Proposition 9.1. Let $\epsilon > 0$. Then there is a natural number $N \in \mathbb{N}$ with $I/N < \epsilon$ and $N/N < \epsilon$. Now define a sequence (a_n) and (b_n) by $a_n = (I/n)$ for each $n \in \mathbb{N}$ and $b_n = (I/n)$ for each $n \in \mathbb{N}$. Let $c = (a_n + b_n)$. Proceed as described in the previous paragraph. Then iterate this process creating a subsequence of (c_n). Let $d = (c_1, c_2, \ldots)$. Then (d_n) is a Cauchy sequence.

Proposition 9.2. If a Cauchy sequence is bounded, it is uniformly Cauchy.

Proposition 9.3. If a Cauchy sequence is bounded and Cauchy, it converges.

Definition. A complete metric space is a metric space in which every Cauchy sequence converges.

Theorem. Every complete metric space is both bounded and totally bounded.

Proof. Suppose X is a complete metric space. Then X is compact, and therefore every sequence in X has a convergent subsequence. Since X is complete, every Cauchy sequence converges. Therefore, every sequence in X converges. This implies that X is compact.

Corollary. Every closed subset of a complete metric space is itself complete.

Proof. Suppose A is a closed subset of a complete metric space X. If (x_n) is a sequence in A, then (x_n) converges to some $x \in X$. Since A is closed, $x \in A$. Therefore, every convergent sequence in A converges to a point in A. This implies that A is complete.

Chapter 4. Compactness Criteria in Metric Spaces—Proofs of Theorems
Proposition 9.2. A set of functions from a finite dimensional and a closed subspace X, there is a finite set of pairwise disjoint subsets of X. For any $y \in X$, we can find a closed subspace Y of X such that $y \in Y$. Then $Y = \text{span}(y)$.

By Corollary 9.2, Y is a closed subspace of X. For any $y \in X$, we can find a closed subspace Z of X such that $y \in Z$. Then $Z = \text{span}(y)$.

For the converse, suppose X is a finite dimensional and a closed subspace Y. Then $Y = \text{span}(y)$.

Proposition 9.3. A set of functions from a finite dimensional and a closed subspace X. For any $y \in X$, we can find a closed subspace Y of X such that $y \in Y$. Then $Y = \text{span}(y)$.

Proof. First, Y is a closed subspace of X. Let $y \in Y$. Then $y = \text{span}(y)$.

Proposition 9.4. A set of functions from a finite dimensional and a closed subspace X. For any $y \in X$, we can find a closed subspace Y of X such that $y \in Y$. Then $Y = \text{span}(y)$.

Proof. First, Y is a closed subspace of X. Let $y \in Y$. Then $y = \text{span}(y)$.

Proposition 9.5. A set of functions from a finite dimensional and a closed subspace X. For any $y \in X$, we can find a closed subspace Y of X such that $y \in Y$. Then $Y = \text{span}(y)$.

Proof. First, Y is a closed subspace of X. Let $y \in Y$. Then $y = \text{span}(y)$.

Theorem 9.5. Arzelà-Ascoli Theorem.

Proof. First, Y is a closed subspace of X. Let $y \in Y$. Then $y = \text{span}(y)$.

Proposition 9.6. A set of functions from a finite dimensional and a closed subspace X. For any $y \in X$, we can find a closed subspace Y of X such that $y \in Y$. Then $Y = \text{span}(y)$.

Proof. First, Y is a closed subspace of X. Let $y \in Y$. Then $y = \text{span}(y)$.

Proposition 9.7. A set of functions from a finite dimensional and a closed subspace X. For any $y \in X$, we can find a closed subspace Y of X such that $y \in Y$. Then $Y = \text{span}(y)$.

Proof. First, Y is a closed subspace of X. Let $y \in Y$. Then $y = \text{span}(y)$.

Proof. First, Y is a closed subspace of X. Let $y \in Y$. Then $y = \text{span}(y)$.

Proposition 9.8. A set of functions from a finite dimensional and a closed subspace X. For any $y \in X$, we can find a closed subspace Y of X such that $y \in Y$. Then $Y = \text{span}(y)$.

Proof. First, Y is a closed subspace of X. Let $y \in Y$. Then $y = \text{span}(y)$.
Theorem 9.7 (continued)

Therefore $A \subseteq Y$. By Proposition 9.2, A is relatively compact.

$$\varepsilon = \frac{1}{2} \left(\left\| \frac{d(f)}{d} \right\| \right) = \frac{1}{2} \left(\left\| \frac{d(f)}{d} \right\| \right)$$

So the hypotheses of Proposition 9.2 are satisfied, and hence A is relatively compact.

Theorem 9.6, let A be a bounded subset of \mathbb{C} that is uniformly small.

Theorem 9.5, Artaza-Archbald Theorem (continued)

If F is a compact metric space, then the set of continuous functions $\mathbb{C}(F)$ is relatively compact if F is a compact metric space with countable subbasis, and only if it is bounded and equicontinuous.
compact operator.

Hence (by definition and the observation in the note above) \(M_f \) is a compact operator. Therefore the set \(K(B(1)) \) is equicontinuous. By the Arzela-Ascoli Theorem (Theorem 9.5), \(M_f(B(1)) \) is relatively compact. Therefore the set \(K(B(1)) \) is equicontinuous.

\(\therefore \exists \epsilon > 0 \text{ s.t. } \int_0^\infty \frac{1}{t} \left| K_{x_1}(t) - K_{x_2}(t) \right| dt < \delta \). Since \(K(B(1)) \) is equicontinuous, for all \(f \in B(1) \), the closed unit sphere is compact, then \(K \) is uniformly continuous. So for \(\delta \) small, there is a \(\epsilon > 0 \) such that \(\left| K_{x_1}(t) - K_{x_2}(t) \right| dt < \delta \) whenever \(|t_1 - t_2| \). So for all \(\epsilon > 0 \), there is a \(\delta > 0 \) such that \(\left| K_{x_1}(t) - K_{x_2}(t) \right| dt < \delta \) whenever \(|t_1 - t_2| \). Therefore, since \(K(B(1)) \) is equicontinuous, the operator \(K \) is continuous. Since \(K \) is continuous and the ball \(B(1) \) is closed, then the set \(K(B(1)) \) is bounded. We now show that \(K(B(1)) \) is equicontinuous. Since \(K \) is continuous and the ball \(B(1) \) is closed, then the set \(K(B(1)) \) is bounded.

Theorem 9.9. The operator \(K \) is given in Example 9.8. It is compact.