Introduction to Functional Analysis

Chapter 8. The Spectrum 8.5. Spectrum of a Normal Operator—Proofs of Theorems

Table of contents

Proposition 8.18

2 Lemma 8.19

- 3 Proposition 8.20
- Proposition 8.21
- 5 Proposition 8.22
- 6 Theorem 8.23
- Proposition 8.24
- 8 Proposition 8.25

Proposition 8.18. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ where the spectrum of *H* is $\sigma(T)$.

- (a) If T is self-adjoint then $\sigma(T) \subseteq \mathbb{R}$.
- (b) If T is a positive operator then $\sigma(T)$ consists of nonnegative real numbers.
- (c) If T is a projection then $\sigma(T) \subseteq \{0, 1\}$.
- (d) If T is a unitary operator, then $\sigma(T) \subseteq \{z \in \mathbb{C} \mid |z| = 1\}.$

Proof. (a) By Proposition 8.17, the spectrum of T, $\sigma(T)$ is contained in the closure of $\{\langle Tx, x \rangle \mid ||x|| = 1\}$. Since T is self-adjoint then $T = T^*$ and $\langle Tx, x \rangle = \langle x, T^*x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$ and so $\langle Tx, x \rangle$ is real for all ||x|| = 1 (for all x, in fact). So $\sigma(T)$ consists only of real numbers.

Proposition 8.18. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ where the spectrum of *H* is $\sigma(T)$.

- (a) If T is self-adjoint then $\sigma(T) \subseteq \mathbb{R}$.
- (b) If T is a positive operator then $\sigma(T)$ consists of nonnegative real numbers.
- (c) If T is a projection then $\sigma(T) \subseteq \{0, 1\}$.
- (d) If T is a unitary operator, then $\sigma(T) \subseteq \{z \in \mathbb{C} \mid |z| = 1\}$.

Proof. (a) By Proposition 8.17, the spectrum of T, $\sigma(T)$ is contained in the closure of $\{\langle Tx, x \rangle \mid ||x|| = 1\}$. Since T is self-adjoint then $T = T^*$ and $\langle Tx, x \rangle = \langle x, T^*x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$ and so $\langle Tx, x \rangle$ is real for all ||x|| = 1 (for all x, in fact). So $\sigma(T)$ consists only of real numbers. (b) For positive operator, $\langle Tx, x \rangle \ge 0$ for all x. By Proposition 8.17, $\sigma(T)$ is contained in the closure of $\{\langle Tx, x \rangle \mid ||x|| = 1\}$ and so all $\sigma(T)$ consists only of nonnegative (real) numbers.

Proposition 8.18. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ where the spectrum of *H* is $\sigma(T)$.

- (a) If T is self-adjoint then $\sigma(T) \subseteq \mathbb{R}$.
- (b) If T is a positive operator then $\sigma(T)$ consists of nonnegative real numbers.
- (c) If T is a projection then $\sigma(T) \subseteq \{0, 1\}$.
- (d) If T is a unitary operator, then $\sigma(T) \subseteq \{z \in \mathbb{C} \mid |z| = 1\}$.

Proof. (a) By Proposition 8.17, the spectrum of T, $\sigma(T)$ is contained in the closure of $\{\langle Tx, x \rangle \mid ||x|| = 1\}$. Since T is self-adjoint then $T = T^*$ and $\langle Tx, x \rangle = \langle x, T^*x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$ and so $\langle Tx, x \rangle$ is real for all ||x|| = 1 (for all x, in fact). So $\sigma(T)$ consists only of real numbers. (b) For positive operator, $\langle Tx, x \rangle \ge 0$ for all x. By Proposition 8.17, $\sigma(T)$ is contained in the closure of $\{\langle Tx, x \rangle \mid ||x|| = 1\}$ and so all $\sigma(T)$ consists only of nonnegative (real) numbers.

(c) This was established in Example 8.6(a).

()

Proposition 8.18. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ where the spectrum of *H* is $\sigma(T)$.

- (a) If T is self-adjoint then $\sigma(T) \subseteq \mathbb{R}$.
- (b) If T is a positive operator then $\sigma(T)$ consists of nonnegative real numbers.
- (c) If T is a projection then $\sigma(T) \subseteq \{0, 1\}$.
- (d) If T is a unitary operator, then $\sigma(T) \subseteq \{z \in \mathbb{C} \mid |z| = 1\}$.

Proof. (a) By Proposition 8.17, the spectrum of T, $\sigma(T)$ is contained in the closure of $\{\langle Tx, x \rangle \mid ||x|| = 1\}$. Since T is self-adjoint then $T = T^*$ and $\langle Tx, x \rangle = \langle x, T^*x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$ and so $\langle Tx, x \rangle$ is real for all ||x|| = 1 (for all x, in fact). So $\sigma(T)$ consists only of real numbers. (b) For positive operator, $\langle Tx, x \rangle \ge 0$ for all x. By Proposition 8.17, $\sigma(T)$ is contained in the closure of $\{\langle Tx, x \rangle \mid ||x|| = 1\}$ and so all $\sigma(T)$ consists only of nonnegative (real) numbers. (c) This was established in Example 8.6(a).

Proposition 8.18 (continued)

Proposition 8.18. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ where the spectrum of *H* is $\sigma(T)$.

- (a) If T is self-adjoint then $\sigma(T) \subseteq \mathbb{R}$.
- (b) If T is a positive operator then $\sigma(T)$ consists of nonnegative real numbers.
- (c) If T is a projection then $\sigma(T) \subseteq \{0, 1\}$.
- (d) If T is a unitary operator, then $\sigma(T) \subseteq \{z \in \mathbb{C} \mid |z| = 1\}$.

Proof (continued). (d) Let U be a unitary operator. By Proposition 4.34, U is an isometry so that ||Ux|| = ||x||. So by the Cauchy-Schwarz Inequality, $|\langle Ux, x \rangle| \le ||Ux|| ||x|| = ||x||^2 = 1$. Since by Proposition 8.7, $\lambda \in \sigma(U)$ if and only if $\lambda^{-1} \in \sigma(U^{-1})$. With U unitary, $U^* = U^{-1}$ is also unitary. So $\sigma(U^{-1}) \subset \{z \in \mathbb{C} \mid |z| \le 1\}$.

Proposition 8.18 (continued)

Proposition 8.18. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ where the spectrum of *H* is $\sigma(T)$.

- (a) If T is self-adjoint then $\sigma(T) \subseteq \mathbb{R}$.
- (b) If T is a positive operator then $\sigma(T)$ consists of nonnegative real numbers.
- (c) If T is a projection then $\sigma(T) \subseteq \{0, 1\}$.
- (d) If T is a unitary operator, then $\sigma(T) \subseteq \{z \in \mathbb{C} \mid |z| = 1\}$.

Proof (continued). (d) Let *U* be a unitary operator. By Proposition 4.34, *U* is an isometry so that ||Ux|| = ||x||. So by the Cauchy-Schwarz Inequality, $|\langle Ux, x \rangle| \le ||Ux|| ||x|| = ||x||^2 = 1$. Since by Proposition 8.7, $\lambda \in \sigma(U)$ if and only if $\lambda^{-1} \in \sigma(U^{-1})$. With *U* unitary, $U^* = U^{-1}$ is also unitary. So $\sigma(U^{-1}) \subset \{z \in \mathbb{C} \mid |z| \le 1\}$. But for $\lambda \in \sigma(U)$ we have $\lambda| \le 1$; and from $\lambda^{-1} \in \sigma(U^{-1})$ we have $|\lambda^{-1}| = |\lambda|^{-1} \le 1$, or $|\lambda| \ge 1$. Therefore $\lambda \in \sigma(U)$ implies $|\lambda| = 1$. That is, $\sigma(U)$ is contained in $\{z \in \mathbb{C} \mid |z| = 1\}$.

Proposition 8.18 (continued)

Proposition 8.18. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ where the spectrum of *H* is $\sigma(T)$.

- (a) If T is self-adjoint then $\sigma(T) \subseteq \mathbb{R}$.
- (b) If T is a positive operator then $\sigma(T)$ consists of nonnegative real numbers.
- (c) If T is a projection then $\sigma(T) \subseteq \{0, 1\}$.
- (d) If T is a unitary operator, then $\sigma(T) \subseteq \{z \in \mathbb{C} \mid |z| = 1\}$.

Proof (continued). (d) Let *U* be a unitary operator. By Proposition 4.34, *U* is an isometry so that ||Ux|| = ||x||. So by the Cauchy-Schwarz Inequality, $|\langle Ux, x \rangle| \le ||Ux|| ||x|| = ||x||^2 = 1$. Since by Proposition 8.7, $\lambda \in \sigma(U)$ if and only if $\lambda^{-1} \in \sigma(U^{-1})$. With *U* unitary, $U^* = U^{-1}$ is also unitary. So $\sigma(U^{-1}) \subset \{z \in \mathbb{C} \mid |z| \le 1\}$. But for $\lambda \in \sigma(U)$ we have $\lambda| \le 1$; and from $\lambda^{-1} \in \sigma(U^{-1})$ we have $|\lambda^{-1}| = |\lambda|^{-1} \le 1$, or $|\lambda| \ge 1$. Therefore $\lambda \in \sigma(U)$ implies $|\lambda| = 1$. That is, $\sigma(U)$ is contained in $\{z \in \mathbb{C} \mid |z| = 1\}$.

Lemma 8.19

Lemma 8.19. If T is a self-adjoint operator on a Hilbert space H, then for all unit vectors x and y in H, we have $\text{Re}(\langle Tx, y \rangle) \leq w(T)$.

Proof. Let *T* be self-adjoint and let *x* and *y* be unit vectors. Then $\langle T(x+y), x+y \rangle = \langle Tx + Ty, x+y \rangle$ $= \langle Tx, x \rangle + \langle Tx, y \rangle + \langle Ty, x \rangle + \langle Ty, y \rangle$ $= \langle Tx, x \rangle + \langle Tx, y \rangle + \overline{\langle T^*x, y \rangle} + \langle Ty, y \rangle$ $= \langle Tx, x \rangle + \langle Tx, y \rangle + \overline{\langle Tx, y \rangle} + \langle Ty, y \rangle$ since $T^* = T$ $= \langle Tx, x \rangle + 2\text{Re}(\langle Tx, y \rangle) + \langle Ty, \rangle.$

Lemma 8.19

Lemma 8.19. If T is a self-adjoint operator on a Hilbert space H, then for all unit vectors x and y in H, we have $\text{Re}(\langle Tx, y \rangle) \leq w(T)$.

Proof. Let *T* be self-adjoint and let *x* and *y* be unit vectors. Then $\langle T(x+y), x+y \rangle = \langle Tx + Ty, x+y \rangle$ $= \langle Tx, x \rangle + \langle Tx, y \rangle + \langle Ty, x \rangle + \langle Ty, y \rangle$ $= \langle Tx, x \rangle + \langle Tx, y \rangle + \overline{\langle T^*x, y \rangle} + \langle Ty, y \rangle$ $= \langle Tx, x \rangle + \langle Tx, y \rangle + \overline{\langle Tx, y \rangle} + \langle Ty, y \rangle$ since $T^* = T$ $= \langle Tx, x \rangle + 2\operatorname{Re}(\langle Tx, y \rangle) + \langle Ty, \rangle.$

Similarly,

$$\langle T(x-y), x-y \rangle = \langle Tx, x \rangle - 2 \operatorname{Re}(\langle Tx, y \rangle) + \langle Ty, y \rangle.$$

Taking the difference of these results gives

$$\langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle = 4 \operatorname{Re}(\langle Tx, y \rangle)$$

Lemma 8.19

Lemma 8.19. If T is a self-adjoint operator on a Hilbert space H, then for all unit vectors x and y in H, we have $\text{Re}(\langle Tx, y \rangle) \leq w(T)$.

Proof. Let *T* be self-adjoint and let *x* and *y* be unit vectors. Then $\langle T(x+y), x+y \rangle = \langle Tx + Ty, x+y \rangle$ $= \langle Tx, x \rangle + \langle Tx, y \rangle + \langle Ty, x \rangle + \langle Ty, y \rangle$ $= \langle Tx, x \rangle + \langle Tx, y \rangle + \overline{\langle T^*x, y \rangle} + \langle Ty, y \rangle$ $= \langle Tx, x \rangle + \langle Tx, y \rangle + \overline{\langle Tx, y \rangle} + \langle Ty, y \rangle$ since $T^* = T$ $= \langle Tx, x \rangle + 2\operatorname{Re}(\langle Tx, y \rangle) + \langle Ty, \rangle.$

Similarly,

$$\langle T(x-y), x-y \rangle = \langle Tx, x \rangle - 2 \operatorname{Re}(\langle Tx, y \rangle) + \langle Ty, y \rangle.$$

Taking the difference of these results gives

$$\langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle = 4 \operatorname{Re}(\langle Tx, y \rangle)$$

Lemma 8.19 (continued)

Proof (continued). ... or

$$\begin{aligned} \mathsf{Re}(\langle Tx, y \rangle) &= \frac{1}{4}(\langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle) \\ &\leq \frac{1}{4}(\|T(x+y)\|\|x+y\|\|T(x-y)\|\|x-y\|) \\ &\quad \text{by the Cauchy-Schwarz Inequality} \\ &\leq \frac{1}{4}(\|T\|\|x+y\|^2 + \|T\|\|x-y\|^2) \\ &\leq \frac{1}{4}w(t)(\|x+y\|^2 + \|x-y\|^2) \text{ since } w(t) \leq \|T\| \\ &= \frac{1}{4}w(t)(2(\|x\|^2 + \|y\|^2)) \\ &\quad \text{by the Parallelogram Law (Proposition 4.5)} \\ &= w(t) \text{ since } \|x\| = \|y\| = 1. \end{aligned}$$

Proposition 8.20. If T is a self-adjoint operator on a Hilbert space, then w(T) = ||T||.

Proof. We have $w(T) \le ||T||$ in general (see the note before Proposition 8.17). Let x be any unit vector and define y = Tx/||Tx|| if $tx \ne 0$. Then

 $||Tx|| = ||Tx|| / ||Tx||^2 = \langle Tx, y \rangle \le w(T)$ by Lemma 8.19.

Proposition 8.20. If T is a self-adjoint operator on a Hilbert space, then w(T) = ||T||.

Proof. We have $w(T) \le ||T||$ in general (see the note before Proposition 8.17). Let x be any unit vector and define y = Tx/||Tx|| if $tx \ne 0$. Then

 $||Tx|| = ||Tx|| / ||Tx||^2 = \langle Tx, y \rangle \le w(T)$ by Lemma 8.19.

Also, if Tx = 0 then trivially $||Tx|| = 0 \le w(T)$. So

$$\sup\{\|Tx\| \mid \|x\| = 1\} = \|T\| \le w(T),$$

and hence w(T) = ||T||.

Proposition 8.20. If T is a self-adjoint operator on a Hilbert space, then w(T) = ||T||.

Proof. We have $w(T) \le ||T||$ in general (see the note before Proposition 8.17). Let x be any unit vector and define y = Tx/||Tx|| if $tx \ne 0$. Then

$$\|Tx\| = \|Tx\|/\|Tx\|^2 = \langle Tx, y \rangle \le w(T)$$
 by Lemma 8.19.

Also, if Tx = 0 then trivially $||Tx|| = 0 \le w(T)$. So

$$\sup\{\|Tx\| \mid \|x\| = 1\} = \|T\| \le w(T),$$

and hence w(T) = ||T||.

Proposition 8.21. For a self-adjoint operator T on a Hilbert space, either $||T|| \in \sigma(T)$ or $-||T|| \in \sigma(T)$.

Proof. Since T is self-adjoint, by Proposition 8.20 w(T) = ||T|| (and so w(T) is finite since T is bounded), say $||T|| = \lambda$. By Proposition 8.18(a), the numerical range of T is real, so λ is either the supremum of the numerical range of $-\lambda$ is the infimum of the numerical range.

Proposition 8.21. For a self-adjoint operator T on a Hilbert space, either $||T|| \in \sigma(T)$ or $-||T|| \in \sigma(T)$.

Proof. Since T is self-adjoint, by Proposition 8.20 w(T) = ||T|| (and so w(T) is finite since T is bounded), say $||T|| = \lambda$. By Proposition 8.18(a), the numerical range of T is real, so λ is either the supremum of the numerical range of $-\lambda$ is the infimum of the numerical range.

First, suppose
$$\lambda$$
 is the supremum. For any unit vector x we have

$$\begin{aligned} \|(T - \lambda I)x\|^2 &= \|Tx\|^2 - 2\lambda \langle Tx, x \langle +\lambda^2 \rangle \\ &= \langle Tx, Tx \rangle - 2\lambda \langle Tx, x \rangle + \lambda^2 \langle x, \rangle \\ &= \langle Tx, Tx \rangle - 2\lambda \langle Tx, x \rangle + \lambda^2 \text{ since } \|x\| = 1 \end{aligned}$$

Proposition 8.21. For a self-adjoint operator T on a Hilbert space, either $||T|| \in \sigma(T)$ or $-||T|| \in \sigma(T)$.

Proof. Since T is self-adjoint, by Proposition 8.20 w(T) = ||T|| (and so w(T) is finite since T is bounded), say $||T|| = \lambda$. By Proposition 8.18(a), the numerical range of T is real, so λ is either the supremum of the numerical range of $-\lambda$ is the infimum of the numerical range.

First, suppose λ is the supremum. For any unit vector \boldsymbol{x} we have

$$\begin{aligned} \|(T - \lambda I)x\|^2 &= \|Tx\|^2 - 2\lambda \langle Tx, x \langle +\lambda^2 \\ &= \langle Tx, Tx \rangle - 2\lambda \langle Tx, x \rangle + \lambda^2 \langle x, \rangle \\ &= \langle Tx, Tx \rangle - 2\lambda \langle Tx, x \rangle + \lambda^2 \text{ since } \|x\| = 1 \end{aligned}$$

Given any $\varepsilon > 0$, there is a unit vector x' such that $\langle Tx', Tx' \rangle > \lambda - \varepsilon/(2\lambda)$. Then

 $\|(T-\lambda I)x'\|^2 = \|Tx'\|^2 - 2\lambda\langle Tx', x'\rangle + \lambda^2 \le \lambda^2 - 2\lambda\left(\lambda - \frac{\varepsilon}{2\lambda}\right) + \lambda^2 = \varepsilon.$

Proposition 8.21. For a self-adjoint operator T on a Hilbert space, either $||T|| \in \sigma(T)$ or $-||T|| \in \sigma(T)$.

Proof. Since T is self-adjoint, by Proposition 8.20 w(T) = ||T|| (and so w(T) is finite since T is bounded), say $||T|| = \lambda$. By Proposition 8.18(a), the numerical range of T is real, so λ is either the supremum of the numerical range of $-\lambda$ is the infimum of the numerical range.

First, suppose λ is the supremum. For any unit vector \boldsymbol{x} we have

$$\begin{aligned} \|(T - \lambda I)x\|^2 &= \|Tx\|^2 - 2\lambda \langle Tx, x \langle +\lambda^2 \\ &= \langle Tx, Tx \rangle - 2\lambda \langle Tx, x \rangle + \lambda^2 \langle x, \rangle \\ &= \langle Tx, Tx \rangle - 2\lambda \langle Tx, x \rangle + \lambda^2 \text{ since } \|x\| = 1 \end{aligned}$$

Given any $\varepsilon > 0$, there is a unit vector x' such that $\langle Tx', Tx' \rangle > \lambda - \varepsilon/(2\lambda)$. Then

$$\|(T-\lambda I)x'\|^2 = \|Tx'\|^2 - 2\lambda \langle Tx', x' \rangle + \lambda^2 \le \lambda^2 - 2\lambda \left(\lambda - \frac{\varepsilon}{2\lambda}\right) + \lambda^2 = \varepsilon.$$

Proposition 8.21 (continued)

Proposition 8.21. For a self-adjoint operator T, either $||T|| \in \sigma(T)$ or $-||T|| \in \sigma(T)$.

Proof (continued). So $T - \lambda I$ is not bounded below (see Section 3.4). If T is not injective, then λ is in the point spectrum of T. If $T - \lambda I$ is injective and $T - \lambda I$ is not bounded below, then λ is in the continuous spectrum or residual spectrum of T (see Section 8.1). Either way, $T \in \sigma(T)$, as claimed.

Second, suppose $-\lambda$ is the infimum of the numerical range of T. We have $\sigma(T) = -\sigma(-T)$. Then λ is the supremum of the numerical range of -T. By the result above, $\lambda \in \sigma(-T)$ and so $-\lambda \in -\sigma(-T) = \sigma(T)$, as claimed.

Proposition 8.21 (continued)

Proposition 8.21. For a self-adjoint operator T, either $||T|| \in \sigma(T)$ or $-||T|| \in \sigma(T)$.

Proof (continued). So $T - \lambda I$ is not bounded below (see Section 3.4). If T is not injective, then λ is in the point spectrum of T. If $T - \lambda I$ is injective and $T - \lambda I$ is not bounded below, then λ is in the continuous spectrum or residual spectrum of T (see Section 8.1). Either way, $T \in \sigma(T)$, as claimed.

Second, suppose $-\lambda$ is the infimum of the numerical range of T. We have $\sigma(T) = -\sigma(-T)$. Then λ is the supremum of the numerical range of -T. By the result above, $\lambda \in \sigma(-T)$ and so $-\lambda \in -\sigma(-T) = \sigma(T)$, as claimed.

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Proof. By Proposition 2.8, $||ST|| \le ||S|| ||T||$ so, by induction, $||T^n|| \le ||T||^n$.

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Proof. By Proposition 2.8, $||ST|| \le ||S|| ||T||$ so, by induction, $||T^n|| \le ||T||^n$.

First, we consider self-adjoint operator T. Promislow reverses the inequality with an unusual induction argument. We show if the equality holds for any natural (say n + k) then it holds for all smaller natural numbers (arbitrary n, say).

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Proof. By Proposition 2.8, $||ST|| \le ||S|| ||T||$ so, by induction, $||T^n|| \le ||T||^n$.

First, we consider self-adjoint operator T. Promislow reverses the inequality with an unusual induction argument. We show if the equality holds for any natural (say n + k) then it holds for all smaller natural numbers (arbitrary n, say). Suppose $||T||^{n+k} = ||T||^{n+k}$. Then

 $\|T\|^{n+k} = \|T^{n+k}\| \le \|T^n\| \|T^k\| \text{ by Proposition 2.8}$ $\le \|T^n\| \|T\|^k \text{ as shown above.}$

So $||T||^n \leq ||T^n||$ for $n \in \mathbb{N}$.

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Proof. By Proposition 2.8, $||ST|| \le ||S|| ||T||$ so, by induction, $||T^n|| \le ||T||^n$.

First, we consider self-adjoint operator T. Promislow reverses the inequality with an unusual induction argument. We show if the equality holds for any natural (say n + k) then it holds for all smaller natural numbers (arbitrary n, say). Suppose $||T||^{n+k} = ||T||^{n+k}$. Then

$$\|T\|^{n+k} = \|T^{n+k}\| \le \|T^n\| \|T^k\| \text{ by Proposition 2.8}$$
$$\le \|T^n\| \|T\|^k \text{ as shown above.}$$

So $||T||^n \leq ||T^n||$ for $n \in \mathbb{N}$.

Proposition 8.22 (continued 1)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Proof (continued). Let $m \in \mathbb{N}$ and suppose $||S^m|| = ||S||^m$ for all normal S. Then

$$\|T^{2m}\| = \|(T^*)^m T^m\| \text{ since } T \text{ is self adjoint}$$
$$= \|(T^m)^* T^m\| \text{ since } T \text{ is self adjoint}$$
$$= \|T^m\|^2 \text{ by Theorem 4.2.6(f)}$$

 $= ||T||^{2m}$ by the hypothesis that $||S^m|| = ||S||^m$.

Proposition 8.22 (continued 1)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Proof (continued). Let $m \in \mathbb{N}$ and suppose $||S^m|| = ||S||^m$ for all normal *S*. Then

$$\|T^{2m}\| = \|(T^*)^m T^m\| \text{ since } T \text{ is self adjoint}$$

= $\|(T^m)^* T^m\| \text{ since } T \text{ is self adjoint}$
= $\|T^m\|^2$ by Theorem 4.2.6(f)
= $\|T\|^{2m}$ by the hypothesis that $\|S^m\| = \|S\|^m$.

Since $||T^m|| = ||T||^m$ trivially when m = 1, then inductively this holds for all even m and, by the previous paragraph, holds for all $m \in \mathbb{N}$. So the claim holds for T self adjoint.

Proposition 8.22 (continued 1)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Proof (continued). Let $m \in \mathbb{N}$ and suppose $||S^m|| = ||S||^m$ for all normal *S*. Then

$$\|T^{2m}\| = \|(T^*)^m T^m\| \text{ since } T \text{ is self adjoint}$$

= $\|(T^m)^* T^m\| \text{ since } T \text{ is self adjoint}$
= $\|T^m\|^2$ by Theorem 4.2.6(f)
= $\|T\|^{2m}$ by the hypothesis that $\|S^m\| = \|S\|^m$.

Since $||T^m|| = ||T||^m$ trivially when m = 1, then inductively this holds for all even m and, by the previous paragraph, holds for all $m \in \mathbb{N}$. So the claim holds for T self adjoint.

Proposition 8.22 (continued 2)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Proof (continued). Now suppose T is normal (so by definition, $T^*T = TT^*$). Now $(T^*T)^* = T^*T^{**} = T^*T$ by Theorem 4.26(c) and (e), so T^*T is self adjoint. So

 $\|T^*T\|^n = \|(T^*T)^n\| \text{ by the previous paragraph}$ = $\|(T^*)^nT^n\| \text{ since } T \text{ is normal}$ $\leq \|(T^*)^n\|\|T^n\| \text{ by Proposition 2.8}$ $\leq \|T^*\|^n\|T^n\| \text{ by the first paragraph}$ = $\|T\|^n\|T^n\| \text{ by Theorem 4.26(d).}$

Proposition 8.22 (continued 2)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Proof (continued). Now suppose T is normal (so by definition, $T^*T = TT^*$). Now $(T^*T)^* = T^*T^{**} = T^*T$ by Theorem 4.26(c) and (e), so T^*T is self adjoint. So

$$\|T^*T\|^n = \|(T^*T)^n\| \text{ by the previous paragraph} \\ = \|(T^*)^nT^n\| \text{ since } T \text{ is normal} \\ \leq \|(T^*)^n\|\|T^n\| \text{ by Proposition 2.8} \\ \leq \|T^*\|^n\|T^n\| \text{ by the first paragraph}$$

 $= ||T||^n ||T^n||$ by Theorem 4.26(d).

Next, $||T^*T||^n = (||T||^2)^n = ||T||^{2n}$ by Theorem 4.26(f). So $||T||^{2n} \le ||T||^n ||T^n||$ and $||T||^n \le ||T^n||$. Combining this with the first paragraph, we have $||T^n|| = ||T||^n$ for all $n \in \mathbb{N}$ and the claim holds for T normal.

Proposition 8.22 (continued 2)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert space, then $||T^n|| = ||T||^n$.

Proof (continued). Now suppose T is normal (so by definition, $T^*T = TT^*$). Now $(T^*T)^* = T^*T^{**} = T^*T$ by Theorem 4.26(c) and (e), so T^*T is self adjoint. So

$$\|T^*T\|^n = \|(T^*T)^n\| \text{ by the previous paragraph} \\ = \|(T^*)^nT^n\| \text{ since } T \text{ is normal} \\ \leq \|(T^*)^n\|\|T^n\| \text{ by Proposition 2.8} \\ \leq \|T^*\|^n\|T^n\| \text{ by the first gamma product}$$

 $\leq ||T^*||^n ||T^n||$ by the first paragraph

 $= ||T||^{n} ||T^{n}||$ by Theorem 4.26(d).

Next, $||T^*T||^n = (||T||^2)^n = ||T||^{2n}$ by Theorem 4.26(f). So $||T||^{2n} \le ||T||^n ||T^n||$ and $||T||^n \le ||T^n||$. Combining this with the first paragraph, we have $||T^n|| = ||T||^n$ for all $n \in \mathbb{N}$ and the claim holds for T normal.

Theorem 8.23

Theorem 8.23. If T is a normal operator on a Hilbert space, then r(T) = ||T||.

Proof. When X is a normed linear space, then $\mathcal{B}(X)$ is a Banach algebra (see the last example in the class notes for Section 8.2). So for H a Hilbert space, $\mathcal{B}(H)$ is a Banach algebra. So for $T \in \mathcal{B}(H)$, by Theorem 8.15, the spectral radius is $r(T) = \inf ||T^n||^{1/n}$. So by Proposition 8.22,

$$r(T) = \inf ||T^n||^{1/n} = \inf (||T||^n)^{1/n} = \inf ||T|| = ||T||.$$

Theorem 8.23. If T is a normal operator on a Hilbert space, then r(T) = ||T||.

Proof. When X is a normed linear space, then $\mathcal{B}(X)$ is a Banach algebra (see the last example in the class notes for Section 8.2). So for H a Hilbert space, $\mathcal{B}(H)$ is a Banach algebra. So for $T \in \mathcal{B}(H)$, by Theorem 8.15, the spectral radius is $r(T) = \inf ||T^n||^{1/n}$. So by Proposition 8.22,

$$r(T) = \inf ||T^n||^{1/n} = \inf (||T||^n)^{1/n} = \inf ||T|| = ||T||.$$

Proposition 8.24. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ be self-adjoint. Then eigenspaces corresponding to distinct eigenvalues of *T* are orthogonal.

Proof. Consider $Tx = \lambda x$ and $Ty = \mu y$ for distinct eigenvalues λ and μ with respective eigenvectors x and y. Since T is self adjoint by hypothesis, then by Proposition 8.18(a), λ and μ are real.

Proposition 8.24. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ be self-adjoint. Then eigenspaces corresponding to distinct eigenvalues of *T* are orthogonal.

Proof. Consider $Tx = \lambda x$ and $Ty = \mu y$ for distinct eigenvalues λ and μ with respective eigenvectors x and y. Since T is self adjoint by hypothesis, then by Proposition 8.18(a), λ and μ are real. Then

$$\begin{array}{lll} \lambda\langle x,y\rangle &=& \langle x,y\rangle = \langle Tx,y\rangle \\ &=& \langle x,T^*y\rangle = \langle x,Ty\rangle \text{ since } T \text{ is self adjoint} \\ &=& \langle x,\mu y\rangle - \mu\langle x,y\rangle \text{ since } \mu \text{ is real.} \end{array}$$

Since $\lambda \neq \mu$, we have $\langle x, y \rangle = 0$. So if x and y are elements of eigenspaces associated with distinct eigenvalues, then x and y are orthogonal.

Proposition 8.24. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ be self-adjoint. Then eigenspaces corresponding to distinct eigenvalues of *T* are orthogonal.

Proof. Consider $Tx = \lambda x$ and $Ty = \mu y$ for distinct eigenvalues λ and μ with respective eigenvectors x and y. Since T is self adjoint by hypothesis, then by Proposition 8.18(a), λ and μ are real. Then

$$\begin{array}{lll} \lambda\langle x,y\rangle &=& \langle x,y\rangle = \langle Tx,y\rangle \\ &=& \langle x,T^*y\rangle = \langle x,Ty\rangle \text{ since } T \text{ is self adjoint} \\ &=& \langle x,\mu y\rangle - \mu\langle x,y\rangle \text{ since } \mu \text{ is real.} \end{array}$$

Since $\lambda \neq \mu$, we have $\langle x, y \rangle = 0$. So if x and y are elements of eigenspaces associated with distinct eigenvalues, then x and y are orthogonal.

Proposition 8.25. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ be self-adjoint. If *H* is separable, then the number of distinct eigenvalues of *T* is either finite or countably infinite.

Proof. For distinct eigenvalues $\{\lambda_i \mid i \in I\}$, choose a corresponding set of unit eigenvectors $\{x_i \mid i \in I\}$. By Proposition 8.24, $\{x_i \mid i \in I\}$ is an orthonormal set. By Theorem 4.21, since *H* is separable by hypothesis, $\{x_i \mid i \in I\}$ is either finite or countably infinite. Hence, $\{\lambda_i \mid i \in I\}$ is either finite or countably infinite.

Proposition 8.25. Let *H* be a Hilbert space and $T \in \mathcal{B}(H)$ be self-adjoint. If *H* is separable, then the number of distinct eigenvalues of *T* is either finite or countably infinite.

Proof. For distinct eigenvalues $\{\lambda_i \mid i \in I\}$, choose a corresponding set of unit eigenvectors $\{x_i \mid i \in I\}$. By Proposition 8.24, $\{x_i \mid i \in I\}$ is an orthonormal set. By Theorem 4.21, since *H* is separable by hypothesis, $\{x_i \mid i \in I\}$ is either finite or countably infinite. Hence, $\{\lambda_i \mid i \in I\}$ is either finite or countably infinite.

