Introduction to Functional Analysis

Chapter 9. Compact Operators
9.1. Introduction and Basic Definitions—Proofs of Theorems
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Lemma 9.1.A

Lemma 9.1.A

Lemma 9.1.A. A subset K of a normed linear space is relatively compact
if and only if any sequence in K has a convergent subsequence (where the
limit if an element of the normed linear space, but not necessarily in K).
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Lemma 9.1.A

Lemma 9.1.A. A subset K of a normed linear space is relatively compact
if and only if any sequence in K has a convergent subsequence (where the
limit if an element of the normed linear space, but not necessarily in K).

Proof. Suppose K is relatively compact and let (x,) C K. Then (x,) C K
and K is compact. By the second definition of “compact set” (see the
class notes for Section 2.2.), (x,) has a subsequence (x,,) which converges
to a point in K.
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Lemma 9.1.A

Lemma 9.1.A. A subset K of a normed linear space is relatively compact
if and only if any sequence in K has a convergent subsequence (where the
limit if an element of the normed linear space, but not necessarily in K).

Proof. Suppose K is relatively compact and let (x,) C K. Then (x,) C K
and K is compact. By the second definition of “compact set” (see the
class notes for Section 2.2.), (x,) has a subsequence (x,,) which converges
to a point in K.

Suppose every sequence in K has a convergent subsequence. Consider a
sequence (x,) C K. If finitely many of the x, lie in K, then by hypothesis
there is a subsequence of (x,) which converges. The limit of the
subsequence must be in K by part (iv) of the definition of “closure” of a
set (see Section 2.2).
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Lemma 9.1.A (continued)

Proof (continued). If (x;) contains only finitely many terms in K, we
can assume without loss of generality that (x,) C K\ K. Let ¢ > 0.
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Lemma 9.1.A (continued)

Proof (continued). If (x,) contains only finitely many terms in K, we
can assume without loss of generality that (x,) C K\ K. Let ¢ > 0. Since
each element of K \ K is the limit of a sequence of points in K (by part
(iv) of the definition of closure) then for each x, € K \ K there is x, € K
such that ||x, — x}|| < &/2". Then (x}) C K and so by hypothesis there is
a subsequence (x, ) which converges to some x € K. So there is N € N
such that for all k > N we have |x;, — x| <¢/2.
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Lemma 9.1.A (continued)

Proof (continued). If (x,) contains only finitely many terms in K, we
can assume without loss of generality that (x,) C K\ K. Let ¢ > 0. Since
each element of K \ K is the limit of a sequence of points in K (by part
(iv) of the definition of closure) then for each x, € K \ K there is x, € K
such that ||x, — x}|| < &/2". Then (x}) C K and so by hypothesis there is
a subsequence (x, ) which converges to some x € K. So there is N € N
such that for all k > N we have |x;, — x| < /2. Consider (xp,), a
subsequence of (x,). Then for k > N we have

[Xee =X[F = 11X, =X, 45, =X < [lxn, = x5, [I 4137, = x| < €/2™+¢/2 <e.

Therefore (xn,) — x € K. So every sequence of elements in K has a
subsequence which converges to an element of K. Therefore, by the
second definition of “compact set,” K is compact.
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Lemma 9.1.B

Lemma 9.1.B

Lemma 9.1.B. Let X and Y be normed linear spaces. Then T € B(X,Y)

is a compact operator if an only if given any bounded sequence (x,) in X,
the sequence (Tx,) has a convergent subsequence.
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Lemma 9.1.B

Lemma 9.1.B. Let X and Y be normed linear spaces. Then T € B(X,Y)
is a compact operator if an only if given any bounded sequence (x,) in X,
the sequence (Tx,) has a convergent subsequence.

Proof. Suppose T is compact. Let (x,) be a bounded sequence in X and
let B ={x, | n € N}. Since T is compact then T(B) is relatively compact
and (Tx,) C T(B). By Lemma 9.1.A, (Tx,) has a convergent
subsequence.
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Lemma 9.1.B

Lemma 9.1.B

Lemma 9.1.B. Let X and Y be normed linear spaces. Then T € B(X,Y)

is a compact operator if an only if given any bounded sequence (x,) in X,
the sequence (Tx,) has a convergent subsequence.

Proof. Suppose T is compact. Let (x,) be a bounded sequence in X and
let B ={x, | n € N}. Since T is compact then T(B) is relatively compact

and (Tx,) C T(B). By Lemma 9.1.A, (Tx,) has a convergent
subsequence.

Suppose that for every bounded sequence (x,) in X, the sequence ( Tx,)
has a convergent subsequence. Let B be a founded set, and consider

T(B). Let (yn) be a sequence in T(B). Then there are x, € B such that
Txn = yn. So (xn) is a bounded sequence in X.
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Lemma 9.1.B

Lemma 9.1.B. Let X and Y be normed linear spaces. Then T € B(X,Y)
is a compact operator if an only if given any bounded sequence (x,) in X,
the sequence (Tx,) has a convergent subsequence.

Proof. Suppose T is compact. Let (x,) be a bounded sequence in X and
let B ={x, | n € N}. Since T is compact then T(B) is relatively compact
and (Tx,) C T(B). By Lemma 9.1.A, (Tx,) has a convergent
subsequence.

Suppose that for every bounded sequence (x,) in X, the sequence ( Tx,)
has a convergent subsequence. Let B be a founded set, and consider
T(B). Let (yn) be a sequence in T(B). Then there are x, € B such that
Txn = yn. So (xpn) is a bounded sequence in X. So by hypothesis

(Txn) = (yn) has a convergent subsequence. Since (y,) is an arbitrary
subsequence in T(B) then, by Lemma 9.1.A, T(B) is relatively compact.
So, by definition, T is a compact operator. O

Introduction to Functional Analysis May 15, 2017 5/5



	Lemma 9.1.A
	Lemma 9.1.B

