Introduction to Functional Analysis

Chapter 8. The Spectrum 8.4. Numerical Range—Proofs of Theorems

Table of contents

Proposition 8.17. For *H* a Hilbert space and $T \in \mathcal{B}(T)$, then $\sigma(T)$ is contained in the closure of the numerical range of *T*.

Proof. If $\lambda \in \sigma(T)$. If λ is an eigenvalue, choose a unit vector x so that $Tx = \lambda x$.

Proposition 8.17. For *H* a Hilbert space and $T \in \mathcal{B}(T)$, then $\sigma(T)$ is contained in the closure of the numerical range of *T*.

Proof. If $\lambda \in \sigma(T)$. If λ is an eigenvalue, choose a unit vector x so that $Tx = \lambda x$. Then

$$\langle Tx, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle - \lambda ||x||^2 = \lambda(1) = \lambda.$$

So λ is in the numerical range of T for all eigenvalues of T. This covers the point spectrum of T (see Section 8.1).

Proposition 8.17. For *H* a Hilbert space and $T \in \mathcal{B}(T)$, then $\sigma(T)$ is contained in the closure of the numerical range of *T*.

Proof. If $\lambda \in \sigma(T)$. If λ is an eigenvalue, choose a unit vector x so that $Tx = \lambda x$. Then

$$\langle Tx, x
angle = \langle \lambda x, x
angle = \lambda \langle x, x
angle - \lambda \|x\|^2 = \lambda(1) = \lambda.$$

So λ is in the numerical range of T for all eigenvalues of T. This covers the point spectrum of T (see Section 8.1).

If $T - \lambda I$ is not bounded below (recall from Section 3.4 that T is bounded below if there is a k > 0 such that for all unit vectors x we have $||Tx|| \ge k$) then there is a sequence (x_n) of unit vectors such that $(T - \lambda I)x_n \to 0$.

Proposition 8.17. For *H* a Hilbert space and $T \in \mathcal{B}(T)$, then $\sigma(T)$ is contained in the closure of the numerical range of *T*.

Proof. If $\lambda \in \sigma(T)$. If λ is an eigenvalue, choose a unit vector x so that $Tx = \lambda x$. Then

$$\langle \mathit{Tx}, x
angle = \langle \lambda x, x
angle = \lambda \langle x, x
angle - \lambda \|x\|^2 = \lambda(1) = \lambda$$

So λ is in the numerical range of T for all eigenvalues of T. This covers the point spectrum of T (see Section 8.1).

If $T - \lambda I$ is not bounded below (recall from Section 3.4 that T is bounded below if there is a k > 0 such that for all unit vectors x we have $||Tx|| \ge k$) then there is a sequence (x_n) of unit vectors such that $(T - \lambda I)x_n \to 0$. Also,

$$\langle (T - \lambda I) x_n, x_n \rangle = \langle T x_n, x_n \rangle - \langle x_n, x_n \rangle = \langle T x_n, x_n \rangle - \lambda.$$

So $\lim(\langle Tx_{n,n} \rangle - \lambda) = 0$ and $\lambda = \lim \langle Tx_{n}, x_{n} \rangle$.

Proposition 8.17. For *H* a Hilbert space and $T \in \mathcal{B}(T)$, then $\sigma(T)$ is contained in the closure of the numerical range of *T*.

Proof. If $\lambda \in \sigma(T)$. If λ is an eigenvalue, choose a unit vector x so that $Tx = \lambda x$. Then

$$\langle \mathit{Tx}, x
angle = \langle \lambda x, x
angle = \lambda \langle x, x
angle - \lambda \|x\|^2 = \lambda(1) = \lambda$$

So λ is in the numerical range of T for all eigenvalues of T. This covers the point spectrum of T (see Section 8.1).

If $T - \lambda I$ is not bounded below (recall from Section 3.4 that T is bounded below if there is a k > 0 such that for all unit vectors x we have $||Tx|| \ge k$) then there is a sequence (x_n) of unit vectors such that $(T - \lambda I)x_n \to 0$. Also,

$$\langle (T - \lambda I) x_n, x_n \rangle = \langle T x_n, x_n \rangle - \langle x_n, x_n \rangle = \langle T x_n, x_n \rangle - \lambda.$$

So $\lim(\langle Tx_{n,n} \rangle - \lambda) = 0$ and $\lambda = \lim \langle Tx_{n}, x_{n} \rangle$.

Proposition 8.17 (continued)

Proposition 8.17. For *H* a Hilbert space and $T \in \mathcal{B}(T)$, then $\sigma(T)$ is contained in the closure of the numerical range of *T*.

Proof (continued). So λ is in the closure of the numerical range in the case that $T - \lambda I$ is not bounded below. This potentially includes part of the continuous spectrum and part of the residual spectrum

If $T\lambda I$ is bounded below but the closure of the range $R(T - \lambda U) \neq H$, then by Proposition 4.27(a) (which says for T, $N(T^*) = R(T)^{\perp}$ where $N(T^*)$ is the null space of T) there is $y \in N((T - \lambda I)^*) = N(T^* - \overline{\lambda}I)$ (by Theorem 4.26(b)).

Proposition 8.17 (continued)

Proposition 8.17. For *H* a Hilbert space and $T \in \mathcal{B}(T)$, then $\sigma(T)$ is contained in the closure of the numerical range of *T*.

Proof (continued). So λ is in the closure of the numerical range in the case that $T - \lambda I$ is not bounded below. This potentially includes part of the continuous spectrum and part of the residual spectrum

If $T\lambda I$ is bounded below but the closure of the range $R(T - \lambda U) \neq H$, then by Proposition 4.27(a) (which says for T, $N(T^*) = R(T)^{\perp}$ where $N(T^*)$ is the null space of T) there is $y \in N((T - \lambda I)^*) = N(T^* - \overline{\lambda}I)$ (by Theorem 4.26(b)). Then $(T^* - \overline{\lambda}I)(y) = T^*y - \overline{\lambda}y = 0$ and

$$0 = \langle 0, y \rangle = \langle (T^* - \overline{\lambda}I)y, y \rangle = \langle T^*y - \overline{\lambda}y, y \rangle = \langle T^*y, y \rangle - \overline{\lambda}\langle y, y \rangle$$
$$= \langle T^*y, y \rangle - \overline{\lambda}(1) = \langle T^*y, y \rangle - \overline{\lambda}$$

or $\overline{\lambda} - \langle T^*y, y \rangle = \langle y, Ty \rangle = \overline{\langle Ty, y \rangle}$ and hence $\lambda = \langle Ty, y \rangle$ is in the numerical range. This covers the rest of the continuous and residual spectrums.

Proposition 8.17 (continued)

Proposition 8.17. For *H* a Hilbert space and $T \in \mathcal{B}(T)$, then $\sigma(T)$ is contained in the closure of the numerical range of *T*.

Proof (continued). So λ is in the closure of the numerical range in the case that $T - \lambda I$ is not bounded below. This potentially includes part of the continuous spectrum and part of the residual spectrum

If $T\lambda I$ is bounded below but the closure of the range $R(T - \lambda U) \neq H$, then by Proposition 4.27(a) (which says for T, $N(T^*) = R(T)^{\perp}$ where $N(T^*)$ is the null space of T) there is $y \in N((T - \lambda I)^*) = N(T^* - \overline{\lambda}I)$ (by Theorem 4.26(b)). Then $(T^* - \overline{\lambda}I)(y) = T^*y - \overline{\lambda}y = 0$ and

$$0 = \langle 0, y \rangle = \langle (T^* - \overline{\lambda}I)y, y \rangle = \langle T^*y - \overline{\lambda}y, y \rangle = \langle T^*y, y \rangle - \overline{\lambda}\langle y, y \rangle$$
$$= \langle T^*y, y \rangle - \overline{\lambda}(1) = \langle T^*y, y \rangle - \overline{\lambda}$$

or $\overline{\lambda} - \langle T^*y, y \rangle = \langle y, Ty \rangle = \overline{\langle Ty, y \rangle}$ and hence $\lambda = \langle Ty, y \rangle$ is in the numerical range. This covers the rest of the continuous and residual spectrums.