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Chapter 9. Compact Operators
9.1. Introduction and Basic Definitions—Proofs of Theorems
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Lemma 9.1.A

Lemma 9.1.A

Lemma 9.1.A. A subset K of a normed linear space is relatively compact
if and only if any sequence in K has a convergent subsequence (where the
limit if an element of the normed linear space, but not necessarily in K ).

Proof. Suppose K is relatively compact and let (xn) ⊂ K . Then (xn) ⊂ K
and K is compact. By the second definition of “compact set” (see the
class notes for Section 2.2.), (xn) has a subsequence (xnk

) which converges
to a point in K .

Suppose every sequence in K has a convergent subsequence. Consider a
sequence (xn) ⊂ K . If finitely many of the xn lie in K , then by hypothesis
there is a subsequence of (xn) which converges. The limit of the
subsequence must be in K by part (iv) of the definition of “closure” of a
set (see Section 2.2).
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Lemma 9.1.A

Lemma 9.1.A (continued)

Proof (continued). If (xn) contains only finitely many terms in K , we
can assume without loss of generality that (xn) ⊂ K \ K . Let ε > 0. Since
each element of K \ K is the limit of a sequence of points in K (by part
(iv) of the definition of closure) then for each xn ∈ K \ K there is xn ∈ K
such that ‖xn − x ′

n‖ < ε/2n. Then (x ′
n) ⊂ K and so by hypothesis there is

a subsequence (x ′
nk

) which converges to some x ∈ K . So there is N ∈ N
such that for all k ≥ N we have |x ′

nk
− x | < ε/2.

Consider (xnk
), a

subsequence of (xn). Then for k ≥ N we have

‖xnk
−x‖ = ‖xnk

−x ′
nk

+x ′
nk
−x‖ ≤ ‖xnk

−x ′
nk
‖+‖x ′

nk
−x‖ < ε/2nk +ε/2 < ε.

Therefore (xnk
) → x ∈ K . So every sequence of elements in K has a

subsequence which converges to an element of K . Therefore, by the
second definition of “compact set,” K is compact.
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Lemma 9.1.B

Lemma 9.1.B

Lemma 9.1.B. Let X and Y be normed linear spaces. Then T ∈ B(X ,Y )
is a compact operator if an only if given any bounded sequence (xn) in X ,
the sequence (Txn) has a convergent subsequence.

Proof. Suppose T is compact. Let (xn) be a bounded sequence in X and
let B = {xn | n ∈ N}. Since T is compact then T (B) is relatively compact
and (Txn) ⊂ T (B). By Lemma 9.1.A, (Txn) has a convergent
subsequence.

Suppose that for every bounded sequence (xn) in X , the sequence (Txn)
has a convergent subsequence. Let B be a founded set, and consider
T (B). Let (yn) be a sequence in T (B). Then there are xn ∈ B such that
Txn = yn. So (xn) is a bounded sequence in X . So by hypothesis
(Txn) = (yn) has a convergent subsequence. Since (yn) is an arbitrary
subsequence in T (B) then, by Lemma 9.1.A, T (B) is relatively compact.
So, by definition, T is a compact operator.
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