat{x}(g) \text{ by definition of } \hat{ } \text{ in the } X \text{ embedding}$$
$$= \varphi(g) \text{ since } \hat{x} = \varphi$$
$$= \hat{g}(\varphi) \text{ by the definition of } \hat{ } \text{ in the } X^* \text{ embedding}.$$
Theorem 6.12. A Banach space X is reflexive if and only if X^* is reflexive.

Proof. Suppose X is reflexive. For any $\Delta \in X^{***}$, define $g \in X^*$ as $g(x) = \Delta(\hat{x})$ (where $x \in X$ and $\hat{x} \in X^{**}$ where the correspondence of x and \hat{x} is as given at the beginning of this section). We claim that $\hat{g} = \Delta$ (which would show that for any $\Delta \in X^{***}$, there is $g \in X^*$ such that $g \mapsto \hat{g} = \Delta$, and so the mapping is surjective [onto] and X^* is reflexive).

Let $\varphi \in X^{**}$ be arbitrary. There is $x \in X$ with $\hat{x} = \varphi$ since X is reflexive. Then

\[
\Delta(\varphi) = \Delta(\hat{x}) \text{ since } \hat{x} = \varphi \\
= g(x) \text{ by the definition of } g \\
= \hat{x}(g) \text{ by definition of } \hat{\cdot} \text{ in the } X \text{ embedding} \\
= \varphi(g) \text{ since } \hat{x} = \varphi \\
= \hat{g}(\varphi) \text{ by the definition of } \hat{\cdot} \text{ in the } X^* \text{ embedding}.
\]
Theorem 6.12 (continued)

Theorem 6.12. A Banach space X is reflexive if and only if X^* is reflexive.

Proof (continued). So $\Delta = \hat{g}$, the mapping $g \mapsto \hat{g}$ is surjective, and X^* is reflexive.

Conversely, if X^* is reflexive then by the above argument X^{**} is reflexive.
Theorem 6.12. A Banach space X is reflexive if and only if X^* is reflexive.

Proof (continued). So $\Delta = \hat{g}$, the mapping $g \mapsto \hat{g}$ is surjective, and X^* is reflexive.

Conversely, if X^* is reflexive then by the above argument X^{**} is reflexive. So X is a subspace of Banach space X^{**} (remember that X^* and X^{**} are complete by Theorem 2.15), then by Theorem 2.16, X is a closed subspace of reflexive space X^{**}, and by Theorem 6.11, X is reflexive. \square
Theorem 6.12. A Banach space X is reflexive if and only if X^* is reflexive.

Proof (continued). So $\Delta = \hat{g}$, the mapping $g \mapsto \hat{g}$ is surjective, and X^* is reflexive. Conversely, if X^* is reflexive then by the above argument X^{**} is reflexive. So X is a subspace of Banach space X^{**} (remember that X^* and X^{**} are complete by Theorem 2.15), then by Theorem 2.16, X is a closed subspace of reflexive space X^{**}, and by Theorem 6.11, X is reflexive. \qed