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Proposition 8.18

Proposition 8.18. Let H be a Hilbert space and T € B(H) where the
spectrum of H is o(T).
(a) If T is self-adjoint then o(T) C R.
(b) If T is a positive operator then o(T) consists of nonnegative
real numbers.
(c) If T is a projection then o(T) C {0,1}.
(d) If T is a unitary operator, then o(T) C {z € C| |z| = 1}.
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Proposition 8.18

Proposition 8.18. Let H be a Hilbert space and T € B(H) where the
spectrum of H is o(T).
(a) If T is self-adjoint then o(T) C R.
(b) If T is a positive operator then o(T) consists of nonnegative
real numbers.
(c) If T is a projection then o(T) C {0,1}.
(d) If T is a unitary operator, then o(T) C {z € C| |z| = 1}.

Proof. (a) By Proposition 8.17, the spectrum of T, o(T) is contained in
the closure of {(Tx, x) | ||x|| = 1}. Since T is self-adjoint then T = T*
and (Tx,x) = (x, T*x) = (x, Tx) = (Tx, x) and so (Tx, x) is real for all
Ix|]| =1 (for all x, in fact). So o(T) consists only of real numbers.
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Proposition 8.18

Proposition 8.18. Let H be a Hilbert space and T € B(H) where the
spectrum of H is o(T).
(a) If T is self-adjoint then o(T) C R.
(b) If T is a positive operator then o(T) consists of nonnegative
real numbers.
(c) If T is a projection then o(T) C {0,1}.
(d) If T is a unitary operator, then o(T) C {z € C| |z| = 1}.

Proof. (a) By Proposition 8.17, the spectrum of T, o(T) is contained in
the closure of {(Tx, x) | ||x|| = 1}. Since T is self-adjoint then T = T*
and (Tx,x) = (x, T*x) = (x, Tx) = (Tx, x) and so (Tx, x) is real for all
Ix|]| =1 (for all x, in fact). So o(T) consists only of real numbers.

(b) For positive operator, (Tx, x) > 0 for all x. By Proposition 8.17, o(T)
is contained in the closure of {(Tx, x) | |[x|| = 1} and so all &(T) consists
only of nonnegative (real) numbers.
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Proposition 8.18

Proposition 8.18. Let H be a Hilbert space and T € B(H) where the
spectrum of H is o(T).
(a) If T is self-adjoint then o(T) C R.
(b) If T is a positive operator then o(T) consists of nonnegative
real numbers.
(c) If T is a projection then o(T) C {0,1}.
(d) If T is a unitary operator, then o(T) C {z € C| |z| = 1}.

Proof. (a) By Proposition 8.17, the spectrum of T, o(T) is contained in
the closure of {(Tx, x) | ||x|| = 1}. Since T is self-adjoint then T = T*
and (Tx,x) = (x, T*x) = (x, Tx) = (Tx, x) and so (Tx, x) is real for all
Ix|]| =1 (for all x, in fact). So o(T) consists only of real numbers.

(b) For positive operator, (Tx, x) > 0 for all x. By Proposition 8.17, o(T)
is contained in the closure of {(Tx, x) | |[x|| = 1} and so all &(T) consists
only of nonnegative (real) numbers.

(c) This was established in Example 8.6(a).
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Proposition 8.18 (continued)

Proposition 8.18. Let H be a Hilbert space and T € B(H) where the
spectrum of H is o(T).
(a) If T is self-adjoint then o(T) C R.
(b) If T is a positive operator then o(T) consists of nonnegative
real numbers.
(c) If T is a projection then o(T) C {0,1}.
(d) If T is a unitary operator, then o(T) C {z € C| |z| = 1}.

Proof (continued). (d) Let U be a unitary operator. By Proposition

4.34, U is an isometry so that ||Ux| = ||x||. So by the Cauchy-Schwarz
Inequality, |(Ux, x)| < [[Ux|[Ix]| = [[x]]* = 1.
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Proposition 8.18 (continued)

Proposition 8.18. Let H be a Hilbert space and T € B(H) where the
spectrum of H is o(T).
(a) If T is self-adjoint then o(T) C R.
(b) If T is a positive operator then o(T) consists of nonnegative
real numbers.
(c) If T is a projection then o(T) C {0,1}.
(d) If T is a unitary operator, then o(T) C {z € C| |z| = 1}.

Proof (continued). (d) Let U be a unitary operator. By Proposition
4.34, U is an isometry so that ||Ux| = ||x||. So by the Cauchy-Schwarz
Inequality, |(Ux, x)| < ||Ux]|||x|| = ||x]|> = 1. Since by Proposition 8.7,

A € o(U) if and only if A=t € o(U™1). With U unitary, U* = U1 is also
unitary. So o(U™Y) Cc {ze C ||z < 1}.
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Proposition 8.18 (continued)

Proposition 8.18. Let H be a Hilbert space and T € B(H) where the
spectrum of H is o(T).
(a) If T is self-adjoint then o(T) C R.
(b) If T is a positive operator then o(T) consists of nonnegative
real numbers.
(c) If T is a projection then o(T) C {0,1}.
(d) If T is a unitary operator, then o(T) C {z € C| |z| = 1}.

Proof (continued). (d) Let U be a unitary operator. By Proposition

4.34, U is an isometry so that ||Ux| = ||x||. So by the Cauchy-Schwarz

Inequality, |(Ux, x)| < ||Ux]|||x|| = ||x]|> = 1. Since by Proposition 8.7,

A € o(U) if and only if A=t € o(U™1). With U unitary, U* = U1 is also

unitary. So o(U™t) C {z € C||z| < 1}. But for A € o(U) we have

Al <1; and from A7t € o(U™1) we have A7 = |A|71 <1, or [A| > 1.

Therefore A € o(U) implies |A| = 1. That is, o(U) is contained in

{zeC||z| =1} O
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Lemma 8.19

Lemma 8.19. If T is a self-adjoint operator on a Hilbert space H, then
for all unit vectors x and y in H, we have Re((Tx,y)) < w(T).
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Lemma 8.19

Lemma 8.19. If T is a self-adjoint operator on a Hilbert space H, then

for all unit vectors x and y in H, we have Re((Tx,y)) <

w(T).

Proof. Let T be self-adjoint and let x and y be unit vectors. Then

(Tx+y),x+y) = (Tx+ Ty,x+y)
= (Tx,x) +(Tx,y) +(
= (T, x) +(Tx,y) + (T*x,y) +
= (Tx,x) +(Tx,y) + (Tx,y)
= (Tx,x)+2Re((Tx,y)) +

Introduction to Functional Analysis
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Lemma 8.19

Lemma 8.19

Lemma 8.19. If T is a self-adjoint operator on a Hilbert space H, then

for all unit vectors x and y in H, we have Re((Tx,y)) <

w(T).

Proof. Let T be self-adjoint and let x and y be unit vectors. Then

(Tx+y),x+y) =

Similarly,

(Tx—y)yx—y)=

(Tx+ Ty,x+y)

(Tx,x) +(Tx,y) + (Ty, x) + ({Ty,y)

(Tx, x) + (T, y) + (T*x,y) + (Ty,y)

(Tx,x) 4+ (Tx,y) + (Tx,y) + (Ty,y) since T* =T
(Tx,x) +2Re({Tx,y)) + (Ty,).

(Tx,x) —2Re({Tx,y)) + (Ty,y).

Taking the difference of these results gives

(Tx+y),x+y)—

(T(x -
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Lemma 8.19 (continued)

Proof (continued). ...or
Re((Txy)) = 3((T(x+y)xty) = (T(x = y).x =)
< %(H TOA X+ Il T = y)llx = vl
by the Cauchy-Schwarz Inequality
< %(II Tl +y I+ I TlHx — y11%)
< W)+ I+ bx — yI?) since w(t) < [ 7]

4
1
= WP+ 1yI?)
by the Parallelogram Law (Proposition 4.5)
= w(t) since [[x| = [lyl| = 1.
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Proposition 8.20

Proposition 8.20. If T is a self-adjoint operator on a Hilbert space, then
w(T) =Tl
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Proposition 8.20

Proposition 8.20

Proposition 8.20. If T is a self-adjoint operator on a Hilbert space, then
w(T) =Tl

Proof. We have w(T) < || T| in general (see the note before Proposition
8.17). Let x be any unit vector and define y = Tx/|| Tx|| if tx # 0. Then

I 7] = [ITII/I Tx||I> = (Tx,y) < w(T) by Lemma 8.19.
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Proposition 8.20

Proposition 8.20

Proposition 8.20. If T is a self-adjoint operator on a Hilbert space, then
w(T) =Tl

Proof. We have w(T) < || T| in general (see the note before Proposition
8.17). Let x be any unit vector and define y = Tx/|| Tx|| if tx # 0. Then

I 7] = [ITII/I Tx||I> = (Tx,y) < w(T) by Lemma 8.19.

Also, if Tx = 0 then trivially || Tx|| =0 < w(T). So

sup{[[ Tx|[ | Ix] = 1} = [IT1[ < w(T),

and hence w(T) = |T]|.

O
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Proposition 8.21

Proposition 8.21. For a self-adjoint operator T on a Hilbert space, either
[Tl € o(T) or =|| Tl € o(T).
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Proposition 8.21

Proposition 8.21

Proposition 8.21. For a self-adjoint operator T on a Hilbert space, either
[Tl € o(T) or =|| Tl € o(T).

Proof. Since T is self-adjoint, by Proposition 8.20 w(T) = || T|| (and so
w(T) is finite since T is bounded), say || T|| = A. By Proposition 8.18(a),
the numerical range of T is real, so A is either the supremum of the
numerical range of —\ is the infimum of the numerical range.
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Proposition 8.21

Proposition 8.21. For a self-adjoint operator T on a Hilbert space, either
[Tl € o(T) or =|| Tl € o(T).

Proof. Since T is self-adjoint, by Proposition 8.20 w(T) = || T|| (and so
w(T) is finite since T is bounded), say || T|| = A. By Proposition 8.18(a),
the numerical range of T is real, so A is either the supremum of the
numerical range of —\ is the infimum of the numerical range.

First, suppose A is the supremum. For any unit vector x we have
(T = ADx||?2 = || Tx||? = 2X\(Tx, x(+A?
= (Tx, Tx) —2X\(Tx,x) + A?(x,)
= (Tx, Tx) — 2\(Tx, x) 4+ A2 since ||x|| = 1
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Proposition 8.21

Proposition 8.21. For a self-adjoint operator T on a Hilbert space, either
[Tl € o(T) or =|| Tl € o(T).

Proof. Since T is self-adjoint, by Proposition 8.20 w(T) = || T|| (and so
w(T) is finite since T is bounded), say || T|| = A. By Proposition 8.18(a),
the numerical range of T is real, so A is either the supremum of the
numerical range of —\ is the infimum of the numerical range.

First, suppose A is the supremum. For any unit vector x we have
(T = MDx|> = || T — 2\(Tx, x{+\?
= (Tx, Tx) —2X\(Tx,x) + A?(x,)
= (Tx, Tx) — 2\(Tx, x) 4+ A2 since ||x|| = 1
Given any € > 0, there is a unit vector x’ such that

(TX', Tx') > X —¢/(2X). Then

(T = ADX2 = || TX|[2 = 2M(Tx', x') + A2 < A2 —2) ()\ - %) FA2 =
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Proposition 8.21 (continued)

Proposition 8.21. For a self-adjoint operator T, either || T|| € o(T) or
=TIl € o(T).

Proof (continued). So T — A/ is not bounded below (see Section 3.4). If
T is not injective, then X is in the point spectrum of T. If T — Al is
injective and T — Al is not bounded below, then A is in the continuous
spectrum or residual spectrum of T (see Section 8.1). Either way,

T € o(T), as claimed.
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Proposition 8.21 (continued)

Proposition 8.21. For a self-adjoint operator T, either || T|| € o(T) or
=TIl € o(T).

Proof (continued). So T — A/ is not bounded below (see Section 3.4). If
T is not injective, then X is in the point spectrum of T. If T — Al is
injective and T — Al is not bounded below, then A is in the continuous
spectrum or residual spectrum of T (see Section 8.1). Either way,

T € o(T), as claimed.

Second, suppose —A\ is the infimum of the numerical range of T. We have
o(T) = —o(—T). Then X is the supremum of the numerical range of —T.
By the result above, A € 6(—T) and so =\ € —o(—T) =0(T), as

claimed. 0
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Proposition 8.22

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then || T"|| = || T||".
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Proposition 8.22

Proposition 8.22

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then || T"|| = || T||".

Proof. By Proposition 2.8, ||ST|| < ||S|||| T|| so, by induction,
1T < 117"
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Proposition 8.22

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then || T"|| = || T||".

Proof. By Proposition 2.8, ||ST|| < ||S|||| T|| so, by induction,
1T < 117"

First, we consider self-adjoint operator T. Promislow reverses the
inequality with an unusual induction argument. We show if the equality
holds for any natural (say n+ k) then it holds for all smaller natural
numbers (arbitrary n, say).
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Proposition 8.22

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then || T"|| = || T||".

Proof. By Proposition 2.8, ||ST|| < ||S|||| T|| so, by induction,
1T < 117"

First, we consider self-adjoint operator T. Promislow reverses the
inequality with an unusual induction argument. We show if the equality
holds for any natural (say n+ k) then it holds for all smaller natural
numbers (arbitrary n, say). Suppose || T||"** = || T||"*k. Then

| T||"+* | Tk < || Tl T¥|| by Proposition 2.8

I T™|| T||* as shown above.

IN

So || T||" < ||T"|| for n € N.
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Proposition 8.22

Proposition 8.22 (continued 1)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then || T"|| = || T||".

Proof (continued). Let m € N and suppose [|S™| = ||S||™ for all normal
S.
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Proposition 8.22 (continued 1)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then || T"|| = || T||".

Proof (continued). Let m € N and suppose [|S™| = ||S||™ for all normal
S. Then

[T2"| = |(T*)™T™| since T is self adjoint
= |[(T™)*T™|| since T is self adjoint
= ||T™||? by Theorem 4.2.6(f)
= || T|*™ by the hypothesis that ||S™|| = ||S||™.
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Proposition 8.22 (continued 1)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then || T"|| = || T||".

Proof (continued). Let m € N and suppose [|S™| = ||S||™ for all normal
S. Then

1727 I(T*)™T™|| since T is self adjoint
= |[(T™)*T™|| since T is self adjoint
= ||T™||? by Theorem 4.2.6(f)

= || T|*™ by the hypothesis that ||S™|| = ||S||™.

Since || T™|| = || T||™ trivially when m = 1, then inductively this holds for
all even m and, by the previous paragraph, holds for all m € N. So the
claim holds for T self adjoint.
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Proposition 8.22

Proposition 8.22 (continued 2)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then || T"|| = || T||".

Proof (continued). Now suppose T is normal (so by definition,
T*T=TT*). Now (T*T)* = T*T* = T*T by Theorem 4.26(c) and
(e), so T*T is self adjoint.
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Proposition 8.22 (continued 2)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert

space, then || T"|| = || T||".

Proof (continued). Now suppose T is normal (so by definition,
T*T=TT*). Now (T*T)* = T*T* = T*T by Theorem 4.26(c) and
(e), so T*T is self adjoint. So

T

[(T*T)"|| by the previous paragraph
I(T*)"T"| since T is normal
I(T*)"||| T"|| by Proposition 2.8

| T||"| T"|| by the first paragraph
ITI"| T"|| by Theorem 4.26(d).

IA A
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Proposition 8.22 (continued 2)

Proposition 8.22. If T is a self adjoint or normal operator on a Hilbert
space, then || T"|| = || T||".

Proof (continued). Now suppose T is normal (so by definition,
T*T=TT*). Now (T*T)* = T*T* = T*T by Theorem 4.26(c) and
(e), so T*T is self adjoint. So

T

|(T*T)"|| by the previous paragraph
I(T*)"T"| since T is normal

I(T*)"||| T"|| by Proposition 2.8

| T||"| T"|| by the first paragraph

| T||"| T"|| by Theorem 4.26(d).

Next, | T*T||" = (|| T||?)" = || T||*" by Theorem 4.26(f). So

ITIP" < |ITI"IT"|l and || T||” < || T"||. Combining this with the first
paragraph, we have | T"|| = || T||" for all n € N and the claim holds for T

normal. O
Introduction to Functional Analysis May 13, 2017 12 / 15
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Theorem 8.23

Theorem 8.23. If T is a normal operator on a Hilbert space, then
(M) =TI
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Theorem 8.23

Theorem 8.23. If T is a normal operator on a Hilbert space, then
(M) =TI

Proof. When X is a normed linear space, then B(X) is a Banach algebra
(see the last example in the class notes for Section 8.2). So for H a
Hilbert space, B(H) is a Banach algebra. So for T € B(H), by Theorem
8.15, the spectral radius is r(T) = inf | T"[|*/". So by Proposition 8.22,

r(T) = inf [ T7|Y" = inf(| T|")Y" = inf | T|| = || T
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Proposition 8.24

Proposition 8.24

Proposition 8.24. Let H be a Hilbert space and T € B(H) be

self-adjoint. Then eigenspaces corresponding to distinct eigenvalues of T
are orthogonal.
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Proposition 8.24

Proposition 8.24. Let H be a Hilbert space and T € B(H) be
self-adjoint. Then eigenspaces corresponding to distinct eigenvalues of T
are orthogonal.

Proof. Consider Tx = Ax and Ty = uy for distinct eigenvalues A and p

with respective eigenvectors x and y. Since T is self adjoint by hypothesis,
then by Proposition 8.18(a), A and p are real.
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Proposition 8.24

Proposition 8.24. Let H be a Hilbert space and T € B(H) be
self-adjoint. Then eigenspaces corresponding to distinct eigenvalues of T
are orthogonal.

Proof. Consider Tx = Ax and Ty = uy for distinct eigenvalues A and p
with respective eigenvectors x and y. Since T is self adjoint by hypothesis,
then by Proposition 8.18(a), A and  are real. Then

AMxy) = (xy)=(Txy)
= (x, T"y) = (x, Ty) since T is self adjoint

= (x,py) — pu{x,y) since u is real.

Since A # 1, we have (x,y) = 0. So if x and y are elements of eigenspaces
associated with distinct eigenvalues, then x and y are orthogonal. O
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Proposition 8.25

Proposition 8.25

Proposition 8.25. Let H be a Hilbert space and T € B(H) be

self-adjoint. If H is separable, then the number of distinct eigenvalues of
T is either finite or countably infinite.
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Proposition 8.25

Proposition 8.25. Let H be a Hilbert space and T € B(H) be
self-adjoint. If H is separable, then the number of distinct eigenvalues of
T is either finite or countably infinite.

Proof. For distinct eigenvalues {\; | i € I}, choose a corresponding set of
unit eigenvectors {x; | i € I'}. By Proposition 8.24, {x; | i € I} is an
orthonormal set. By Theorem 4.21, since H is separable by hypothesis,

{xi | i € I} is either finite or countably infinite. Hence, {\; | i€ I} is
either finite or countably infinite. O
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