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Theorem 8.5, The Spectral Mapping Theorem

Theorem 8.5, The Spectral Mapping Theorem

Theorem 8.5. The Spectral Mapping Theorem.
Let p be a polynomial. Let X be a linear space. Then µ ∈ σ(p(x)) if and
only if µ = p(λ) for some λ ∈ σ(x), where x ∈ X .

Proof. If p is the 0 polynomial, the claim is that µ ∈ σ(0) = {0} if and
only if µ = p(λ) = 0 for some λ ∈ σ(x), so the result holds. So without
loss of generality, p is not the 0 polynomial.

Suppose λ ∈ σ(x). The polynomial with variable t of p(t) = p(λ) has λ
as a root, so it can be factored as p(t)− p(λ) = (t − λ)q(t) where q is a
polynomial. In the algebra this means
p(x)− p(λe) = (x − λe)q(x) = q(x)(x − λe) (the commutivity here will
follow by writing out polynomial q(x), distributing the x and λe which
commute with the parts of q(x) be definition of multiplication by x , scalar
multiplication [which is commutative], and the fact that e is the unit and
hence commutes).
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Theorem 8.5, The Spectral Mapping Theorem

Theorem 8.5, The Spectral Mapping Theorem (continued)

Proof (continued). Since the factors (x − λe) and q(x) commute and
(x − λe) is not invertible, then by the Products and Inverses Lemma of
Section 8.2 (contrapositive of part (c)), the product (x − λe)q(x) is not
invertible. So for p(x) ∈ X , we have that p(x)− p(λe) = p(x)− p(λ)e is
not invertible, and so p(λ) ∈ σ(p(x)).

Now suppose µ ∈ σ(p(x)). Let the zeros of p(t)− µ be µ1, µ2, . . . , µn

(Fundamental Theorem of Algebra over C). Then in the algebra,
p(x)− µe = c(x − µ1e)(x − µ2e) · · · (x − µne) for some nonzero scalar c .
The left-hand side of this equation is not invertible since µ ∈ σ(p(x)). The
factors on the right-hand side all commute (as above). So by the Products
and Inverses Lemma of Section 8.2 (the contrapositive of part (c), along
with induction) at least one of the factors on the right-hand side is not
invertible. That is, some µi ∈ σ(x) where p(µi )µ. Here µi is the λ of the
statement of this result.
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Proposition 8.7

Proposition 8.7

Proposition 8.7. Suppose x is invertible. Then λ ∈ σ(x) if and only if
λ−1 ∈ σ(x−1).

Proof. Notice that x invertible implies 0 6∈ σ(x).

We have
x−1 − λ−1e = −λ−1(x − λe)x−1 and x − λe is invertible for λ 6∈ σ(x)
since x−1 is invertible and (x − λe) and x−1 commute by the Products
and Inverses Lemma . Similarly, if λ ∈ σ(x) then (x − λe) is not invertible
and s−1 − λ−1e is not invertible (by the contrapositive of the Products
and Inverses Lemma part (c)) and so λ−1 ∈ σ(x−1).
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Proposition 8.8

Proposition 8.8

Proposition 8.8. Let X be a (complete) Banach algebra. If ‖e − x‖ < 1,
then x is invertible.
Proof. Let x satisfy ‖e − x‖ < 1.

Define

y = e + (e − x) + (e − x)2 + (e − x)3 + · · · =
∑∞

k=0(e − x)k

(we take x0 = e for all x ∈ X ). Then this series converges absolutely (take
norms of terms, and a geometric series with ration ‖e − x‖ < 1 results),
and since the algebra is complete, the series converges. Define the partial
sums yn =

∑n
k=0(e − x)k . Then

ynx = yx − yn + ynx = yn − yn(e − x)

=
n∑

k=0

(e − x)k −
n∑

k=0

(e − x)k+1 = e − (e − x)n+1.

So limn→∞(ynx) = limn→∞(e − (e − x)n+1) = e since ‖e − x‖ < 1. So
yx = e and similarly xy = e. That is, x−1 = y .
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Proposition 8.9

Proposition 8.9

Proposition 8.9. The set of invertible elements of a Banach algebra is an
open set.

Proof. Let x be invertible. Define r = 1/‖x−1}. Then for all y such that
‖x − y‖ < r we have

‖e − x−1y‖ = ‖x−1(x − y)‖ = ‖x−1‖‖x − y‖ < ‖x−1‖r = 1

by the choice of r .

So by Proposition 8.8, x−1y is invertible. So
y = x(x=1y) is invertible and the result follows.
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Proposition 8.10

Theorem 8.10. Let X be a Banach algebra. Then for all x ∈ X , σ(x) is a
compact subset of C.

Proof. Suppose |λ| > ‖x‖.

Then ‖e − (e − x/λ)‖ = ‖x‖/|λ| < 1, so by
Proposition 8.8, e − x/λ is invertible, and hence so is
−λ(e − c/λ) = x − λe. So x − λe is NOT invertible only for λ ≤ ‖x‖.
That is, the spectrum of x is a subset of B(‖x‖): σ(x) ⊆ B(‖x‖). So
σ(x) is a bounded subset of C.
Of λ 6∈ σ(x) then s − λe is invertible and since the set of invertible
elements is open by Proposition 8.9, there exists ε > 0 such that for all
µ ∈ C where |λ− µ| < ε, we have x − µe is invertible. That is,
B(λ; ε) ⊆ C \ σ(x). So C \ σ(x) is open and σ(x) is closed.
Therefore, σ(x) is a closed and bounded set in C and hence σ(x) is
compact.
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Proposition 8.11

Proposition 8.11. Let X be a Banach algebra. Then for any x ∈ X , the
spectral radius of x satisfies

r(x) ≤ inf{‖xn‖1/n | n ∈ N}.

Proof. As shown in the proof of Theorem 8.10, since σ(x) ⊆ B(‖x‖),
then r(x) ≤ ‖x‖.

So for any n ∈ N (replacing arbitrary vector x with
vector xn), r(xn) ≤ ‖xn‖.
Consider the polynomial p(x) = xn. By the Spectral Mapping Theorem,
µ ∈ σ(p(x))− σ(xn) if and only if µ = p(λ) = λn for some λ ∈ σ(x). So
the spectral radius of x and xn are related as: (r(x))n = r(xn). and for all
n, r(x) = f (xn)1/n. Hence,

r(x) ≤ inf{(r(xn))1/n | n ∈ N}.
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Theorem 8.12

Theorem 8.12

Theorem 8.12. If (an) is a submultiplicative sequence of positive real

numbers, then (a
1/n
n ) converges to inf{a1/n

n | n ∈ N}.

Proof. Let a = inf{a1/n
n | n ∈ N}.

For any b > a we can choose k ∈ N so

that a
1/k
k < b (by the definition of a in terms of an infimum). For fixed

n ∈ N where n > k, write n = pk + r where p ∈ N and 0 ≤ r ≤ k − 1.
Since (an) is submultiplicative, we have inductively:

an = apk+r = ak+k+···+k+r ≤ akak · · · akar = (ak)par .

Now n = pk + r implies that n − r = pk and hence
p/n = (n − r)/(nk) = (1/k)(1− r/n). So

a
1/n
n ≤ a

p/n
k a

1/n
r = (a

1/k
k )1−r/na

1/n
r < b1−r//nc1/n (∗)

(by the choice of b) where c = max{ar | r = 1, 2, . . . , k − 1}. Since each
an is nonnegative, c1/n → 1 as n →∞. Since r ≤ k − 1 (i.e., r is
bounded) then 1− r/n → 1 as n →∞. So b1−r/nc1/n → b as n →∞.
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Theorem 8.12

Theorem 8.12 (continued)

Theorem 8.12. If (an) is a submultiplicative sequence of positive real

numbers, then (a
1/n
n ) converges to inf{a1/n

n | n ∈ N}.

Proof (continued). Since a is the infimum of all a
1/n
n , we have a ≤ a

1/n
n

for all n. Let ε > 0. The above argument starts with an arbitrary b > a,
so choose b such that b − a < ε/2. Also, there exists N ∈ N such that for
all n ≥ N, |b1−r/nc1/n − b| < ε/2.

Next, (∗) holds for any n > k, so for all

n ≥ max{N, k}, we have a ≤ a
1/n
n < b + ε/2, and so for all

n,m ≥ max{N, k} we have |a1/n
n − a

1/m
m | < b + ε/2− a < ε. So (a

1/n
n ) is a

Cauchy sequence of real numbers. So (a
1/n
n ) → a′ for some a′ ≤ b. Since

b > a was chosen arbitrarily, we have a′ ≤ a = inf{a1/n
n | n ∈ N}, but since

a′ is the limit of (a
1/n
n ), then a′ = a. That is,

a = inf{a1/n
n | n ∈ N} = a′ = lim

n→∞
(a

1/n
n ).
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