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Theorem 6.8. The mapping x — X (which maps X to X**) is a linear
isometry.
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Theorem 6.8

Theorem 6.8. The mapping x — X (which maps X to X**) is a linear
isometry.

Proof. Let x;,xp € X and o € F.
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Theorem 6.8

Theorem 6.8

Theorem 6.8. The mapping x — X (which maps X to X**) is a linear
isometry.

Proof. Let x;,x € X and o € F. Then for all f € X* we have that

(x1/+\X2)f = f(x1 + x2) by the definition of *
= f(x1) + f(x2) since g is linear
X1 + X2 by the definition of ~,
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Theorem 6.8

Theorem 6.8. The mapping x — X (which maps X to X**) is a linear
isometry.

Proof. Let x;,x € X and o € F. Then for all f € X* we have that

(x1/+\X2)f = f(x1 + x2) by the definition of *
= f(x1)+ f(x2) since g is linear
= X1 + X by the definition of 7,
and
@f = f(axy) by the definition of *

= af(xy) since f is linear

= aXi by the definition of .

So the mapping is linear.
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Theorem 6.8. The mapping x — X (which maps X to X**) is a linear
isometry.
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Theorem 6.8

Theorem 6.8. The mapping x — X (which maps X to X**) is a linear
isometry.

Proof (continued). Next,

sup{|f(x)| | f € X*,||f|| <1} by Corollary 5.7
sup{|X(f)| | f € X*,[|f|| <1} since X(f) = f(x)
= |IX|| by the definition of ||X||

]
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Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle.
Let A be a subset of a normed linear space X such that for all f € X* we
have that f(A) is a bounded set of scalars. Then A is bounded.
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Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle.
Let A be a subset of a normed linear space X such that for all f € X* we
have that f(A) is a bounded set of scalars. Then A is bounded.

Proof. Let A C X is a normed linear space X such that for all f € X*, we
have f(A) = {f(a) | a € A} is bounded.

Introduction to Functional Analysis May 19, 2015 5/12



Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle.
Let A be a subset of a normed linear space X such that for all f € X* we
have that f(A) is a bounded set of scalars. Then A is bounded.

Proof. Let A C X is a normed linear space X such that for all f € X*, we
have f(A) = {f(a) | a € A} is bounded. Now for each a € A, we have
f(a) = a(f) where 3 € X**.
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Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle.
Let A be a subset of a normed linear space X such that for all f € X* we
have that f(A) is a bounded set of scalars. Then A is bounded.

Proof. Let A C X is a normed linear space X such that for all f € X*, we
have f(A) = {f(a) | a € A} is bounded. Now for each a € A, we have
f(a) = a(f) where 3 € X**. So for each f € X*,

f(A)={f(a)|ac A} ={a(f) | a € A}

is bounded. So {4(f) | a € A} is a bounded set for each f € X*.
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Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle.
Let A be a subset of a normed linear space X such that for all f € X* we
have that f(A) is a bounded set of scalars. Then A is bounded.

Proof. Let A C X is a normed linear space X such that for all f € X*, we
have f(A) = {f(a) | a € A} is bounded. Now for each a € A, we have
f(a) = a(f) where 3 € X**. So for each f € X*,

f(A)={f(a)|ac A} ={a(f) | a € A}

is bounded. So {3(f) | a € A} is a bounded set for each f € X*. Also, by
Theorem 2.15, X* is complete. So by the Uniform Boundedness Principle
(Theorem 3.10), {a(f) | a € A} is bounded in X** for all f € X*.
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Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle.
Let A be a subset of a normed linear space X such that for all f € X* we
have that f(A) is a bounded set of scalars. Then A is bounded.

Proof. Let A C X is a normed linear space X such that for all f € X*, we
have f(A) = {f(a) | a € A} is bounded. Now for each a € A, we have
f(a) = a(f) where 3 € X**. So for each f € X*,

f(A)={f(a)|ac A} ={a(f) | a € A}

is bounded. So {3(f) | a € A} is a bounded set for each f € X*. Also, by
Theorem 2.15, X* is complete. So by the Uniform Boundedness Principle
(Theorem 3.10), {a(f) | a € A} is bounded in X** for all f € X*. Since
there is an isometry between X and X** (which maps a to 3) then set A is
bounded. O
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Theorem 6.10. LP is reflexive for 1 < p < .
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Theorem 6.10

Theorem 6.10. LP is reflexive for 1 < p < .

Proof. Let g satisfy the equation % + % =1
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Theorem 6.10

Theorem 6.10. LP is reflexive for 1 < p < .

Proof. Let g satisfy the equation %—l—% = 1. By Theorem 6.3, (LP)* = L9
and (LP)** = (L9)* = LP. So LP is isometric to (LP)**. We need to
explicitly find a surjective isometry from LP to (LP)**.
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Theorem 6.10

Theorem 6.10. LP is reflexive for 1 < p < oc.

Proof. Let g satisfy the equation %—l—% = 1. By Theorem 6.3, (LP)* = L9
and (LP)** = (L9)* = LP. So LP is isometric to (LP)**. We need to
explicitly find a surjective isometry from LP to (LP)**. Let U be the
surjective isometry from L9 to (LP)* given in Theorem 6.3: For g € L9
define U(g) = ¢g € (LP)* where g (f) = [ fgdu forall f € LP. Let V
be the surjective isometry from LP to (L9)*.
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Theorem 6.10

Theorem 6.10. LP is reflexive for 1 < p < oc.

Proof. Let g satisfy the equation %—l—% = 1. By Theorem 6.3, (LP)* = L9
and (LP)** = (L9)* = LP. So LP is isometric to (LP)**. We need to
explicitly find a surjective isometry from LP to (LP)**. Let U be the
surjective isometry from L9 to (LP)* given in Theorem 6.3: For g € L9
define U(g) = ¢g € (LP)* where g (f) = [ fgdu forall f € LP. Let V
be the surjective isometry from LP to (L9)*. Notice then that the adjoint
U* maps (LP)** to (L9)*. Consider (U*)71V : LP — (LP)**.
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Theorem 6.10 (continued)

Theorem 6.10. LP is reflexive for 1 < p < co.

Proof (continued).
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Theorem 6.10 (continued)

Theorem 6.10. LP is reflexive for 1 < p < co.

Proof (continued). For all f € LP and g € L9 we have

(U*f)(g) = F(Ug) by the definition of adjoint U*
(Ug)f by definition of f

= fg dp by definition of U(g) = ¢g
E

= /gfdu
E

(Vf)(g) by definition of V(f) = pr.

So (U*F)(g) = (Vf)(g) for all g € L9 and hence U*f = Vf (which are
linear functionals from L9 to IF; that is, elements of (L9)*).
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Theorem 6.10 (continued)

Theorem 6.10. LP is reflexive for 1 < p < co.

Proof (continued). For all f € LP and g € L9 we have

(U*f)(g) = F(Ug) by the definition of adjoint U*
(Ug)f by definition of f

= fg dp by definition of U(g) = ¢g
E

= /gfdu
E

(Vf)(g) by definition of V(f) = pr.

So (U*F)(g) = (Vf)(g) for all g € L9 and hence U*f = Vf (which are
linear functionals from L9 to IF; that is, elements of (L9)*). Therefore
(U*)"LU*F = (U*)"1VF or f = (U*)"1Vf and (U*)"1V maps f to f. By
Theorem 6.8, (U*)~1V is a linear isometry from LP (where f lives) to
(LPY** (where f lives).
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Theorem 6.10 (continued again)

Theorem 6.10. LP is reflexive for 1 < p < co.

Proof (continued again).
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Theorem 6.10 (continued again)

Theorem 6.10. LP is reflexive for 1 < p < co.

Proof (continued again). Finally, by the Riesz-Representation Theorem
for LP (not explicitly stated in our text, but see Royden and Fitzpatrick’s
Real Analysis 4th Edition, Section 8.1) U and V are bijections (one to one
and onto) and so U* is bijective and (U*)~! exists and is bijective. So
(U*)~1V is surjective (onto). Therefore, (U*)~1V is the surjective
isometry required. O
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Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.
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Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X. Let
w e,
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Theorem 6.11

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X. Let
w € Z**. To show that Z is reflexive, we must find x € Z such that X = ¢
(then show that the embedding of Z into Z** given by x — X is surjective
[onto]).
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Theorem 6.11

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X. Let
w € Z**. To show that Z is reflexive, we must find x € Z such that X = ¢
(then show that the embedding of Z into Z** given by x — X is surjective
[onto]).

For f € X*, denote the restriction of f to Z as f | Z. Define n € X** as
n(f) = ¢(f|Z) for all f € X*.
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Theorem 6.11

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X. Let
w € Z**. To show that Z is reflexive, we must find x € Z such that X = ¢
(then show that the embedding of Z into Z** given by x — X is surjective
[onto]).

For f € X*, denote the restriction of f to Z as f | Z. Define n € X** as
n(f) = ¢(f|Z) for all f € X*. Since the norm of f|Z is less than or equal
to the norm of f (since the sup is taken over the smaller set Z in
determining ||f|Z]]),

() = le(F12)] < llelllIF1Z]] < Nl ] for all £ e X7,

and so |5l = sup{[n(f)| [ [f]l = 1} < l~].
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Theorem 6.11

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X. Let
w € Z**. To show that Z is reflexive, we must find x € Z such that X = ¢
(then show that the embedding of Z into Z** given by x — X is surjective
[onto]).

For f € X*, denote the restriction of f to Z as f | Z. Define n € X** as
n(f) = ¢(f|Z) for all f € X*. Since the norm of f|Z is less than or equal
to the norm of f (since the sup is taken over the smaller set Z in
determining ||f|Z]]),

() = le(F12)] < llelllIF1Z]] < Nl ] for all £ e X7,

and so ||n]| = sup{|[n(H)| | Ifll = 1} < ||¢||. Since X is reflexive, there is
x € X such that X = 7. Given any f € X* with f(Z) =0 (i.e., functional
f is 0 on subspace Z), we have X(f) = n(f) = ¢(f|Z) = 0. So
R(f) = f(x) =0 for all f € X*.
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Theorem 6.11 (continued)

Proof (continued). By Corollary 5.5, since Z is a closed subspace of X,
if x & Z then there would be f € X* for which f(Z) =0 and f(x) = 1.
Since this is not the case, it must be that x € Z.
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Theorem 6.11 (continued)

Proof (continued). By Corollary 5.5, since Z is a closed subspace of X,
if x & Z then there would be f € X* for which f(Z) =0 and f(x) = 1.
Since this is not the case, it must be that x € Z. We need to show that
% = ¢ (where the hat indicated embedding Z in Z**, whereas above the
hat indicated embedding X in X**). Let g € Z* be arbitrary.

May 19, 2015 10 / 12
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Theorem 6.11 (continued)

Proof (continued). By Corollary 5.5, since Z is a closed subspace of X,
if x & Z then there would be f € X* for which f(Z) =0 and f(x) = 1.
Since this is not the case, it must be that x € Z. We need to show that
% = ¢ (where the hat indicated embedding Z in Z**, whereas above the
hat indicated embedding X in X**). Let g € Z* be arbitrary. By the
Normed Linear Space Version of the Hahn-Banach Theorem (Theorem
5.4), there is an extension of g to all of X, say f € X*. Then

o(f) = ¢(f|Z) since f extends g from Z to Xv
= n(f) by the definition of n

= X(f)

(x)

= g(x

= X(g

So, x € Z and X = ¢, as desired. O
Introduction to Functional Analysis May 19, 2015 10 / 12
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Theorem 6.12

Theorem 6.12. A Banach space X is reflexive if and only if X* is
reflexive.
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Theorem 6.12

Theorem 6.12. A Banach space X is reflexive if and only if X* is
reflexive.

Proof. Suppose X is reflexive.
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Theorem 6.12

Theorem 6.12. A Banach space X is reflexive if and only if X* is
reflexive.

Proof. Suppose X is reflexive. For any A € X***, define g € X* as
g(x) = A(X) (where x € X and X € X** where the correspondence of x
and X is as given at the beginning of this section).

Introduction to Functional Analysis May 19, 2015 11 /12



Theorem 6.12

Theorem 6.12. A Banach space X is reflexive if and only if X* is
reflexive.

Proof. Suppose X is reflexive. For any A € X***, define g € X* as
g(x) = A(X) (where x € X and X € X** where the correspondence of x
and X is as given at the beginning of this section). We claim that g = A
(which would show that for any A € X***, there is g € X* such that

g — & = A, and so the mapping is surjective [onto] and X* is reflexive).
Let ¢ € X** be arbitrary.
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Theorem 6.12

Theorem 6.12. A Banach space X is reflexive if and only if X* is
reflexive.

Proof. Suppose X is reflexive. For any A € X***, define g € X* as
g(x) = A(X) (where x € X and X € X** where the correspondence of x
and X is as given at the beginning of this section). We claim that g = A
(which would show that for any A € X***, there is g € X* such that

g — & = A, and so the mapping is surjective [onto] and X* is reflexive).
Let ¢ € X** be arbitrary. There is x € X with X = ¢ since X is reflexive.
Then

A(p) = A(X)since X =¢
= g(x)
(8)
= ¢(g) since & = ¢
= g(p) by the definition of ~ in the X* embedding.
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Theorem 6.12

Theorem 6.12 (continued)

Theorem 6.12. A Banach space X is reflexive if and only if X* is
reflexive.

Proof (continued). So A = g, the mapping g — g is surjective, and X*
is reflexive.
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Theorem 6.12

Theorem 6.12 (continued)

Theorem 6.12. A Banach space X is reflexive if and only if X* is
reflexive.

Proof (continued). So A = g, the mapping g — g is surjective, and X*
is reflexive.

Conversely, if X* is reflexive then by the above argument X** is reflexive.
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Theorem 6.12 (continued)

Theorem 6.12. A Banach space X is reflexive if and only if X* is
reflexive.

Proof (continued). So A = g, the mapping g — g is surjective, and X*
is reflexive.

Conversely, if X* is reflexive then by the above argument X** is reflexive.
So X is a subspace of Banach space X** (remember that X* and X** are
complete by Theorem 2.15), then by Theorem 2.16, X is a closed
subspace of reflexive space X**, and by Theorem 6.11, X is reflexive. [
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