Introduction to Functional Analysis

Chapter 8. The Spectrum 8.6. Functions of Operators—Proofs of Theorems

Table of contents

Proposition 8.26

Proposition 8.26. Let T be a bounded, self adjoint operator on a Hilbert space H. Then the mapping that sends polynomials $p \in C(\sigma(T))$ (continuous functions on the spectrum of T) with the sup norm into $p(T) \in \mathcal{B}(H)$, sending $f \in C(\sigma(T))$ to f(T) such that the following properties hold. For all $f, g \in C(\sigma(T))$ and any $\alpha \in \mathbb{C}$,

(i)
$$(f+g)(T) = f(T) + g(T)$$
 and $(\alpha f)(T) = \alpha f(T)$,
(ii) $\overline{f}(T) - (f(T))^*$ where \overline{f} is the conjugate of function

(ii)
$$\overline{f}(T) = (f(T))^*$$
 where \overline{f} is the conjugate of function f

iii)
$$(fg)(T) = f(T)g(T)$$
, and

(iv) for any
$$S \in \mathcal{B}(H)$$
 such that $ST = TS$ we have $Sf(T) = f(T)S$.

Proof. Since $C(\sigma(T))$ has the sup norm then the norm of $p \in C(\sigma(T))$ is $||p|| = \sup\{|p(\lambda)| \mid \lambda \in \sigma(T)\}$. By the Spectral Mapping Theorem (Theorem 8.5), $\mu = p(\lambda)$ for some $\lambda \in \sigma(T)$ if and only if $\mu \in \sigma(p(T))$, so we also have $||p|| = \sup\{|\mu| \mid \mu \in \sigma(p(T))\} = r(p(T))$ (where r(p(T))) is the spectral radius of p(r); the equality holds by the definition of spectral radius).

C

Proposition 8.26

Proposition 8.26. Let T be a bounded, self adjoint operator on a Hilbert space H. Then the mapping that sends polynomials $p \in C(\sigma(T))$ (continuous functions on the spectrum of T) with the sup norm into $p(T) \in \mathcal{B}(H)$, sending $f \in C(\sigma(T))$ to f(T) such that the following properties hold. For all $f, g \in C(\sigma(T))$ and any $\alpha \in \mathbb{C}$,

(i)
$$(f+g)(T) = f(T) + g(T)$$
 and $(\alpha f)(T) = \alpha f(T)$,
(ii) $\overline{f}(T) = (f(T))^*$ where \overline{f} is the conjugate of function f ,
(iii) $(fg)(T) = f(T)g(T)$, and
(iv) for any $S \in \mathcal{B}(H)$ such that $ST = TS$ we have
 $Sf(T) = f(T)S$.

Proof. Since $C(\sigma(T))$ has the sup norm then the norm of $p \in C(\sigma(T))$ is $||p|| = \sup\{|p(\lambda)| \mid \lambda \in \sigma(T)\}$. By the Spectral Mapping Theorem (Theorem 8.5), $\mu = p(\lambda)$ for some $\lambda \in \sigma(T)$ if and only if $\mu \in \sigma(p(T))$, so we also have $||p|| = \sup\{|\mu| \mid \mu \in \sigma(p(T))\} = r(p(T))$ (where r(p(T))) is the spectral radius of p(r); the equality holds by the definition of spectral radius).

Proposition 8.26 (continued 1)

Proof (continued). Since *T* is a normal operator, by Theorem 8.23, ||p|| = r(p(T)) = ||p(T)||. Therefore the mapping of *p* to p(T) is an isometry.

The set of polynomials in $C(\sigma(T))$ form a dense subset of $C(\sigma(T))$ by the Stone-Weierstrass Theorem (see Appendix B of Promislow or Section 12.3 of Royden and Fitzpatrick). By Theorem 2.20, the mapping of the set of polynomials in C(r(T)) to $\mathcal{B}(H)$ (notice $\mathcal{B}(H)$ is a Banach space by Theorem 2.15) can be extended to an isometry defined on all of $X(\sigma(T))$. We now prove each of the four claims.

Proposition 8.26 (continued 1)

Proof (continued). Since *T* is a normal operator, by Theorem 8.23, ||p|| = r(p(T)) = ||p(T)||. Therefore the mapping of *p* to p(T) is an isometry.

The set of polynomials in $C(\sigma(T))$ form a dense subset of $C(\sigma(T))$ by the Stone-Weierstrass Theorem (see Appendix B of Promislow or Section 12.3 of Royden and Fitzpatrick). By Theorem 2.20, the mapping of the set of polynomials in C(r(T)) to $\mathcal{B}(H)$ (notice $\mathcal{B}(H)$ is a Banach space by Theorem 2.15) can be extended to an isometry defined on all of $X(\sigma(T))$. We now prove each of the four claims.

Let $f, g \in C(\sigma(T))$. Then, since the set of polynomials is dense in $C(\sigma(T))$ then there are sequence of polynomials (p_n) and (q_n) with $(p_n) \to f$ and $(q_n) \to g$ (the convergence is uniform since $C(\sigma(T))$ is equipped with the sup norm).

Proposition 8.26 (continued 1)

Proof (continued). Since *T* is a normal operator, by Theorem 8.23, ||p|| = r(p(T)) = ||p(T)||. Therefore the mapping of *p* to p(T) is an isometry.

The set of polynomials in $C(\sigma(T))$ form a dense subset of $C(\sigma(T))$ by the Stone-Weierstrass Theorem (see Appendix B of Promislow or Section 12.3 of Royden and Fitzpatrick). By Theorem 2.20, the mapping of the set of polynomials in C(r(T)) to $\mathcal{B}(H)$ (notice $\mathcal{B}(H)$ is a Banach space by Theorem 2.15) can be extended to an isometry defined on all of $X(\sigma(T))$. We now prove each of the four claims.

Let $f, g \in C(\sigma(T))$. Then, since the set of polynomials is dense in $C(\sigma(T))$ then there are sequence of polynomials (p_n) and (q_n) with $(p_n) \to f$ and $(q_n) \to g$ (the convergence is uniform since $C(\sigma(T))$ is equipped with the sup norm).

Proposition 8.26 (continued 2)

Proof (continued). (i) Now $p_n + q_n = f + g$ and so $(f + g)(T) = \left(\lim_{n \to \infty} (p_n + q_n)(T)\right) = \lim_{n \to \infty} (p_n(T) + q_n(T))$ $= \lim_{n \to \infty} p_n(T) + \lim_{n \to \infty} q_n(T) = f(T) + g(T).$ For $\alpha \in \mathbb{C}$.

 $(\alpha f)(T) = \lim_{n \to \infty} (\alpha p_n)(T) = \lim_{n \to \infty} \alpha p_n(T) = \alpha \lim_{n \to \infty} p_n(T) = \alpha f(T).$

Proposition 8.26 (continued 2)

Proof (continued). (i) Now $p_n + q_n = f + g$ and so $(f + g)(T) = \left(\lim_{n \to \infty} (p_n + q_n)(T)\right) = \lim_{n \to \infty} (p_n(T) + q_n(T))$ $= \lim_{n \to \infty} p_n(T) + \lim_{n \to \infty} q_n(T) = f(T) + g(T).$

For $\alpha \in \mathbb{C}$,

$$(\alpha f)(T) = \lim_{n \to \infty} (\alpha p_n)(T) = \lim_{n \to \infty} \alpha p_n(T) = \alpha \lim_{n \to \infty} p_n(T) = \alpha f(T).$$

(ii) We have

$$\overline{F}(T) = \left(\overline{\lim_{n \to \infty} p_n}\right)(T) \lim_{n \to \infty} (\overline{p}_n(T))$$

- $= \lim_{n \to \infty} (\overline{p}_n(T^*)) \text{ since } T = T^*$
- $= \lim_{n \to \infty} (p_n(T))^*$ by Theorem 4.26 (consider p_n in terms of its

coefficients and the fact that $T = T^*$

$$= \left(\lim_{n\to\infty} p_n(T)\right)^* = (f(T))^*.$$

Proposition 8.26 (continued 2)

Proof (continued). (i) Now $p_n + q_n = f + g$ and so $(f + g)(T) = \left(\lim_{n \to \infty} (p_n + q_n)(T)\right) = \lim_{n \to \infty} (p_n(T) + q_n(T))$ $= \lim_{n \to \infty} p_n(T) + \lim_{n \to \infty} q_n(T) = f(T) + g(T).$

For $\alpha \in \mathbb{C}$,

$$(\alpha f)(T) = \lim_{n \to \infty} (\alpha p_n)(T) = \lim_{n \to \infty} \alpha p_n(T) = \alpha \lim_{n \to \infty} p_n(T) = \alpha f(T).$$

(ii) We have

$$\overline{f}(T) = \left(\overline{\lim_{n \to \infty} p_n}\right)(T) \lim_{n \to \infty} (\overline{p}_n(T))$$

$$= \lim_{n \to \infty} (\overline{p}_n(T^*)) \text{ since } T = T^*$$

$$= \lim_{n \to \infty} (p_n(T))^* \text{ by Theorem 4.26 (consider } p_n \text{ in terms of its } coefficients and the fact that $T = T^*$

$$= \left(\lim_{n \to \infty} p_n(T)\right)^* = (f(T))^*.$$$$

Proposition 8.26 (continued 3)

Proof (continued). (iii) We have

$$(fg)(T) = \lim_{n \to \infty} (p_n q_n)(T) = \lim_{n \to \infty} (p_n(T)q_n(T))$$

 $= \lim_{n \to \infty} p_n(T) \lim_{n \to \infty} q_n(T) = f(T)g(T).$

(iv) Let $X \in \mathcal{B}(H)$ such that ST = TS. Notice that $S(a_iT^i + a_jT^j) = a_iS(T^i) + a_jS(T^j) = a_iT^iS + a_jT^jS = (a_iT^i + a_jT^j)S$. So for a polynomial p, Sp(T) = p(T)S. Proposition 8.26 (continued 3)

Proof (continued). (iii) We have

$$(fg)(T) = \lim_{n \to \infty} (p_n q_n)(T) = \lim_{n \to \infty} (p_n(T)q_n(T))$$
$$= \lim_{n \to \infty} p_n(T) \lim_{n \to \infty} q_n(T) = f(T)g(T).$$

(iv) Let $X \in \mathcal{B}(H)$ such that ST = TS. Notice that $S(a_iT^i + a_jT^j) = a_iS(T^i) + a_jS(T^j) = a_iT^iS + a_jT^jS = (a_iT^i + a_jT^j)S$. So for a polynomial p, Sp(T) = p(T)S. Hence

$$Sf(T) = S\left(\lim_{n \to \infty} p_n(T)\right)$$

= $\lim_{n \to \infty} Sp_n(T)$ since S is continuous
= $\lim_{n \to \infty} (p_n(T)S)$ as argued above
= $\left(\lim_{n \to \infty} p_n(T)\right)S$ since S is continuous
= $f(T)S$.

Proposition 8.26 (continued 3)

Proof (continued). (iii) We have

$$(fg)(T) = \lim_{n \to \infty} (p_n q_n)(T) = \lim_{n \to \infty} (p_n(T)q_n(T))$$
$$= \lim_{n \to \infty} p_n(T) \lim_{n \to \infty} q_n(T) = f(T)g(T).$$

(iv) Let $X \in \mathcal{B}(H)$ such that ST = TS. Notice that $S(a_iT^i + a_jT^j) = a_iS(T^i) + a_jS(T^j) = a_iT^iS + a_jT^jS = (a_iT^i + a_jT^j)S$. So for a polynomial p, Sp(T) = p(T)S. Hence

$$Sf(T) = S\left(\lim_{n \to \infty} p_n(T)\right)$$

= $\lim_{n \to \infty} Sp_n(T)$ since S is continuous
= $\lim_{n \to \infty} (p_n(T)S)$ as argued above
= $\left(\lim_{n \to \infty} p_n(T)\right)S$ since S is continuous
= $f(T)S$.