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Theorem 6.8

Theorem 6.8

Theorem 6.8. The mapping x → x̂ (which maps X to X ∗∗) is a linear
isometry.

Proof. Let x1, x2 ∈ X and α ∈ F.

Then for all f ∈ X ∗ we have that

̂(x1 + x2)f = f (x1 + x2) by the definition of ˆ

= f (x1) + f (x2) since g is linear

= x̂1 + x̂2 by the definition of ,̂

and

(̂αx1)f = f (αx1) by the definition of ˆ

= αf (x1) since f is linear

= αx̂1 by the definition of .̂

So the mapping is linear.
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Theorem 6.8

Theorem 6.8

Theorem 6.8. The mapping x → x̂ (which maps X to X ∗∗) is a linear
isometry.

Proof (continued). Next,

‖x‖ = sup{|f (x)| | f ∈ X ∗, ‖f ‖ ≤ 1} by Corollary 5.7

= sup{|x̂(f )| | f ∈ X ∗, ‖f ‖ ≤ 1} since x̂(f ) = f (x)

= ‖x̂‖ by the definition of ‖x̂‖
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Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle

Theorem 6.9. General Uniform Boundedness Principle.
Let A be a subset of a normed linear space X such that for all f ∈ X ∗ we
have that f (A) is a bounded set of scalars. Then A is bounded.

Proof. Let A ⊆ X is a normed linear space X such that for all f ∈ X ∗, we
have f (A) = {f (a) | a ∈ A} is bounded.

Now for each a ∈ A, we have
f (a) = â(f ) where â ∈ X ∗∗. So for each f ∈ X ∗,

f (A) = {f (a) | a ∈ A} = {â(f ) | a ∈ A}

is bounded. So {â(f ) | a ∈ A} is a bounded set for each f ∈ X ∗. Also, by
Theorem 2.15, X ∗ is complete. So by the Uniform Boundedness Principle
(Theorem 3.10), {â(f ) | a ∈ A} is bounded in X ∗∗ for all f ∈ X ∗. Since
there is an isometry between X and X ∗∗ (which maps a to â) then set A is
bounded.
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Theorem 6.10

Theorem 6.10

Theorem 6.10. Lp is reflexive for 1 < p < ∞.

Proof. Let q satisfy the equation 1
p + 1

q = 1.

By Theorem 6.3, (Lp)∗ = Lq

and (Lp)∗∗ = (Lq)∗ = Lp. So Lp is isometric to (Lp)∗∗. We need to
explicitly find a surjective isometry from Lp to (Lp)∗∗. Let U be the
surjective isometry from Lq to (Lp)∗ given in Theorem 6.3: For g ∈ Lq

define U(g) = ϕg ∈ (Lp)∗ where ϕg (f ) =
∫
E fg dµ for all f ∈ Lp. Let V

be the surjective isometry from Lp to (Lq)∗. Notice then that the adjoint
U∗ maps (Lp)∗∗ to (Lq)∗. Consider (U∗)−1V : Lp → (Lp)∗∗.
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Theorem 6.10

Theorem 6.10 (continued)

Theorem 6.10. Lp is reflexive for 1 < p < ∞.

Proof (continued). For all f ∈ Lp and g ∈ Lq we have

(U∗f̂ )(g) = f̂ (Ug) by the definition of adjoint U∗

= (Ug)f by definition of f̂

=

∫
E

fg dµ by definition of U(g) = ϕg

=

∫
E

gf dµ

= (Vf )(g) by definition of V (f ) = ϕf .

So (U∗f̂ )(g) = (Vf )(g) for all g ∈ Lq and hence U∗f̂ = Vf (which are
linear functionals from Lq to F; that is, elements of (Lq)∗).

Therefore
(U∗)−1U∗f̂ = (U∗)−1Vf or f̂ = (U∗)−1Vf and (U∗)−1V maps f to f̂ . By
Theorem 6.8, (U∗)−1V is a linear isometry from Lp (where f lives) to
(Lp)∗∗ (where f̂ lives).
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Theorem 6.10

Theorem 6.10 (continued again)

Theorem 6.10. Lp is reflexive for 1 < p < ∞.

Proof (continued again). Finally, by the Riesz-Representation Theorem
for Lp (not explicitly stated in our text, but see Royden and Fitzpatrick’s
Real Analysis 4th Edition, Section 8.1) U and V are bijections (one to one
and onto) and so U∗ is bijective and (U∗)−1 exists and is bijective. So
(U∗)−1V is surjective (onto). Therefore, (U∗)−1V is the surjective
isometry required.
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Theorem 6.11

Theorem 6.11

Theorem 6.11. A closed subspace of a reflexive Banach space is reflexive.

Proof. Suppose Z is a closed subspace of reflexive Banach space X . Let
ϕ ∈ Z ∗∗.

To show that Z is reflexive, we must find x ∈ Z such that x̂ = ϕ
(then show that the embedding of Z into Z ∗∗ given by x 7→ x̂ is surjective
[onto]).
For f ∈ X ∗, denote the restriction of f to Z as f | Z . Define η ∈ X ∗∗ as
η(f ) = ϕ(f |Z ) for all f ∈ X ∗. Since the norm of f |Z is less than or equal
to the norm of f (since the sup is taken over the smaller set Z in
determining ‖f |Z‖),

|η(f )| = |ϕ(f |Z )| ≤ ‖ϕ‖‖f |Z‖ ≤ ‖ϕ‖‖f ‖ for all f ∈ X ∗,

and so ‖η‖ = sup{|η(f )| | ‖f ‖ = 1} ≤ ‖ϕ‖. Since X is reflexive, there is
x ∈ X such that x̂ = η. Given any f ∈ X ∗ with f (Z ) = 0 (i.e., functional
f is 0 on subspace Z ), we have x̂(f ) = η(f ) = ϕ(f |Z ) = 0. So
x̂(f ) = f (x) = 0 for all f ∈ X ∗.
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[onto]).
For f ∈ X ∗, denote the restriction of f to Z as f | Z . Define η ∈ X ∗∗ as
η(f ) = ϕ(f |Z ) for all f ∈ X ∗. Since the norm of f |Z is less than or equal
to the norm of f (since the sup is taken over the smaller set Z in
determining ‖f |Z‖),

|η(f )| = |ϕ(f |Z )| ≤ ‖ϕ‖‖f |Z‖ ≤ ‖ϕ‖‖f ‖ for all f ∈ X ∗,

and so ‖η‖ = sup{|η(f )| | ‖f ‖ = 1} ≤ ‖ϕ‖. Since X is reflexive, there is
x ∈ X such that x̂ = η. Given any f ∈ X ∗ with f (Z ) = 0 (i.e., functional
f is 0 on subspace Z ), we have x̂(f ) = η(f ) = ϕ(f |Z ) = 0. So
x̂(f ) = f (x) = 0 for all f ∈ X ∗.
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Theorem 6.11 (continued)

Proof (continued). By Corollary 5.5, since Z is a closed subspace of X ,
if x 6∈ Z then there would be f ∈ X ∗ for which f (Z ) = 0 and f (x) = 1.
Since this is not the case, it must be that x ∈ Z . We need to show that
x̂ = ϕ (where the hat indicated embedding Z in Z ∗∗, whereas above the
hat indicated embedding X in X ∗∗). Let g ∈ Z ∗ be arbitrary.

By the
Normed Linear Space Version of the Hahn-Banach Theorem (Theorem
5.4), there is an extension of g to all of X , say f ∈ X ∗. Then

ϕ(f ) = ϕ(f |Z ) since f extends g from Z to Xv

= η(f ) by the definition of η

= x̂(f ) by the choice of x above

= f (x) by definition of ˆ in the X embedding

= g(x) since x ∈ Z as shown above and f extends g

= x̂(g) be the definition of ˆ in the Z embedding.

So, x ∈ Z and x̂ = ϕ, as desired.
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Theorem 6.12

Theorem 6.12. A Banach space X is reflexive if and only if X ∗ is
reflexive.

Proof. Suppose X is reflexive.

For any ∆ ∈ X ∗∗∗, define g ∈ X ∗ as
g(x) = ∆(x̂) (where x ∈ X and x̂ ∈ X ∗∗ where the correspondence of x
and x̂ is as given at the beginning of this section). We claim that ĝ = ∆
(which would show that for any ∆ ∈ X ∗∗∗, there is g ∈ X ∗ such that
g 7→ ĝ = ∆, and so the mapping is surjective [onto] and X ∗ is reflexive).
Let ϕ ∈ X ∗∗ be arbitrary. There is x ∈ X with x̂ = ϕ since X is reflexive.
Then

∆(ϕ) = ∆(x̂) since x̂ = ϕ

= g(x) by the definition of g

= x̂(g) by definition of ˆ in the X embedding

= ϕ(g) since x̂ = ϕ

= ĝ(ϕ) by the definition of ˆ in the X ∗ embedding.
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(which would show that for any ∆ ∈ X ∗∗∗, there is g ∈ X ∗ such that
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Theorem 6.12 (continued)

Theorem 6.12. A Banach space X is reflexive if and only if X ∗ is
reflexive.

Proof (continued). So ∆ = ĝ , the mapping g 7→ ĝ is surjective, and X ∗

is reflexive.
Conversely, if X ∗ is reflexive then by the above argument X ∗∗ is reflexive.

So X is a subspace of Banach space X ∗∗ (remember that X ∗ and X ∗∗ are
complete by Theorem 2.15), then by Theorem 2.16, X is a closed
subspace of reflexive space X ∗∗, and by Theorem 6.11, X is reflexive.
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