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Proposition 8.26

Proposition 8.26

Proposition 8.26. Let T be a bounded, self adjoint operator on a Hilbert
space H. Then the mapping that sends polynomials p ∈ C (σ(T ))
(continuous functions on the spectrum of T ) with the sup norm into
p(T ) ∈ B(H), sending f ∈ C (σ(T )) to f (T ) such that the following
properties hold. For all f , g ∈ C (σ(T )) and any α ∈ C,

(i) (f + g)(T ) = f (T ) + g(T ) and (αf )(T ) = αf (T ),
(ii) f (T ) = (f (T ))∗ where f is the conjugate of function f ,
(iii) (fg)(T ) = f (T )g(T ), and
(iv) for any S ∈ B(H) such that ST = TS we have

Sf (T ) = f (T )S .

Proof. Since C (σ(T )) has the sup norm then the norm of p ∈ C (σ(T )) is
‖p‖ = sup{|p(λ)| | λ ∈ σ(T )}. By the Spectral Mapping Theorem
(Theorem 8.5), µ = p(λ) for some λ ∈ σ(T ) if and only if µ ∈ σ(p(T )),
so we also have ‖p‖ = sup{|µ| | µ ∈ σ(p(T ))} = r(p(T )) (where r(p(T ))
is the spectral radius of p(r); the equality holds by the definition of
spectral radius).
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Proposition 8.26

Proposition 8.26 (continued 1)

Proof (continued). Since T is a normal operator, by Theorem 8.23,
‖p‖ = r(p(T )) = ‖p(T )‖. Therefore the mapping of p to p(T ) is an
isometry.

The set of polynomials in C (σ(T )) form a dense subset of C (σ(T )) by the
Stone-Weierstrass Theorem (see Appendix B of Promislow or Section 12.3
of Royden and Fitzpatrick). By Theorem 2.20, the mapping of the set of
polynomials in C (r(T )) to B(H) (notice B(H) is a Banach space by
Theorem 2.15) can be extended to an isometry defined on all of X (σ(T )).
We now prove each of the four claims.

Let f , g ∈ C (σ(T )). Then, since the set of polynomials is dense in
C (σ(T )) then there are sequence of polynomials (pn) and (qn) with
(pn) → f and (qn) → g (the convergence is uniform since C (σ(T )) is
equipped with the sup norm).
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Proposition 8.26 (continued 2)

Proof (continued). (i) Now pn + qn = f + g and so

(f + g)(T ) =
(

lim
n→∞

(pn + qn)(T )
)

= lim
n→∞

(pn(T ) + qn(T ))

= lim
n→∞

pn(T ) + lim
n→∞

qn(T ) = f (T ) + g(T ).

For α ∈ C,

(αf )(T ) = lim
n→∞

(αpn)(T ) = lim
n→∞

αpn(T ) = α lim
n→∞

pn(T ) = αf (T ).

(ii) We have

f (T ) =
(

lim
n→∞

pn

)
(T ) lim

n→∞
(pn(T ))

= lim
n→∞

(pn(T
∗)) since T = T ∗

= lim
n→∞

(pn(T ))∗ by Theorem 4.26 (consider pn in terms of its

coefficients and the fact that T = T ∗

=
(

lim
n→∞

pn(T )
)∗

= (f (T ))∗.
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Proposition 8.26 (continued 3)

Proof (continued). (iii) We have

(fg)(T ) = lim
n→∞

(pnqn)(T ) = lim
n→∞

(pn(T )qn(T ))

= lim
n→∞

pn(T ) lim
n→∞

qn(T ) = f (T )g(T ).

(iv) Let X ∈ B(H) such that ST = TS . Notice that

S(aiT
i + ajT

j) = aiS(T i ) + ajS(T j) = aiT
iS + ajT

jS = (aiT
i + ajT

j)S .

So for a polynomial p, Sp(T ) = p(T )S .

Hence

Sf (T ) = S
(

lim
n→∞

pn(T )
)

= lim
n→∞

Spn(T ) since S is continuous

= lim
n→∞

(pn(T )S) as argued above

=
(

lim
n→∞

pn(T )
)

S since S is continuous

= f (T )S .
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