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Proposition 8.18

Proposition 8.18

Proposition 8.18. Let H be a Hilbert space and T ∈ B(H) where the
spectrum of H is σ(T ).

(a) If T is self-adjoint then σ(T ) ⊆ R.

(b) If T is a positive operator then σ(T ) consists of nonnegative
real numbers.

(c) If T is a projection then σ(T ) ⊆ {0, 1}.
(d) If T is a unitary operator, then σ(T ) ⊆ {z ∈ C | |z | = 1}.

Proof. (a) By Proposition 8.17, the spectrum of T , σ(T ) is contained in
the closure of {〈Tx , x〉 | ‖x‖ = 1}. Since T is self-adjoint then T = T ∗

and 〈Tx , x〉 = 〈x ,T ∗x〉 = 〈x ,Tx〉 = 〈Tx , x〉 and so 〈Tx , x〉 is real for all
‖x‖ = 1 (for all x , in fact). So σ(T ) consists only of real numbers.

(b) For positive operator, 〈Tx , x〉 ≥ 0 for all x . By Proposition 8.17, σ(T )
is contained in the closure of {〈Tx , x〉 | ‖x‖ = 1} and so all σ(T ) consists
only of nonnegative (real) numbers.
(c) This was established in Example 8.6(a).
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Proposition 8.18

Proposition 8.18 (continued)

Proposition 8.18. Let H be a Hilbert space and T ∈ B(H) where the
spectrum of H is σ(T ).

(a) If T is self-adjoint then σ(T ) ⊆ R.

(b) If T is a positive operator then σ(T ) consists of nonnegative
real numbers.

(c) If T is a projection then σ(T ) ⊆ {0, 1}.
(d) If T is a unitary operator, then σ(T ) ⊆ {z ∈ C | |z | = 1}.

Proof (continued). (d) Let U be a unitary operator. By Proposition
4.34, U is an isometry so that ‖Ux‖ = ‖x‖. So by the Cauchy-Schwarz
Inequality, |〈Ux , x〉| ≤ ‖Ux‖‖x‖ = ‖x‖2 = 1. Since by Proposition 8.7,
λ ∈ σ(U) if and only if λ−1 ∈ σ(U−1). With U unitary, U∗ = U−1 is also
unitary. So σ(U−1) ⊂ {z ∈ C | |z | ≤ 1}.

But for λ ∈ σ(U) we have
λ| ≤ 1; and from λ−1 ∈ σ(U−1) we have |λ−1| = |λ|−1 ≤ 1, or |λ| ≥ 1.
Therefore λ ∈ σ(U) implies |λ| = 1. That is, σ(U) is contained in
{z ∈ C | |z | = 1}.
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Lemma 8.19

Lemma 8.19

Lemma 8.19. If T is a self-adjoint operator on a Hilbert space H, then
for all unit vectors x and y in H, we have Re(〈Tx , y〉) ≤ w(T ).

Proof. Let T be self-adjoint and let x and y be unit vectors. Then

〈T (x + y), x + y〉 = 〈Tx + Ty , x + y〉
= 〈Tx , x〉+ 〈Tx , y〉+ 〈Ty , x〉+ 〈Ty , y〉
= 〈Tx , x〉+ 〈Tx , y〉+ 〈T ∗x , y〉+ 〈Ty , y〉
= 〈Tx , x〉+ 〈Tx , y〉+ 〈Tx , y〉+ 〈Ty , y〉 since T ∗ = T

= 〈Tx , x〉+ 2Re(〈Tx , y〉) + 〈Ty , 〉.

Similarly,

〈T (x − y), x − y〉 = 〈Tx , x〉 − 2Re(〈Tx , y〉) + 〈Ty , y〉.
Taking the difference of these results gives

〈T (x + y), x + y〉 − 〈T (x − y), x − y〉 = 4Re(〈Tx , y〉)
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Lemma 8.19

Lemma 8.19 (continued)

Proof (continued). . . . or

Re(〈Tx , y〉) =
1

4
(〈T (x + y), x + y〉 − 〈T (x − y), x − y〉)

≤ 1

4
(‖T (x + y)‖‖x + y‖‖T (x − y)‖‖x − y‖)

by the Cauchy-Schwarz Inequality

≤ 1

4
(‖T‖‖x + y‖2 + ‖T‖‖x − y‖2)

≤ 1

4
w(t)(‖x + y‖2 + ‖x − y‖2) since w(t) ≤ ‖T‖

=
1

4
w(t)(2(‖x‖2 + ‖y‖2))

by the Parallelogram Law (Proposition 4.5)

= w(t) since ‖x‖ = ‖y‖ = 1.
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Proposition 8.20

Proposition 8.20

Proposition 8.20. If T is a self-adjoint operator on a Hilbert space, then
w(T ) = ‖T‖.

Proof. We have w(T ) ≤ ‖T‖ in general (see the note before Proposition
8.17). Let x be any unit vector and define y = Tx/‖Tx‖ if tx 6= 0. Then

‖Tx‖ = ‖Tx‖/‖Tx‖2 = 〈Tx , y〉 ≤ w(T ) by Lemma 8.19.

Also, if Tx = 0 then trivially ‖Tx‖ = 0 ≤ w(T ). So

sup{‖Tx‖ | ‖x‖ = 1} = ‖T‖ ≤ w(T ),

and hence w(T ) = ‖T‖.
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Proposition 8.21

Proposition 8.21

Proposition 8.21. For a self-adjoint operator T on a Hilbert space, either
‖T‖ ∈ σ(T ) or −‖T‖ ∈ σ(T ).

Proof. Since T is self-adjoint, by Proposition 8.20 w(T ) = ‖T‖ (and so
w(T ) is finite since T is bounded), say ‖T‖ = λ. By Proposition 8.18(a),
the numerical range of T is real, so λ is either the supremum of the
numerical range of −λ is the infimum of the numerical range.

First, suppose λ is the supremum. For any unit vector x we have

‖(T − λI )x‖2 = ‖Tx‖2 − 2λ〈Tx , x〈+λ2

= 〈Tx ,Tx〉 − 2λ〈Tx , x〉+ λ2〈x , 〉
= 〈Tx ,Tx〉 − 2λ〈Tx , x〉+ λ2 since ‖x‖ = 1

Given any ε > 0, there is a unit vector x ′ such that
〈Tx ′,Tx ′〉 > λ− ε/(2λ). Then

‖(T −λI )x ′‖2 = ‖Tx ′‖2− 2λ〈Tx ′, x ′〉+λ2 ≤ λ2− 2λ
(
λ− ε

2λ

)
+λ2 = ε.
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Proposition 8.21

Proposition 8.21 (continued)

Proposition 8.21. For a self-adjoint operator T , either ‖T‖ ∈ σ(T ) or
−‖T‖ ∈ σ(T ).

Proof (continued). So T − λI is not bounded below (see Section 3.4). If
T is not injective, then λ is in the point spectrum of T . If T − λI is
injective and T − λI is not bounded below, then λ is in the continuous
spectrum or residual spectrum of T (see Section 8.1). Either way,
T ∈ σ(T ), as claimed.

Second, suppose −λ is the infimum of the numerical range of T . We have
σ(T ) = −σ(−T ). Then λ is the supremum of the numerical range of −T .
By the result above, λ ∈ σ(−T ) and so −λ ∈ −σ(−T ) = σ(T ), as
claimed.
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Proposition 8.22

Proposition 8.22

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then ‖T n‖ = ‖T‖n.

Proof. By Proposition 2.8, ‖ST‖ ≤ ‖S‖‖T‖ so, by induction,
‖T n‖ ≤ ‖T‖n.

First, we consider self-adjoint operator T . Promislow reverses the
inequality with an unusual induction argument. We show if the equality
holds for any natural (say n + k) then it holds for all smaller natural
numbers (arbitrary n, say). Suppose ‖T‖n+k = ‖T‖n+k . Then

‖T‖n+k = ‖T n+k‖ ≤ ‖T n‖‖T k‖ by Proposition 2.8

≤ ‖T n‖‖T‖k as shown above.

So ‖T‖n ≤ ‖T n‖ for n ∈ N.
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Proposition 8.22

Proposition 8.22 (continued 1)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then ‖T n‖ = ‖T‖n.

Proof (continued). Let m ∈ N and suppose ‖Sm‖ = ‖S‖m for all normal
S . Then

‖T 2m‖ = ‖(T ∗)mTm‖ since T is self adjoint

= ‖(Tm)∗Tm‖ since T is self adjoint

= ‖Tm‖2 by Theorem 4.2.6(f)

= ‖T‖2m by the hypothesis that ‖Sm‖ = ‖S‖m.

Since ‖Tm‖ = ‖T‖m trivially when m = 1, then inductively this holds for
all even m and, by the previous paragraph, holds for all m ∈ N. So the
claim holds for T self adjoint.
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Proposition 8.22 (continued 2)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then ‖T n‖ = ‖T‖n.

Proof (continued). Now suppose T is normal (so by definition,
T ∗T = TT ∗). Now (T ∗T )∗ = T ∗T ∗∗ = T ∗T by Theorem 4.26(c) and
(e), so T ∗T is self adjoint. So

‖T ∗T‖n = ‖(T ∗T )n‖ by the previous paragraph

= ‖(T ∗)nT n‖ since T is normal

≤ ‖(T ∗)n‖‖T n‖ by Proposition 2.8

≤ ‖T ∗‖n‖T n‖ by the first paragraph

= ‖T‖n‖T n‖ by Theorem 4.26(d).

Next, ‖T ∗T‖n = (‖T‖2)n = ‖T‖2n by Theorem 4.26(f). So
‖T‖2n ≤ ‖T‖n‖T n‖ and ‖T‖n ≤ ‖T n‖. Combining this with the first
paragraph, we have ‖T n‖ = ‖T‖n for all n ∈ N and the claim holds for T
normal.
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Theorem 8.23

Theorem 8.23. If T is a normal operator on a Hilbert space, then
r(T ) = ‖T‖.

Proof. When X is a normed linear space, then B(X ) is a Banach algebra
(see the last example in the class notes for Section 8.2). So for H a
Hilbert space, B(H) is a Banach algebra. So for T ∈ B(H), by Theorem
8.15, the spectral radius is r(T ) = inf ‖T n‖1/n. So by Proposition 8.22,

r(T ) = inf ‖T n‖1/n = inf(‖T‖n)1/n = inf ‖T‖ = ‖T‖.
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Proposition 8.24

Proposition 8.24

Proposition 8.24. Let H be a Hilbert space and T ∈ B(H) be
self-adjoint. Then eigenspaces corresponding to distinct eigenvalues of T
are orthogonal.

Proof. Consider Tx = λx and Ty = µy for distinct eigenvalues λ and µ
with respective eigenvectors x and y . Since T is self adjoint by hypothesis,
then by Proposition 8.18(a), λ and µ are real.

Then

λ〈x , y〉 = 〈x , y〉 = 〈Tx , y〉
= 〈x ,T ∗y〉 = 〈x ,Ty〉 since T is self adjoint

= 〈x , µy〉 − µ〈x , y〉 since µ is real.

Since λ 6= µ, we have 〈x , y〉 = 0. So if x and y are elements of eigenspaces
associated with distinct eigenvalues, then x and y are orthogonal.
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Proposition 8.25

Proposition 8.25. Let H be a Hilbert space and T ∈ B(H) be
self-adjoint. If H is separable, then the number of distinct eigenvalues of
T is either finite or countably infinite.

Proof. For distinct eigenvalues {λi | i ∈ I}, choose a corresponding set of
unit eigenvectors {xi | i ∈ I}. By Proposition 8.24, {xi | i ∈ I} is an
orthonormal set. By Theorem 4.21, since H is separable by hypothesis,
{xi | i ∈ I} is either finite or countably infinite. Hence, {λi | i ∈ I} is
either finite or countably infinite.
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