## Introduction to Functional Analysis

#### **Chapter 9. Compact Operators**

9.1. Introduction and Basic Definitions—Proofs of Theorems



# Table of contents





**Lemma 9.1.A.** A subset K of a normed linear space is relatively compact if and only if any sequence in K has a convergent subsequence (where the limit if an element of the normed linear space, but not necessarily in K).

**Proof.** Suppose K is relatively compact and let  $(x_n) \subset K$ . Then  $(x_n) \subset \overline{K}$  and  $\overline{K}$  is compact. By the second definition of "compact set" (see the class notes for Section 2.2.),  $(x_n)$  has a subsequence  $(x_{n_k})$  which converges to a point in  $\overline{K}$ .

**Lemma 9.1.A.** A subset K of a normed linear space is relatively compact if and only if any sequence in K has a convergent subsequence (where the limit if an element of the normed linear space, but not necessarily in K).

**Proof.** Suppose K is relatively compact and let  $(x_n) \subset K$ . Then  $(x_n) \subset \overline{K}$  and  $\overline{K}$  is compact. By the second definition of "compact set" (see the class notes for Section 2.2.),  $(x_n)$  has a subsequence  $(x_{n_k})$  which converges to a point in  $\overline{K}$ .

Suppose every sequence in K has a convergent subsequence. Consider a sequence  $(x_n) \subset \overline{K}$ . If finitely many of the  $x_n$  lie in K, then by hypothesis there is a subsequence of  $(x_n)$  which converges. The limit of the subsequence must be in  $\overline{K}$  by part (iv) of the definition of "closure" of a set (see Section 2.2).

**Lemma 9.1.A.** A subset K of a normed linear space is relatively compact if and only if any sequence in K has a convergent subsequence (where the limit if an element of the normed linear space, but not necessarily in K).

**Proof.** Suppose K is relatively compact and let  $(x_n) \subset K$ . Then  $(x_n) \subset \overline{K}$  and  $\overline{K}$  is compact. By the second definition of "compact set" (see the class notes for Section 2.2.),  $(x_n)$  has a subsequence  $(x_{n_k})$  which converges to a point in  $\overline{K}$ .

Suppose every sequence in K has a convergent subsequence. Consider a sequence  $(x_n) \subset \overline{K}$ . If finitely many of the  $x_n$  lie in K, then by hypothesis there is a subsequence of  $(x_n)$  which converges. The limit of the subsequence must be in  $\overline{K}$  by part (iv) of the definition of "closure" of a set (see Section 2.2).

## Lemma 9.1.A (continued)

**Proof (continued).** If  $(x_n)$  contains only finitely many terms in K, we can assume without loss of generality that  $(x_n) \subset \overline{K} \setminus K$ . Let  $\varepsilon > 0$ . Since each element of  $\overline{K} \setminus K$  is the limit of a sequence of points in K (by part (iv) of the definition of closure) then for each  $x_n \in \overline{K} \setminus K$  there is  $x_n \in K$  such that  $||x_n - x'_n|| < \varepsilon/2^n$ . Then  $(x'_n) \subset K$  and so by hypothesis there is a subsequence  $(x'_{n_k})$  which converges to some  $x \in \overline{K}$ . So there is  $N \in \mathbb{N}$  such that for all  $k \ge N$  we have  $|x'_{n_k} - x| < \varepsilon/2$ .

## Lemma 9.1.A (continued)

**Proof (continued).** If  $(x_n)$  contains only finitely many terms in K, we can assume without loss of generality that  $(x_n) \subset \overline{K} \setminus K$ . Let  $\varepsilon > 0$ . Since each element of  $\overline{K} \setminus K$  is the limit of a sequence of points in K (by part (iv) of the definition of closure) then for each  $x_n \in \overline{K} \setminus K$  there is  $x_n \in K$  such that  $||x_n - x'_n|| < \varepsilon/2^n$ . Then  $(x'_n) \subset K$  and so by hypothesis there is a subsequence  $(x'_{n_k})$  which converges to some  $x \in \overline{K}$ . So there is  $N \in \mathbb{N}$  such that for all  $k \ge N$  we have  $|x'_{n_k} - x| < \varepsilon/2$ . Consider  $(x_{n_k})$ , a subsequence of  $(x_n)$ . Then for  $k \ge N$  we have

 $\|x_{n_k} - x\| = \|x_{n_k} - x'_{n_k} + x'_{n_k} - x\| \le \|x_{n_k} - x'_{n_k}\| + \|x'_{n_k} - x\| < \varepsilon/2^{n_k} + \varepsilon/2 < \varepsilon.$ 

Therefore  $(x_{n_k}) \to x \in \overline{K}$ . So every sequence of elements in  $\overline{K}$  has a subsequence which converges to an element of  $\overline{K}$ . Therefore, by the second definition of "compact set,"  $\overline{K}$  is compact.

### Lemma 9.1.A (continued)

**Proof (continued).** If  $(x_n)$  contains only finitely many terms in K, we can assume without loss of generality that  $(x_n) \subset \overline{K} \setminus K$ . Let  $\varepsilon > 0$ . Since each element of  $\overline{K} \setminus K$  is the limit of a sequence of points in K (by part (iv) of the definition of closure) then for each  $x_n \in \overline{K} \setminus K$  there is  $x_n \in K$  such that  $||x_n - x'_n|| < \varepsilon/2^n$ . Then  $(x'_n) \subset K$  and so by hypothesis there is a subsequence  $(x'_{n_k})$  which converges to some  $x \in \overline{K}$ . So there is  $N \in \mathbb{N}$  such that for all  $k \ge N$  we have  $|x'_{n_k} - x| < \varepsilon/2$ . Consider  $(x_{n_k})$ , a subsequence of  $(x_n)$ . Then for  $k \ge N$  we have

$$\|x_{n_k} - x\| = \|x_{n_k} - x'_{n_k} + x'_{n_k} - x\| \le \|x_{n_k} - x'_{n_k}\| + \|x'_{n_k} - x\| < \varepsilon/2^{n_k} + \varepsilon/2 < \varepsilon.$$

Therefore  $(x_{n_k}) \to x \in \overline{K}$ . So every sequence of elements in  $\overline{K}$  has a subsequence which converges to an element of  $\overline{K}$ . Therefore, by the second definition of "compact set,"  $\overline{K}$  is compact.

**Lemma 9.1.B.** Let X and Y be normed linear spaces. Then  $T \in \mathcal{B}(X, Y)$  is a compact operator if an only if given any bounded sequence  $(x_n)$  in X, the sequence  $(Tx_n)$  has a convergent subsequence.

**Proof.** Suppose T is compact. Let  $(x_n)$  be a bounded sequence in X and let  $B = \{x_n \mid n \in \mathbb{N}\}$ . Since T is compact then T(B) is relatively compact and  $(Tx_n) \subset T(B)$ . By Lemma 9.1.A,  $(Tx_n)$  has a convergent subsequence.

**Lemma 9.1.B.** Let X and Y be normed linear spaces. Then  $T \in \mathcal{B}(X, Y)$  is a compact operator if an only if given any bounded sequence  $(x_n)$  in X, the sequence  $(Tx_n)$  has a convergent subsequence.

**Proof.** Suppose T is compact. Let  $(x_n)$  be a bounded sequence in X and let  $B = \{x_n \mid n \in \mathbb{N}\}$ . Since T is compact then T(B) is relatively compact and  $(Tx_n) \subset T(B)$ . By Lemma 9.1.A,  $(Tx_n)$  has a convergent subsequence.

Suppose that for every bounded sequence  $(x_n)$  in X, the sequence  $(Tx_n)$  has a convergent subsequence. Let B be a founded set, and consider T(B). Let  $(y_n)$  be a sequence in T(B). Then there are  $x_n \in B$  such that  $Tx_n = y_n$ . So  $(x_n)$  is a bounded sequence in X.

**Lemma 9.1.B.** Let X and Y be normed linear spaces. Then  $T \in \mathcal{B}(X, Y)$  is a compact operator if an only if given any bounded sequence  $(x_n)$  in X, the sequence  $(Tx_n)$  has a convergent subsequence.

**Proof.** Suppose T is compact. Let  $(x_n)$  be a bounded sequence in X and let  $B = \{x_n \mid n \in \mathbb{N}\}$ . Since T is compact then T(B) is relatively compact and  $(Tx_n) \subset T(B)$ . By Lemma 9.1.A,  $(Tx_n)$  has a convergent subsequence.

Suppose that for every bounded sequence  $(x_n)$  in X, the sequence  $(Tx_n)$  has a convergent subsequence. Let B be a founded set, and consider T(B). Let  $(y_n)$  be a sequence in T(B). Then there are  $x_n \in B$  such that  $Tx_n = y_n$ . So  $(x_n)$  is a bounded sequence in X. So by hypothesis  $(Tx_n) = (y_n)$  has a convergent subsequence. Since  $(y_n)$  is an arbitrary subsequence in T(B) then, by Lemma 9.1.A, T(B) is relatively compact. So, by definition, T is a compact operator.

**Lemma 9.1.B.** Let X and Y be normed linear spaces. Then  $T \in \mathcal{B}(X, Y)$  is a compact operator if an only if given any bounded sequence  $(x_n)$  in X, the sequence  $(Tx_n)$  has a convergent subsequence.

**Proof.** Suppose T is compact. Let  $(x_n)$  be a bounded sequence in X and let  $B = \{x_n \mid n \in \mathbb{N}\}$ . Since T is compact then T(B) is relatively compact and  $(Tx_n) \subset T(B)$ . By Lemma 9.1.A,  $(Tx_n)$  has a convergent subsequence.

Suppose that for every bounded sequence  $(x_n)$  in X, the sequence  $(Tx_n)$  has a convergent subsequence. Let B be a founded set, and consider T(B). Let  $(y_n)$  be a sequence in T(B). Then there are  $x_n \in B$  such that  $Tx_n = y_n$ . So  $(x_n)$  is a bounded sequence in X. So by hypothesis  $(Tx_n) = (y_n)$  has a convergent subsequence. Since  $(y_n)$  is an arbitrary subsequence in T(B) then, by Lemma 9.1.A, T(B) is relatively compact. So, by definition, T is a compact operator.