Introduction to Functional Analysis

Chapter 8. The Spectrum
8.6. Functions of Operators—Proofs of Theorems
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Proposition 8.26

Proposition 8.26

Proposition 8.26. Let T be a bounded, self adjoint operator on a Hilbert

space H. Then the mapping that sends polynomials p € C(c(T))
(continuous functions on the spectrum of T) with the sup norm into
p(T) € B(H), sending f € C(o(T)) to f(T) such that the following
properties hold. For all f,g € C(0(T)) and any a € C,

; (f +&)(T) = f(T)+&(T) and (af)(T) = of (T),

i
(ii) (fg)(T) = F(T)g(T), and
(iv) for any S € B(H) such that ST = TS we have

SF(T)=1(T)S.
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Proposition 8.26

Proposition 8.26. Let T be a bounded, self adjoint operator on a Hilbert
space H. Then the mapping that sends polynomials p € C(c(T))
(continuous functions on the spectrum of T) with the sup norm into
p(T) € B(H), sending f € C(o(T)) to f(T) such that the following
properties hold. For all f,g € C(0(T)) and any a € C,
) (F+8)(T)=f(T)+g(T) and (af)(T) = af(T),

i) £(T) = (f(T))* where f is the conjugate of function f,
(ii) (f)(T) = F(T)g(T), and
(iv) for any S € B(H) such that ST = TS we have

SF(T)=1(T)S.

Proof. Since C(o(T)) has the sup norm then the norm of p € C(o(T)) is
llpll = sup{|p(A)| | A € o(T)}. By the Spectral Mapping Theorem
(Theorem 8.5), u = p(\) for some A € o(T) if and only if u € o(p(T)),
so we also have ||p[| = sup{|u| | € o(p(T))} = r(p(T)) (where r(p(T))
is the spectral radius of p(r); the equality holds by the definition of
spectral radius).
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Proposition 8.26 (continued 1)

Proof (continued). Since T is a normal operator, by Theorem 8.23,
llpll = r(p(T)) = ||p(T)||. Therefore the mapping of p to p(T) is an
isometry.
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Proposition 8.26 (continued 1)

Proof (continued). Since T is a normal operator, by Theorem 8.23,
llpll = r(p(T)) = ||p(T)||. Therefore the mapping of p to p(T) is an
isometry.

The set of polynomials in C(o(T)) form a dense subset of C(o(T)) by the
Stone-Weierstrass Theorem (see Appendix B of Promislow or Section 12.3
of Royden and Fitzpatrick). By Theorem 2.20, the mapping of the set of
polynomials in C(r(T)) to B(H) (notice B(H) is a Banach space by
Theorem 2.15) can be extended to an isometry defined on all of X(o(T)).
We now prove each of the four claims.
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Proposition 8.26 (continued 1)

Proof (continued). Since T is a normal operator, by Theorem 8.23,
llpll = r(p(T)) = ||p(T)||. Therefore the mapping of p to p(T) is an
isometry.

The set of polynomials in C(o(T)) form a dense subset of C(o(T)) by the
Stone-Weierstrass Theorem (see Appendix B of Promislow or Section 12.3
of Royden and Fitzpatrick). By Theorem 2.20, the mapping of the set of
polynomials in C(r(T)) to B(H) (notice B(H) is a Banach space by
Theorem 2.15) can be extended to an isometry defined on all of X(o(T)).
We now prove each of the four claims.

Let f,g € C(o(T)). Then, since the set of polynomials is dense in
C(o(T)) then there are sequence of polynomials (p,) and (g,) with
(pn) — f and (gn) — g (the convergence is uniform since C(o(T)) is
equipped with the sup norm).
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Proposition 8.26 (continued 2)

Proof (continued). (i) Now p, + g, = f + g and so
(F +&)(T) = ( lim (pa+a)(T)) = lim (pa(T) + qa(T))
= nli_)n;op,,(T) + n“_)fT;OCIn(T) =f(T)+g(T).
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Proposition 8.26 (continued 2)
Proof (continued). (i) Now p, + g = f + g and so
(F +&)(T) = ( lim (pa+a)(T)) = lim (pa(T) + qa(T))
= lim pn(T)+ lim gn(T) = f(T) + (7).
For a € C,

(af)(T) = nli_)rr;o(ap,,)(T) = Lm app(T) =« lim ps(T) = af(T).

n—oo n—oo
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Proposition 8.26 (continued 2)
Proof (continued). (i) Now p, + g, = f + g and so
(F +&)(T) = ( lim (pa+a)(T)) = lim (pa(T) + qa(T))
= nli_)n;op,,(T) + n“_)fT;OCIn(T) =f(T)+g(T).
For o € C,
(@f)(T) = lim (ap,)(T) =
(ii) We have

(1) = (Tim pa) (T) lim (5,(T))

n—oo

= lim (p,(T")) since T=T"
n—oo

im app(T) =« lim py(T) = af(T).
—00 n—oo

n

= lim (pn(T))" by Theorem 4.26 (consider p, in terms of its
n—oo
coefficients and the fact that T = T*
= (lim po(T)) = (F(T))"
n—oo
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Proposition 8.26 (continued 3)

Proof (continued). (iii) We have
(fg)(T) = nli_[go(pnqn)(T) = n“_)”(lo(pn(T)qn(T))
= lim pn(T) lim qn(T) = f(T)g(T).
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Proposition 8.26 (continued 3)

Proof (continued). (iii) We have
(f8)(T) = lim (pnan)(T) = lim (pn(T)an(T))
= lim pn(T) lim qn(T) = f(T)g(T).
(iv) Let X € B(H) such that ST = TS. Notice that
S(aiT +a;T/) = a;S(T')+a;S(TV) = a; T'S+a;T/S = (3; T' + 3; TY)S.
So for a polynomial p, Sp(T) = p(T)S.
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Proposition 8.26 (continued 3)

Proof (continued). (iii) We have
(f)(T) = lim (poa)(T) = lim (po(T)an(T))
= lim pn(T) lim qn(T) = f(T)g(T).
(iv) Let X € B(H) such that ST = TS. Notice that
S(aiT +a;T/) = a;S(T')+a;S(TV) = a; T'S+a;T/S = (3; T' + 3; TY)S.
So for a polynomial p, Sp(T) = p(T)S. Hence
SHT) = 5 (lim pa(T))
= n|l_>rT;O Spn(T) since S is continuous
= n[rgo(pn(T)S) as argued above
= (nll_[‘go p,,(T)) S since S is continuous

= f(T)S. O
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