Introduction to Functional Analysis

Chapter 9. Compact Operators

9.2. Compactness Criteria in Metric Spaces-Proofs of Theorems

Table of contents

- 1 Proposition 9.1
- Proposition 9.2
- 3 Proposition 9.3
- 4 Theorem 9.5. Arzela-Ascoli Theorem
- 5 Theorem 9.6
- 6 Theorem 9.7
 - Theorem 9.9

Proposition 9.1. Set A in a metric space is totally bounded if and only if any sequence (a_n) of points in A has a Cauchy subsequence.

Proof. First, suppose that (a_n) is a sequence in totally bounded set A. Notice that for any given $\varepsilon > 0$, there is a $\varepsilon/2$ -net F for A since A is totally bounded.

Proposition 9.1. Set A in a metric space is totally bounded if and only if any sequence (a_n) of points in A has a Cauchy subsequence.

Proof. First, suppose that (a_n) is a sequence in totally bounded set A. Notice that for any given $\varepsilon > 0$, there is a $\varepsilon/2$ -net F for A since A is totally bounded. Since F contains only finitely many points but the sequence (a_n) contains infinitely many (not necessarily distinct) terms, then from some $y \in F$ we must have that $d(a_n, y) \le \varepsilon/2$ for infinitely many a)n. These a_n form a subsequence of (a_n) in which any two terms are within ε of each other.

Proposition 9.1. Set A in a metric space is totally bounded if and only if any sequence (a_n) of points in A has a Cauchy subsequence.

Proof. First, suppose that (a_n) is a sequence in totally bounded set A. Notice that for any given $\varepsilon > 0$, there is a $\varepsilon/2$ -net F for A since A is totally bounded. Since F contains only finitely many points but the sequence (a_n) contains infinitely many (not necessarily distinct) terms, then from some $y \in F$ we must have that $d(a_n, y) \le \varepsilon/2$ for infinitely many a)n. These a_n form a subsequence of (a_n) in which any two terms are within ε of each other.

With $\varepsilon_1 = 1$, create subsequence (a_n^1) of (a_n) as described in the previous paragraph. Then iterate this process creating sequence (a_n^{k+1}) a subsequence of a_n^k) using $\varepsilon = 1/(k+1)$ (so for each $k \in \mathbb{N}$, all terms in (a_n^{k+1}) are within $\varepsilon = 1/k$ of each other). Now define sequence (a_n^n) and let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ with $1/N < \varepsilon$.

Proposition 9.1. Set A in a metric space is totally bounded if and only if any sequence (a_n) of points in A has a Cauchy subsequence.

Proof. First, suppose that (a_n) is a sequence in totally bounded set A. Notice that for any given $\varepsilon > 0$, there is a $\varepsilon/2$ -net F for A since A is totally bounded. Since F contains only finitely many points but the sequence (a_n) contains infinitely many (not necessarily distinct) terms, then from some $y \in F$ we must have that $d(a_n, y) \le \varepsilon/2$ for infinitely many a)n. These a_n form a subsequence of (a_n) in which any two terms are within ε of each other.

With $\varepsilon_1 = 1$, create subsequence (a_n^1) of (a_n) as described in the previous paragraph. Then iterate this process creating sequence (a_n^{k+1}) a subsequence of a_n^k) using $\varepsilon = 1/(k+1)$ (so for each $k \in \mathbb{N}$, all terms in (a_n^{k+1}) are within $\varepsilon = 1/k$ of each other). Now define sequence (a_n^n) and let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ with $1/N < \varepsilon$.

Proof (continued). The tail of the sequence $(a_n^n)_{n=N}^{\infty}$ is a subsequence of (a_n^N) and so the terms of the tail are within $1/N < \varepsilon$ of each other. That is, for all $n, m \ge N$ we have $||a_n^n - a_m^m|| \le 1/N < \varepsilon$ and (a_n^n) is a Cauchy subsequence of (a_n) .

We prove the contrapositive of the converse. Suppose A is not totally bounded. Then for some $\varepsilon_0 > 0$ such that no ε_0 -net for A exists.

Proof (continued). The tail of the sequence $(a_n^n)_{n=N}^{\infty}$ is a subsequence of (a_n^N) and so the terms of the tail are within $1/N < \varepsilon$ of each other. That is, for all $n, m \ge N$ we have $||a_n^n - a_m^m|| \le 1/N < \varepsilon$ and (a_n^n) is a Cauchy subsequence of (a_n) .

We prove the contrapositive of the converse. Suppose A is not totally bounded. Then for some $\varepsilon_0 > 0$ such that no ε_0 -net for A exists. Let $a_1 \in A$. Choose $a_2 \in A$ with $d(a_1, a_2) > \varepsilon_0$ (which can be done since $F = \{a_1\}$ is not a ε_0 -net). Suppose a_1, a_2, \ldots, a_k have been chosen in A where any two of these points are a distance more than ε_0 apart. Since $F = \{1_1, 1_2, \ldots, a_k\}$ is not a ε_0 -net for A then there is $a_{k+1} \in A$ such that $d(a_i, a_{k+1}) > \varepsilon_0$ for $i = 1, 2, \ldots, k$.

Proof (continued). The tail of the sequence $(a_n^n)_{n=N}^{\infty}$ is a subsequence of (a_n^N) and so the terms of the tail are within $1/N < \varepsilon$ of each other. That is, for all $n, m \ge N$ we have $||a_n^n - a_m^m|| \le 1/N < \varepsilon$ and (a_n^n) is a Cauchy subsequence of (a_n) .

We prove the contrapositive of the converse. Suppose A is not totally bounded. Then for some $\varepsilon_0 > 0$ such that no ε_0 -net for A exists. Let $a_1 \in A$. Choose $a_2 \in A$ with $d(a_1, a_2) > \varepsilon_0$ (which can be done since $F = \{a_1\}$ is not a ε_0 -net). Suppose a_1, a_2, \ldots, a_k have been chosen in A where any two of these points are a distance more than ε_0 apart. Since $F = \{1_1, 1_2, \ldots, a_k\}$ is not a ε_0 -net for A then there is $a_{k+1} \in A$ such that $d(a_i, a_{k+1}) > \varepsilon_0$ for $i = 1, 2, \ldots, k$. So in the resulting sequence (a_k) , any pair of terms are a distance of at least ε_0 apart. So (a_k) has no Cauchy subsequence. That is, if A is not totally bounded then there is a sequence of points in A with no Cauchy subsequence.

Proof (continued). The tail of the sequence $(a_n^n)_{n=N}^{\infty}$ is a subsequence of (a_n^N) and so the terms of the tail are within $1/N < \varepsilon$ of each other. That is, for all $n, m \ge N$ we have $||a_n^n - a_m^m|| \le 1/N < \varepsilon$ and (a_n^n) is a Cauchy subsequence of (a_n) .

We prove the contrapositive of the converse. Suppose A is not totally bounded. Then for some $\varepsilon_0 > 0$ such that no ε_0 -net for A exists. Let $a_1 \in A$. Choose $a_2 \in A$ with $d(a_1, a_2) > \varepsilon_0$ (which can be done since $F = \{a_1\}$ is not a ε_0 -net). Suppose a_1, a_2, \ldots, a_k have been chosen in A where any two of these points are a distance more than ε_0 apart. Since $F = \{1_1, 1_2, \ldots, a_k\}$ is not a ε_0 -net for A then there is $a_{k+1} \in A$ such that $d(a_i, a_{k+1}) > \varepsilon_0$ for $i = 1, 2, \ldots, k$. So in the resulting sequence (a_k) , any pair of terms are a distance of at least ε_0 apart. So (a_k) has no Cauchy subsequence. That is, if A is not totally bounded then there is a sequence of points in A with no Cauchy subsequence.

Proposition 9.2. A bounded set A of a Banach space X is relatively compact if and only if for any $\varepsilon > 0$ there is a finite dimensional subspace Y of X with $A \subseteq^{\varepsilon} Y$.

Proof. Suppose A has the finite dimensional subspace property. Given $\varepsilon > 0$, choose a finite dimensional subspace Y such that $A \subseteq \varepsilon^{/2} Y$. For each $a \in A$ choose $a' \in Y$ such that $||a - a'|| \le \varepsilon/2$. The set A' consisting of all such a' is bounded since diam $(A') \le \text{diam}(A) + \varepsilon$. Notice that, by construction, $A \subseteq \varepsilon^{/2} A'$.

Proposition 9.2. A bounded set *A* of a Banach space *X* is relatively compact if and only if for any $\varepsilon > 0$ there is a finite dimensional subspace *Y* of *X* with $A \subseteq^{\varepsilon} Y$.

Proof. Suppose A has the finite dimensional subspace property. Given $\varepsilon > 0$, choose a finite dimensional subspace Y such that $A \subseteq \varepsilon^{/2} Y$. For each $a \in A$ choose $a' \in Y$ such that $||a - a'|| \le \varepsilon/2$. The set A' consisting of all such a' is bounded since diam $(A') \le \text{diam}(A) + \varepsilon$. Notice that, by construction, $A \subseteq \varepsilon^{/2} A'$. Since Y is finite dimensional, then it is closed by Theorem 2.31(c). So $\overline{A'} \subset \overline{Y}$. Now $\overline{A'}$ is a closed and bounded set in finite dimensional linear space Y, so by the Heine Borel Theorem, $\overline{A'}$ is compact. So set A' is relatively compact in Y.

Proposition 9.2. A bounded set *A* of a Banach space *X* is relatively compact if and only if for any $\varepsilon > 0$ there is a finite dimensional subspace *Y* of *X* with $A \subseteq^{\varepsilon} Y$.

Proof. Suppose A has the finite dimensional subspace property. Given $\varepsilon > 0$, choose a finite dimensional subspace Y such that $A \subset \varepsilon^{2} Y$. For each $a \in A$ choose $a' \in Y$ such that $||a - a'|| \leq \varepsilon/2$. The set A' consisting of all such a' is bounded since diam $(A') \leq \text{diam}(A) + \varepsilon$. Notice that, by construction, $A \subseteq^{\varepsilon/2} A'$. Since Y is finite dimensional, then it is closed by Theorem 2.31(c). So $\overline{A}' \subset \overline{Y}$. Now \overline{A}' is a closed and bounded set in finite dimensional linear space Y, so by the Heine Borel Theorem. \overline{A}' is compact. So set A' is relatively compact in Y. So A' is totally bounded. by Corollary 9.2.A, and there is a finite set $F \subset Y$ where $A' \subset^{\varepsilon/2} F$. Therefore $A \subset^{\varepsilon} F$, so A is totally bounded. Since X is complete (a Banach space) then A is relatively compact by Corollary 9.2.A.

Proposition 9.2. A bounded set *A* of a Banach space *X* is relatively compact if and only if for any $\varepsilon > 0$ there is a finite dimensional subspace *Y* of *X* with $A \subseteq^{\varepsilon} Y$.

Proof. Suppose A has the finite dimensional subspace property. Given $\varepsilon > 0$, choose a finite dimensional subspace Y such that $A \subset \varepsilon^{2} Y$. For each $a \in A$ choose $a' \in Y$ such that $||a - a'|| \leq \varepsilon/2$. The set A' consisting of all such a' is bounded since diam $(A') \leq \text{diam}(A) + \varepsilon$. Notice that, by construction, $A \subseteq^{\varepsilon/2} A'$. Since Y is finite dimensional, then it is closed by Theorem 2.31(c). So $\overline{A}' \subset \overline{Y}$. Now \overline{A}' is a closed and bounded set in finite dimensional linear space Y, so by the Heine Borel Theorem. \overline{A}' is compact. So set A' is relatively compact in Y. So A' is totally bounded, by Corollary 9.2.A, and there is a finite set $F \subset Y$ where $A' \subset \varepsilon^{2} F$. Therefore $A \subseteq^{\varepsilon} F$, so A is totally bounded. Since X is complete (a Banach space) then A is relatively compact by Corollary 9.2.A.

Proposition 9.2. A bounded set A of a Banach space X is relatively compact if and only if for any $\varepsilon > 0$ there is a finite dimensional subspace Y of X with $A \subseteq^{\varepsilon} Y$.

Proof (continued). For the converse, suppose A is relatively compact. By Corollary 9.2.A, set A is totally bounded and so, by definition, for given $\varepsilon > 0$ there is finite set $F \subset X$ such that $A \subseteq^{\varepsilon} F$. Then Y = span(F) is finite dimensional and $A \subseteq^{\varepsilon} Y$.

Proposition 9.2. A bounded set A of a Banach space X is relatively compact if and only if for any $\varepsilon > 0$ there is a finite dimensional subspace Y of X with $A \subseteq^{\varepsilon} Y$.

Proof (continued). For the converse, suppose A is relatively compact. By Corollary 9.2.A, set A is totally bounded and so, by definition, for given $\varepsilon > 0$ there is finite set $F \subset X$ such that $A \subseteq^{\varepsilon} F$. Then Y = span(F) is finite dimensional and $A \subseteq^{\varepsilon} Y$.

Proposition 9.3. Let *S* be a set and B(S) the set of functions from *S* to field \mathbb{F} (where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) under the sup norm. Suppose that *A* is a bounded subset of B(E) satisfying the following: For any $\varepsilon > 0$, we can partition *S* into a finite number of pairwise disjoint subsets S_1, S_2, \ldots, S_n such that, given any *i*, any two points $s, t \in S_i$, and any $f \in A$, we have $|f(s) - f(t)| \le \varepsilon$. Then *A* is relatively compact (in B(S)).

Proof. First, B(S) is a Banach space by Theorem 2.14. Let $\varepsilon > 0$ be given and let the partition of S be S_1, S_2, \ldots, S_n . Let Y be the subspace of B(S) consisting of all functions that are constant on each S_i .

Proposition 9.3. Let *S* be a set and B(S) the set of functions from *S* to field \mathbb{F} (where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) under the sup norm. Suppose that *A* is a bounded subset of B(E) satisfying the following: For any $\varepsilon > 0$, we can partition *S* into a finite number of pairwise disjoint subsets S_1, S_2, \ldots, S_n such that, given any *i*, any two points $s, t \in S_i$, and any $f \in A$, we have $|f(s) - f(t)| \le \varepsilon$. Then *A* is relatively compact (in B(S)).

Proof. First, B(S) is a Banach space by Theorem 2.14. Let $\varepsilon > 0$ be given and let the partition of S be S_1, S_2, \ldots, S_n . Let Y be the subspace of B(S) consisting of all functions that are constant on each S_i . Then Y is finite dimensional with basis $\{1_{S_i} \mid i = 1, 2, \ldots, n\}$ (where 1_{S_i} is the constant function 1 on S_i and 0 elsewhere). For any $f \in A$, choose $s_i \in S_i$ for $i = 1, 2, \ldots, n$ and let g be the element of Y that takes the value $f(s_i)$ on S_i (so g is defined on all of S since the S_i form a partition of S).

Proposition 9.3. Let *S* be a set and B(S) the set of functions from *S* to field \mathbb{F} (where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) under the sup norm. Suppose that *A* is a bounded subset of B(E) satisfying the following: For any $\varepsilon > 0$, we can partition *S* into a finite number of pairwise disjoint subsets S_1, S_2, \ldots, S_n such that, given any *i*, any two points $s, t \in S_i$, and any $f \in A$, we have $|f(s) - f(t)| \le \varepsilon$. Then *A* is relatively compact (in B(S)).

Proof. First, B(S) is a Banach space by Theorem 2.14. Let $\varepsilon > 0$ be given and let the partition of S be S_1, S_2, \ldots, S_n . Let Y be the subspace of B(S) consisting of all functions that are constant on each S_i . Then Y is finite dimensional with basis $\{1_{S_i} \mid i = 1, 2, \ldots, n\}$ (where 1_{S_i} is the constant function 1 on S_i and 0 elsewhere). For any $f \in A$, choose $s_i \in S_i$ for $i = 1, 2, \ldots, n$ and let g be the element of Y that takes the value $f(s_i)$ on S_i (so g is defined on all of S since the S_i form a partition of S).

Proposition 9.3. Let *S* be a set and B(S) the set of functions from *S* to field \mathbb{F} (where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) under the sup norm. Suppose that *A* is a bounded subset of B(E) satisfying the following: For any $\varepsilon > 0$, we can partition *S* into a finite number of pairwise disjoint subsets S_1, S_2, \ldots, S_n such that, given any *i*, any two points $s, t \in S_i$, and any $f \in A$, we have $|f(s) - f(t)| \le \varepsilon$. Then *A* is relatively compact (in B(S)).

Proof (continued). For $t \in S_i$ we have

$$|f(s_i) - f(t)| = |g(s_i) - f(t)| = |g(t) - f(t)| \le \varepsilon$$

by hypothesis. So for any $t \in S$, $|g(t) - f(t)| \le \varepsilon$. Since $f \in A$ is arbitrary, we have shown that $A \subseteq^{\varepsilon} Y$. Since X = B(S) is a Banach space, Y is finite dimensional, and $A \subseteq^{\varepsilon} Y$ for any given $\varepsilon > 0$, then by Proposition 9.2 A is relatively compact (in X = B(S)).

Proposition 9.3. Let *S* be a set and B(S) the set of functions from *S* to field \mathbb{F} (where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) under the sup norm. Suppose that *A* is a bounded subset of B(E) satisfying the following: For any $\varepsilon > 0$, we can partition *S* into a finite number of pairwise disjoint subsets S_1, S_2, \ldots, S_n such that, given any *i*, any two points $s, t \in S_i$, and any $f \in A$, we have $|f(s) - f(t)| \le \varepsilon$. Then *A* is relatively compact (in B(S)).

Proof (continued). For $t \in S_i$ we have

$$|f(s_i)-f(t)|=|g(s_i)-f(t)|=|g(t)-f(t)|\leq \varepsilon$$

by hypothesis. So for any $t \in S$, $|g(t) - f(t)| \leq \varepsilon$. Since $f \in A$ is arbitrary, we have shown that $A \subseteq^{\varepsilon} Y$. Since X = B(S) is a Banach space, Y is finite dimensional, and $A \subseteq^{\varepsilon} Y$ for any given $\varepsilon > 0$, then by Proposition 9.2 A is relatively compact (in X = B(S)).

Theorem 9.5. Arzela-Ascoli Theorem.

If S is a compact metric space, a subset A of C(S) (the set of continuous real valued or complex valued functionals on S) is relatively compact if and only if it is bounded and equicontinuous.

Proof of the "if" part. Suppose $A \subset C(S)$ is bounded and equicontinuous. Since S is compact, then for any $f \in C(S)$ we have that f(S) is compact and so f(S) is bounded by the Compact Set Theorem (see the class notes for Section 2.2). So C(S) is a subspace of B(S).

Theorem 9.5. Arzela-Ascoli Theorem.

If S is a compact metric space, a subset A of C(S) (the set of continuous real valued or complex valued functionals on S) is relatively compact if and only if it is bounded and equicontinuous.

Proof of the "if" part. Suppose $A \subset C(S)$ is bounded and equicontinuous. Since S is compact, then for any $f \in C(S)$ we have that f(S) is compact and so f(S) is bounded by the Compact Set Theorem (see the class notes for Section 2.2). So C(S) is a subspace of B(S). We now use Proposition 9.3 to show that A is relatively compact. Let $\varepsilon > 0$. Then by the equicontinuity of set A, there is $\delta > 0$ such that $|s - t| < \delta$ implies that $|f(s) - f(t)| < \varepsilon$ for all $f \in A$.

Theorem 9.5. Arzela-Ascoli Theorem.

If S is a compact metric space, a subset A of C(S) (the set of continuous real valued or complex valued functionals on S) is relatively compact if and only if it is bounded and equicontinuous.

Proof of the "if" part. Suppose $A \subset C(S)$ is bounded and equicontinuous. Since S is compact, then for any $f \in C(S)$ we have that f(S) is compact and so f(S) is bounded by the Compact Set Theorem (see the class notes for Section 2.2). So C(S) is a subspace of B(S). We now use Proposition 9.3 to show that A is relatively compact. Let $\varepsilon > 0$. Then by the equicontinuity of set A, there is $\delta > 0$ such that $|s - t| < \delta$ implies that $|f(s) - f(t)| < \varepsilon$ for all $f \in A$. Since S is compact then it has a δ -net (cover S with all δ radius balls and then choose a finite subcover; the centers of the resulting finite number of balls form a δ -net), say $\{t_1, t_2, \ldots, t_n\}.$

Theorem 9.5. Arzela-Ascoli Theorem.

If S is a compact metric space, a subset A of C(S) (the set of continuous real valued or complex valued functionals on S) is relatively compact if and only if it is bounded and equicontinuous.

Proof of the "if" part. Suppose $A \subset C(S)$ is bounded and equicontinuous. Since S is compact, then for any $f \in C(S)$ we have that f(S) is compact and so f(S) is bounded by the Compact Set Theorem (see the class notes for Section 2.2). So C(S) is a subspace of B(S). We now use Proposition 9.3 to show that A is relatively compact. Let $\varepsilon > 0$. Then by the equicontinuity of set A, there is $\delta > 0$ such that $|s - t| < \delta$ implies that $|f(s) - f(t)| < \varepsilon$ for all $f \in A$. Since S is compact then it has a δ -net (cover S with all δ radius balls and then choose a finite subcover; the centers of the resulting finite number of balls form a δ -net), say $\{t_1, t_2, \ldots, t_n\}.$

Theorem 9.5. Arzela-Ascoli Theorem (continued)

Theorem 9.5. Arzela-Ascoli Theorem.

If S is a compact metric space, a subset A of C(S) (the set of continuous real valued or complex valued functionals on S) is relatively compact if and only if it is bounded and equicontinuous.

Proof of the "if" part (continued). Then partition *S* as follows: Let $S_1 = \{s \in S \mid d(x, t_1) < \delta\}$ and define inductively

$$S_k = s \in S \mid s
ot \in \cup_{i=1}^{k-1} S_i \text{ and } d(s, t_k) < \delta \}.$$

Since the t_i 's form a δ -net for S, the union of all the sets S_i equals S. By construction, the S_i 's are pairwise disjoint, and so partition S. So the hypothesies of Proposition 9.3 are satisfied and hence A is relatively compact.

Theorem 9.5. Arzela-Ascoli Theorem (continued)

Theorem 9.5. Arzela-Ascoli Theorem.

If S is a compact metric space, a subset A of C(S) (the set of continuous real valued or complex valued functionals on S) is relatively compact if and only if it is bounded and equicontinuous.

Proof of the "if" part (continued). Then partition *S* as follows: Let $S_1 = \{s \in S \mid d(x, t_1) < \delta\}$ and define inductively

$$S_k = s \in S \mid s
ot \in \cup_{i=1}^{k-1} S_i \text{ and } d(s, t_k) < \delta \}.$$

Since the t_i 's form a δ -net for S, the union of all the sets S_i equals S. By construction, the S_i 's are pairwise disjoint, and so partition S. So the hypothesies of Proposition 9.3 are satisfied and hence A is relatively compact.

Theorem 9.6. Let A be a bounded subset of ℓ^p that has uniformly small tails. That is, for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $f \in A$, $\sum_{i=N}^{\infty} |f(i)|^p < \varepsilon$. Then A is relatively compact.

Proof. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $\sum_{i=N}^{\infty} |f(i)| < \varepsilon^{p}$.

Theorem 9.6. Let A be a bounded subset of ℓ^p that has uniformly small tails. That is, for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $f \in A$, $\sum_{i=N}^{\infty} |f(i)|^p < \varepsilon$. Then A is relatively compact.

Proof. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $\sum_{i=N}^{\infty} |f(i)| < \varepsilon^{p}$. Let Y be the set of all f such that f(k) = 0 for $k \ge N$. Then, since N is now fixed, Y is a finite dimensional subspace with basis $\{\delta_i \mid i = 1, 2, \dots, N-1\}$ (where δ_i is the *i*the standard basis vector). For any $f \in A$, consider $f' \in Y$ such that f' agrees with f on integers less than N (that is, f(i) = f'(i) for $i = 1, 2, \dots, N-1$).

Theorem 9.6. Let A be a bounded subset of ℓ^p that has uniformly small tails. That is, for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $f \in A$, $\sum_{i=N}^{\infty} |f(i)|^p < \varepsilon$. Then A is relatively compact.

Proof. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $\sum_{i=N}^{\infty} |f(i)| < \varepsilon^p$. Let Y be the set of all f such that f(k) = 0 for $k \ge N$. Then, since N is now fixed, Y is a finite dimensional subspace with basis $\{\delta_i \mid i = 1, 2, \dots, N-1\}$ (where δ_i is the *i*the standard basis vector). For any $f \in A$, consider $f' \in Y$ such that f' agrees with f on integers less than N (that is, f(i) = f'(i) for $i = 1, 2, \dots, N-1$). Then f - f' consists of N - 1 0's followed by the "tail" of f. So

$$||f - f'||_p = \left\{\sum_{i=N}^{\infty} |f(i)|^p\right\}^{1/p} < \varepsilon^{p1/p} = \varepsilon.$$

Theorem 9.6. Let A be a bounded subset of ℓ^p that has uniformly small tails. That is, for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $f \in A$, $\sum_{i=N}^{\infty} |f(i)|^p < \varepsilon$. Then A is relatively compact.

Proof. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $\sum_{i=N}^{\infty} |f(i)| < \varepsilon^p$. Let Y be the set of all f such that f(k) = 0 for $k \ge N$. Then, since N is now fixed, Y is a finite dimensional subspace with basis $\{\delta_i \mid i = 1, 2, \dots, N-1\}$ (where δ_i is the *i*the standard basis vector). For any $f \in A$, consider $f' \in Y$ such that f' agrees with f on integers less than N (that is, f(i) = f'(i) for $i = 1, 2, \dots, N-1$). Then f - f' consists of N - 1 0's followed by the "tail" of f. So

$$\|f-f'\|_p = \left\{\sum_{i=N}^{\infty} |f(i)|^p\right\}^{1/p} < \varepsilon^{p1/p} = \varepsilon.$$

Therefore $A \subseteq^{\varepsilon} Y$. By Proposition 9.2, A is relatively compact.

Theorem 9.6. Let A be a bounded subset of ℓ^p that has uniformly small tails. That is, for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $f \in A$, $\sum_{i=N}^{\infty} |f(i)|^p < \varepsilon$. Then A is relatively compact.

Proof. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $\sum_{i=N}^{\infty} |f(i)| < \varepsilon^p$. Let Y be the set of all f such that f(k) = 0 for $k \ge N$. Then, since N is now fixed, Y is a finite dimensional subspace with basis $\{\delta_i \mid i = 1, 2, \dots, N-1\}$ (where δ_i is the *i*the standard basis vector). For any $f \in A$, consider $f' \in Y$ such that f' agrees with f on integers less than N (that is, f(i) = f'(i) for $i = 1, 2, \dots, N-1$). Then f - f' consists of N - 1 0's followed by the "tail" of f. So

$$\|f-f'\|_p = \left\{\sum_{i=N}^{\infty} |f(i)|^p\right\}^{1/p} < \varepsilon^{p1/p} = \varepsilon.$$

Therefore $A \subseteq^{\varepsilon} Y$. By Proposition 9.2, A is relatively compact.

Theorem 9.7. The multiplication operator M_f on ℓ^p is compact if and only if $f(n) \rightarrow 0$.

Proof. Recall that the multiplication operator M_f for $f \in \ell^p$ is defined as $M_f(g) = (f(n)g(n))_{n=1}^{\infty}$. Suppose $f(n) \to 0$. Let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that $|f(n)| < \varepsilon^{1/p}$ for $n \ge N$.

Theorem 9.7. The multiplication operator M_f on ℓ^p is compact if and only if $f(n) \rightarrow 0$.

Proof. Recall that the multiplication operator M_f for $f \in \ell^p$ is defined as $M_f(g) = (f(n)g(n))_{n=1}^{\infty}$. Suppose $f(n) \to 0$. Let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that $|f(n)| < \varepsilon^{1/p}$ for $n \ge N$. Let $g \in B(1) = \{g \in \ell^p \mid ||g|| < 1\}$. Then

$$\sum_{i=N}^{\infty} |f(i)g(i)|^p = \sum_{i=N}^{\infty} |f(i)|^p |g(i)|^p \le \varepsilon \sum_{i=N}^{\infty} |g(i)|^p \le \varepsilon ||g||_p^p < \varepsilon.$$

So the set $M_f(B(1))$ has uniformly small tails.

Theorem 9.7. The multiplication operator M_f on ℓ^p is compact if and only if $f(n) \rightarrow 0$.

Proof. Recall that the multiplication operator M_f for $f \in \ell^p$ is defined as $M_f(g) = (f(n)g(n))_{n=1}^{\infty}$. Suppose $f(n) \to 0$. Let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that $|f(n)| < \varepsilon^{1/p}$ for $n \ge N$. Let $g \in B(1) = \{g \in \ell^p \mid ||g|| < 1\}$. Then

$$\sum_{i=N}^{\infty} |f(i)g(i)|^p = \sum_{i=N}^{\infty} |f(i)|^p |g(i)|^p \le \varepsilon \sum_{i=N}^{\infty} |g(i)|^p \le \varepsilon ||g||_p^p < \varepsilon.$$

So the set $M_f(B(1))$ has uniformly small tails. By Proposition 9.6, $M_f(B(1))$ is relatively compact. Hence (by definition and the observation in the previous notes) M_f is a compact operator.

Theorem 9.7. The multiplication operator M_f on ℓ^p is compact if and only if $f(n) \rightarrow 0$.

Proof. Recall that the multiplication operator M_f for $f \in \ell^p$ is defined as $M_f(g) = (f(n)g(n))_{n=1}^{\infty}$. Suppose $f(n) \to 0$. Let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that $|f(n)| < \varepsilon^{1/p}$ for $n \ge N$. Let $g \in B(1) = \{g \in \ell^p \mid ||g|| < 1\}$. Then

$$\sum_{i=N}^{\infty} |f(i)g(i)|^p = \sum_{i=N}^{\infty} |f(i)|^p |g(i)|^p \le \varepsilon \sum_{i=N}^{\infty} |g(i)|^p \le \varepsilon ||g||_p^p < \varepsilon.$$

So the set $M_f(B(1))$ has uniformly small tails. By Proposition 9.6, $M_f(B(1))$ is relatively compact. Hence (by definition and the observation in the previous notes) M_f is a compact operator.

Theorem 9.7 (continued)

Proof (continued). We consider the contrapositive of the converse. Suppose f(n) does not converge to 0. Then there is $\varepsilon_0 > 0$ and an infinite set $J \in \mathbb{N}$ such that $|f(n)| \ge \varepsilon_0$ for all $n \in J$. Now B(1) is the open unit ball in ℓ^p , so each standard basis vector S_i satisfies $\delta_i/2 \in B(1)$. So $M_f(\delta_i/2) \in M_f(B(1))$ and hence $M_f(B(1))$ contains the points $(|f(n)|/2)\delta_n$ for all $n \in J$. But the ℓ^p distance between any two such points satisfies

$$\|(f(n)/2)\delta_n - (f(m)/2)\delta_m\|_p = \{|f(n)/2|^p + |f(m)/2|^p\}^{1/p}$$

$$\geq (\varepsilon_0^p/2^p + \varepsilon_0^p/2^p)^{1/p} = 2^{1/p-1}\varepsilon > \varepsilon/2.$$

That is, $M_f(B(1))$ contains an infinite set of points, any pair of which are a distance of at least $\varepsilon_0/2$ apart.

Theorem 9.7 (continued)

Proof (continued). We consider the contrapositive of the converse. Suppose f(n) does not converge to 0. Then there is $\varepsilon_0 > 0$ and an infinite set $J \in \mathbb{N}$ such that $|f(n)| \ge \varepsilon_0$ for all $n \in J$. Now B(1) is the open unit ball in ℓ^p , so each standard basis vector S_i satisfies $\delta_i/2 \in B(1)$. So $M_f(\delta_i/2) \in M_f(B(1))$ and hence $M_f(B(1))$ contains the points $(|f(n)|/2)\delta_n$ for all $n \in J$. But the ℓ^p distance between any two such points satisfies

$$\|(f(n)/2)\delta_n - (f(m)/2)\delta_m\|_p = \{|f(n)/2|^p + |f(m)/2|^p\}^{1/p}$$

$$\geq (\varepsilon_0^p/2^p + \varepsilon_0^p/2^p)^{1/p} = 2^{1/p-1}\varepsilon > \varepsilon/2.$$

That is, $M_f(B(1))$ contains an infinite set of points, any pair of which are a distance of at least $\varepsilon_0/2$ apart. Treating this infinite set as a sequence (namely, $((f(n)/2)\delta_n)_{n\in J})$ it has no Cauchy subsequence, so by Proposition 9.2 $M_f(B(1))$ is not totally bounded. Hence (by definition and the observation in the previous not) M_f is not a compact operator.

Theorem 9.7 (continued)

Proof (continued). We consider the contrapositive of the converse. Suppose f(n) does not converge to 0. Then there is $\varepsilon_0 > 0$ and an infinite set $J \in \mathbb{N}$ such that $|f(n)| \ge \varepsilon_0$ for all $n \in J$. Now B(1) is the open unit ball in ℓ^p , so each standard basis vector S_i satisfies $\delta_i/2 \in B(1)$. So $M_f(\delta_i/2) \in M_f(B(1))$ and hence $M_f(B(1))$ contains the points $(|f(n)|/2)\delta_n$ for all $n \in J$. But the ℓ^p distance between any two such points satisfies

$$\|(f(n)/2)\delta_n - (f(m)/2)\delta_m\|_p = \{|f(n)/2|^p + |f(m)/2|^p\}^{1/p}$$

$$\geq (\varepsilon_0^p/2^p + \varepsilon_0^p/2^p)^{1/p} = 2^{1/p-1}\varepsilon > \varepsilon/2.$$

That is, $M_f(B(1))$ contains an infinite set of points, any pair of which are a distance of at least $\varepsilon_0/2$ apart. Treating this infinite set as a sequence (namely, $((f(n)/2)\delta_n)_{n\in J})$ it has no Cauchy subsequence, so by Proposition 9.2 $M_f(B(1))$ is not totally bounded. Hence (by definition and the observation in the previous not) M_f is not a compact operator.

()

Theorem 9.9. The operator K given in Example 9.8 if compact.

Proof. Since K is bounded then the set K(B(1)) is bounded. We now show that K(B(1)) is equicontinuous.

Theorem 9.9. The operator K given in Example 9.8 if compact.

Proof. Since K is bounded then the set K(B(1)) is bounded. We now show that K(B(1)) is equicontinuous. Since k is continuous and the closed unit square is compact, then k is uniformly continuous. So for give $\varepsilon > 0$ there is $\delta > 0$ such that if $|s_1 - s_2| < \delta$, where $s_1, s_2 \in [0, 1]$, then $|k(s_1, t) - k(s_2, t)| < \varepsilon$ for all $t \in [0, 1]$.

Theorem 9.9. The operator K given in Example 9.8 if compact.

Proof. Since K is bounded then the set K(B(1)) is bounded. We now show that K(B(1)) is equicontinuous. Since k is continuous and the closed unit square is compact, then k is uniformly continuous. So for give $\varepsilon > 0$ there is $\delta > 0$ such that if $|s_1 - s_2| < \delta$, where $s_1, s_2 \in [0, 1]$, then $|k(s_1, t) - k(s_2, t)| < \varepsilon$ for all $t \in [0, 1]$. So for all $f \in B(1)$, if $|s_1 - s_2| < \delta$ then

$$|\mathcal{K}(f(s_1)) - \mathcal{K}(f(s_2))| \leq \int_0^1 |k(s_1,t) - k(s_2,t)| |f(t)| \, dt \leq \varepsilon \int_0^1 |f(t)| \, dt < \varepsilon$$

(since $f \in B(1)$). Therefore the set K(B(1)) is equicontinuous.

Theorem 9.9. The operator K given in Example 9.8 if compact.

Proof. Since K is bounded then the set K(B(1)) is bounded. We now show that K(B(1)) is equicontinuous. Since k is continuous and the closed unit square is compact, then k is uniformly continuous. So for give $\varepsilon > 0$ there is $\delta > 0$ such that if $|s_1 - s_2| < \delta$, where $s_1, s_2 \in [0, 1]$, then $|k(s_1, t) - k(s_2, t)| < \varepsilon$ for all $t \in [0, 1]$. So for all $f \in B(1)$, if $|s_1 - s_2| < \delta$ then

$$|\mathcal{K}(f(s_1))-\mathcal{K}(f(s_2))|\leq \int_0^1|k(s_1,t)-k(s_2,t)||f(t)|\,dt\leq arepsilon\int_0^1|f(t)|\,dt$$

(since $f \in B(1)$). Therefore the set K(B(1)) is equicontinuous. By the Azrela-Ascoli Theorem (Theorem 9.5), $M_f(B(1))$ is relatively compact. Hence (by definition and the observation in the note above) M_f is a compact operator.

- ()

Theorem 9.9. The operator K given in Example 9.8 if compact.

Proof. Since K is bounded then the set K(B(1)) is bounded. We now show that K(B(1)) is equicontinuous. Since k is continuous and the closed unit square is compact, then k is uniformly continuous. So for give $\varepsilon > 0$ there is $\delta > 0$ such that if $|s_1 - s_2| < \delta$, where $s_1, s_2 \in [0, 1]$, then $|k(s_1, t) - k(s_2, t)| < \varepsilon$ for all $t \in [0, 1]$. So for all $f \in B(1)$, if $|s_1 - s_2| < \delta$ then

$$|\mathcal{K}(f(s_1))-\mathcal{K}(f(s_2))|\leq \int_0^1|k(s_1,t)-k(s_2,t)||f(t)|\,dt\leq arepsilon\int_0^1|f(t)|\,dt$$

(since $f \in B(1)$). Therefore the set K(B(1)) is equicontinuous. By the Azrela-Ascoli Theorem (Theorem 9.5), $M_f(B(1))$ is relatively compact. Hence (by definition and the observation in the note above) M_f is a compact operator.