
Introduction to Functional Analysis

May 19, 2015

Chapter 6. Duality
6.4. Weak and Weak* Convergence—Proofs of Theorems

() Introduction to Functional Analysis May 19, 2015 1 / 11



Table of contents

1 Lemma

2 Proposition 6.15, Continuity of Operations.

3 Proposition 6.16

() Introduction to Functional Analysis May 19, 2015 2 / 11



Lemma

Lemma

Lemma. If (xn) is convergent to x in X then (xn) is weakly convergent to
x .

Proof. Suppose (xn) → x . Let ε > 0 and let f ∈ X ∗ with f 6= 0.

Then
there exists N ∈ N such that for all n ≥ N we have ‖x − xn‖ < ε/‖f ‖. So
if f ∈ X ∗ then for n ≥ N we have

‖f (x)− f (xn)‖ = ‖f (x − xn)‖ ≤ ‖f ‖‖x − xn‖ < ‖f ‖ε/‖f ‖ = ε.

So f (xn) → f (x) and (xn) is weakly convergent to x .
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Proposition 6.15, Continuity of Operations.

Proposition 6.15, Continuity of Operations.

Proposition 6.15. Continuity of Operations.
For any sequence (xn) which converges weakly to x , any sequence (yn)
which converges weakly to y , and any sequence of scalars (αn) converging
to α, we have:

(a) (xn + yn) converges weakly to x + y ,

(b) (αnxn) converges weakly to αx .

Proof of (a). Let f ∈ X ∗ be arbitrary.

Then we have f (xn) → f (x) and
f (yn) → f (y). So f (xn + yn) = f (xn) + f (yx) → x + y . Since f ∈ X ∗ is
arbitrary, (xn + yn) converges weakly to x + y .
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Proposition 6.15. Continuity of Operations.
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to α, we have:
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(b) (αnxn) converges weakly to αx .

Proof of (b). Let f ∈ X ∗ be arbitrary. Then we have (αn) → α and
(f (xn)) → x . Notice that (αn) and f (xn)) are both sequences in F.

The
limit of the product of two convergent sequences is the product of the
limits, so (f (αnxn)) = (αnf (xn)) → αf (x) = f (αx). Since f ∈ X ∗ is
arbitrary, (αnxn) converges weakly to αx .

() Introduction to Functional Analysis May 19, 2015 5 / 11



Proposition 6.15, Continuity of Operations.

Proposition 6.15(b).

Proposition 6.15. Continuity of Operations.
For any sequence (xn) which converges weakly to x , any sequence (yn)
which converges weakly to y , and any sequence of scalars (αn) converging
to α, we have:

(a) (xn + yn) converges weakly to x + y ,

(b) (αnxn) converges weakly to αx .

Proof of (b). Let f ∈ X ∗ be arbitrary. Then we have (αn) → α and
(f (xn)) → x . Notice that (αn) and f (xn)) are both sequences in F. The
limit of the product of two convergent sequences is the product of the
limits, so (f (αnxn)) = (αnf (xn)) → αf (x) = f (αx). Since f ∈ X ∗ is
arbitrary, (αnxn) converges weakly to αx .

() Introduction to Functional Analysis May 19, 2015 5 / 11



Proposition 6.15, Continuity of Operations.

Proposition 6.15(b).

Proposition 6.15. Continuity of Operations.
For any sequence (xn) which converges weakly to x , any sequence (yn)
which converges weakly to y , and any sequence of scalars (αn) converging
to α, we have:

(a) (xn + yn) converges weakly to x + y ,

(b) (αnxn) converges weakly to αx .

Proof of (b). Let f ∈ X ∗ be arbitrary. Then we have (αn) → α and
(f (xn)) → x . Notice that (αn) and f (xn)) are both sequences in F. The
limit of the product of two convergent sequences is the product of the
limits, so (f (αnxn)) = (αnf (xn)) → αf (x) = f (αx). Since f ∈ X ∗ is
arbitrary, (αnxn) converges weakly to αx .

() Introduction to Functional Analysis May 19, 2015 5 / 11



Proposition 6.16

Proposition 6.16

Proposition 6.16. If a sequence (xn) in `1 converges weakly to x , then
(xn) converges to x with respect to the `1 norm. We take F = C.

Proof. By the linearity of f ∈ X ∗, without loss of generality we may
assume x = 0. Suppose (xn) converges weakly to x = 0.

ASSUME (xn)
does not converge to x = 0 with respect to the `1 norm. Then (xn) has a
subsequence xm) such that there is an r > 0 where ‖xm}1 ≥ 5r for all
m ∈ N (some terms of (xn) could be close to 0, but infinitely many are
not).
Let k, c ∈ N. Choose n > k large enough so that ‖xm(i)‖1 ≤ r/(c − 1) for
i = 1, 2, . . . , c − 1 (here, xm(i) represents the ith term of xm). This can be
done since we view only the first c − 1 coordinates of xm and hence this is
a claim about a finite dimensional space, namely Fc−1. In finite
dimensions, weak convergence implies convergence (Exercise 6.9).
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Proposition 6.16

Proposition 6.16, Part 2

Proposition 6.16. If a sequence (xn) in `1 converges weakly to x , then
(xn) converges to x with respect to the `1 norm. We take F = C.

Proof (Part 2). So in Fc−1, the “pieces” of xn converge to 0 in terms of
the `1 norm. Next, choose d ∈ N large enough so that

∑∞
i=d+1 |xm(i)| < r

(this can be done since xm ∈ `1).

It follows that

d∑
i=c

|xm(i)| = ‖xm‖1 =
c−1∑
i=1

|xm(i)| −
∞∑

i=d+1

|xm(i)|

≥ ‖xm‖1 − (c − 1)(r/(c − 1))− r = ‖xm‖1 − 2r

≥ ‖xm‖1 −
2

5
‖xm‖1 since ‖xm‖1 ≥ 5r

=
3

5
‖xm‖1.

So (xm) has a hump over [c , d ].
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Proposition 6.16

Proposition 6.16, Part 3

Proposition 6.16. If a sequence (xn) in `1 converges weakly to x , then
(xn) converges to x with respect to the `1 norm. We take F = C.

Proof (Part 3). By starting with k = 1 we can produce a subsequence
(xn1) which has a hump. Since c ∈ N above is arbitrary “we can push the
humps out as far as we like” (page 138) to ensure that for i 6= j , the
humps for xni and xnj are disjoint intervals.

Next for every element of an

interval corresponding to a hump, xnk
(`) = re iθ, define y(`) = e−iθ. For `

not in an interval corresponding to a hump, define y(`) = 0. Define
y = (y(1), y(2), . . .). Then ‖y‖∞ = 1 and so y ∈ `∞ (the dual space of `1

by Theorem 6.1). For this y ∈ `∞, we consider the bounded linear
functional ϕy on `1 where ϕy (xn) =

∑∞
`=1 y(`)xn(`).
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Proposition 6.16

Proposition 6.16, Part 4

Proof (Part 4). For any of the subsequences of (xn) produced above
(each with a hump), say (xnk

), we have

|ϕy (xnk
)| =

∣∣∣∣∣
∞∑

`=1

y(`)xnk
(`)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

`∈[ck ,dk ]

y(`)xnk
(`) +

∑
` 6∈[ck ,dk ]

y(`)xnk
(`)

∣∣∣∣∣∣
where [ck , dk ] is the interval corresponding to the hump of xnk

(notice that
only a finite number of terms have been rearranged, so absolute
convergence is not an issue) and then the quantity above is (by the
Triangle Inequality)

≥

∣∣∣∣∣∣
∑

`∈[ck ,dk ]

y(`)xnk
(`)

∣∣∣∣∣∣−
∣∣∣∣∣∣

∑
` 6∈[ck ,dk ]

y(`)xnk
(`)

∣∣∣∣∣∣ (∗)
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Proposition 6.16

Proposition 6.16, Part 5

Proof (Part 5). Now in the hump, y(`)xnk
(`) = |xnk

(`)| by the choice of
y(`). Outside the hump, |y(`)xnk

(`)| = |xnk
(`)| and so∣∣∣∣∣∣

∑
` 6∈[ck ,dk ]

y(`)xnk
(`)

∣∣∣∣∣∣ ≤
∑

` 6∈[ck ,dk ]

|y(`)||xnk
(`) =

∑
` 6∈[ck ,dk ]

|xnk
(`)| ≤ 2

5
‖xnk

‖1

since at least 3
5‖xnk

‖1 is “in the hump”).

So, by (∗),

|ϕy (xnk
)| ≥

∑
`∈[ck ,dk ]

|xnk
(`)|− 2

5
‖xnk

‖1 ≥
3

5
‖xnk

‖1−
2

5
‖xnk

‖1 =
1

5
‖xnk

‖1 ≥ r

by the choice of r .
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Proposition 6.16

Proposition 6.16, Part 6

Proposition 6.16. If a sequence (xn) in `1 converges weakly to x , then
(xn) converges to x with respect to the `1 norm. We take F = C.

Proof (Part 6). So for ϕy ∈ `∞, we do not have ϕy (xnk
) → 0. Hence

ϕy (xn) does not converge to 0, CONTRADICTING the fact that (xn)
converges weakly to 0. So the assumption that (xn) converges weakly to
0. So the assumption that (xn) does not converge to 0 with respect to the
`1 norm is false.

Therefore, weak convergence in `1 implies convergence in `1.
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0. So the assumption that (xn) does not converge to 0 with respect to the
`1 norm is false.
Therefore, weak convergence in `1 implies convergence in `1.
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