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Proposition 9.1

Proposition 9.1

Proposition 9.1. Set A in a metric space is totally bounded if and only if
any sequence (an) of points in A has a Cauchy subsequence.

Proof. First, suppose that (an) is a sequence in totally bounded set A.
Notice that for any given ε > 0, there is a ε/2-net F for A since A is
totally bounded.

Since F contains only finitely many points but the
sequence (an) contains infinitely many (not necessarily distinct) terms,
then from some y ∈ F we must have that d(an, y) ≤ ε/2 for infinitely
many a)n. These an form a subsequence of (an) in which any two terms
are within ε of each other.

With ε1 = 1, create subsequence (a1
n) of (an) as described in the previous

paragraph. Then iterate this process creating sequence (ak+1
n ) a

subsequence of ak
n) using ε = 1/(k + 1) (so for each k ∈ N, all terms in

(ak+1
n ) are within ε = 1/k of each other). Now define sequence (an

n) and
let ε > 0. Then there is N ∈ N with 1/N < ε.
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Proposition 9.1

Proposition 9.1 (continued)

Proof (continued). The tail of the sequence (an
n)
∞
n=N is a subsequence of

(aN
n ) and so the terms of the tail are within 1/N < ε of each other. That

is, for all n,m ≥ N we have ‖an
n − am

m‖ ≤ 1/N < ε and (an
n) is a Cauchy

subsequence of (an).

We prove the contrapositive of the converse. Suppose A is not totally
bounded. Then for some ε0 > 0 such that no ε0-net for A exists.

Let
a1 ∈ A. Choose a2 ∈ A with d(a1, a2) > ε0 (which can be done since
F = {a1} is not a ε0-net). Suppose a1, a2, . . . , ak have been chosen in A
where any two of these points are a distance more than ε0 apart. Since
F = {11, 12, . . . , ak} is not a ε0-net for A then there is ak+1 ∈ A such that
d(ai , ak+1) > ε0 for i = 1, 2, . . . , k. So in the resulting sequence (ak), any
pair of terms are a distance of at least ε0 apart. So (ak) has no Cauchy
subsequence. That is, if A is not totally bounded then there is a sequence
of points in A with no Cauchy subsequence.
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Proposition 9.2

Proposition 9.2

Proposition 9.2. A bounded set A of a Banach space X is relatively
compact if and only if for any ε > 0 there is a finite dimensional subspace
Y of X with A ⊆ε Y .

Proof. Suppose A has the finite dimensional subspace property. Given
ε > 0, choose a finite dimensional subspace Y such that A ⊆ε/2 Y . For
each a ∈ A choose a′ ∈ Y such that ‖a− a′‖ ≤ ε/2. The set A′ consisting
of all such a′ is bounded since diam(A′) ≤ diam(A) + ε. Notice that, by
construction, A ⊆ε/2 A′.

Since Y is finite dimensional, then it is closed by
Theorem 2.31(c). So A

′ ⊂ Y . Now A
′
is a closed and bounded set in

finite dimensional linear space Y , so by the Heine Borel Theorem, A
′
is

compact. So set A′ is relatively compact in Y . So A′ is totally bounded,
by Corollary 9.2.A, and there is a finite set F ⊂ Y where A′ ⊆ε/2 F .
Therefore A ⊆ε F , so A is totally bounded. Since X is complete (a
Banach space) then A is relatively compact by Corollary 9.2.A.
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Proposition 9.2

Proposition 9.2 (continued)

Proposition 9.2. A bounded set A of a Banach space X is relatively
compact if and only if for any ε > 0 there is a finite dimensional subspace
Y of X with A ⊆ε Y .

Proof (continued). For the converse, suppose A is relatively compact.
By Corollary 9.2.A, set A is totally bounded and so, by definition, for given
ε > 0 there is finite set F ⊂ X such that A ⊆ε F . Then Y = span(F ) is
finite dimensional and A ⊆ε Y .
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Proposition 9.3

Proposition 9.3

Proposition 9.3. Let S be a set and B(S) the set of functions from S to
field F (where F = R or F = C) under the sup norm. Suppose that A is a
bounded subset of B(E ) satisfying the following: For any ε > 0, we can
partition S into a finite number of pairwise disjoint subsets S1,S2, . . . ,Sn

such that, given any i , any two points s, t ∈ Si , and any f ∈ A, we have
|f (s)− f (t)| ≤ ε. Then A is relatively compact (in B(S)).

Proof. First, B(S) is a Banach space by Theorem 2.14. Let ε > 0 be
given and let the partition of S be S1,S2, . . . ,Sn. Let Y be the subspace
of B(S) consisting of all functions that are constant on each Si .

Then Y
is finite dimensional with basis {1Si

| i = 1, 2, . . . , n} (where 1Si
is the

constant function 1 on Si and 0 elsewhere). For any f ∈ A, choose si ∈ Si

for i = 1, 2, . . . , n and let g be the element of Y that takes the value f (si )
on Si (so g is defined on all of S since the Si form a partition of S).
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Proposition 9.3

Proposition 9.3 (continued)

Proposition 9.3. Let S be a set and B(S) the set of functions from S to
field F (where F = R or F = C) under the sup norm. Suppose that A is a
bounded subset of B(E ) satisfying the following: For any ε > 0, we can
partition S into a finite number of pairwise disjoint subsets S1,S2, . . . ,Sn

such that, given any i , any two points s, t ∈ Si , and any f ∈ A, we have
|f (s)− f (t)| ≤ ε. Then A is relatively compact (in B(S)).

Proof (continued). For t ∈ Si we have

|f (si )− f (t)| = |g(si )− f (t)| = |g(t)− f (t)| ≤ ε

by hypothesis. So for any t ∈ S , |g(t)− f (t)| ≤ ε. Since f ∈ A is
arbitrary, we have shown that A ⊆ε Y . Since X = B(S) is a Banach
space, Y is finite dimensional, and A ⊆ε Y for any given ε > 0, then by
Proposition 9.2 A is relatively compact (in X = B(S)).
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Theorem 9.5. Arzela-Ascoli Theorem

Theorem 9.5. Arzela-Ascoli Theorem

Theorem 9.5. Arzela-Ascoli Theorem.
If S is a compact metric space, a subset A of C (S) (the set of continuous
real valued or complex valued functionals on S) is relatively compact if
and only if it is bounded and equicontinuous.

Proof of the “if” part. Suppose A ⊂ C (S) is bounded and
equicontinuous. Since S is compact, then for any f ∈ C (S) we have that
f (S) is compact and so f (S) is bounded by the Compact Set Theorem
(see the class notes for Section 2.2). So C (S) is a subspace of B(S).

We
now use Proposition 9.3 to show that A is relatively compact. Let ε > 0.
Then by the equicontinuity of set A, there is δ > 0 such that |s − t| < δ
implies that |f (s)− f (t)| < ε for all f ∈ A. Since S is compact then it has
a δ-net (cover S with all δ radius balls and then choose a finite subcover;
the centers of the resulting finite number of balls form a δ-net), say
{t1, t2, . . . , tn}.
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Theorem 9.5. Arzela-Ascoli Theorem

Theorem 9.5. Arzela-Ascoli Theorem (continued)

Theorem 9.5. Arzela-Ascoli Theorem.
If S is a compact metric space, a subset A of C (S) (the set of continuous
real valued or complex valued functionals on S) is relatively compact if
and only if it is bounded and equicontinuous.

Proof of the “if” part (continued). Then partition S as follows: Let
S1 = {s ∈ S | d(x , t1) < δ} and define inductively

Sk = s ∈ S | s 6∈ ∪k−1
i=1 Si and d(s, tk) < δ}.

Since the ti ’s form a δ-net for S , the union of all the sets Si equals S . By
construction, the Si ’s are pairwise disjoint, and so partition S . So the
hypothesies of Proposition 9.3 are satisfied and hence A is relatively
compact.
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Theorem 9.6

Theorem 9.6

Theorem 9.6. Let A be a bounded subset of `p that has uniformly small
tails. That is, for any ε > 0 there exists N ∈ N such that for all f ∈ A,∑∞

i=N |f (i)|p < ε. Then A is relatively compact.

Proof. Let ε > 0. Choose N ∈ N such that
∑∞

i=N |f (i)| < εp.

Let Y be
the set of all f such that f (k) = 0 for k ≥ N. Then, since N is now fixed,
Y is a finite dimensional subspace with basis {δi | i = 1, 2, . . . ,N − 1}
(where δi is the ithe standard basis vector). For any f ∈ A, consider
f ′ ∈ Y such that f ′ agrees with f on integers less than N (that is,
f (i) = f ′(i) for i = 1, 2, . . . ,N − 1). Then f − f ′ consists of N − 1 0’s
followed by the “tail” of f . So

‖f − f ′‖p =

{ ∞∑
i=N

|f (i)|p
}1/p

< εp1/p = ε.

Therefore A ⊆ε Y . By Proposition 9.2, A is relatively compact.
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Theorem 9.7

Theorem 9.7

Theorem 9.7. The multiplication operator Mf on `p is compact if and
only if f (n) → 0.

Proof. Recall that the multiplication operator Mf for f ∈ `p is defined as
Mf (g) = (f (n)g(n))∞n=1. Suppose f (n) → 0. Let ε > 0. Then there is
N ∈ N such that |f (n)| < ε1/p for n ≥ N.

Let
g ∈ B(1) = {g ∈ `p | ‖g‖ < 1}. Then

∞∑
i=N

|f (i)g(i)|p =
∞∑

i=N

|f (i)|p|g(i)|p ≤ ε

∞∑
i=N

|g(i)|p ≤ ε‖g‖p
p < ε.

So the set Mf (B(1)) has uniformly small tails. By Proposition 9.6,
Mf (B(1)) is relatively compact. Hence (by definition and the observation
in the previous notes) Mf is a compact operator.
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Theorem 9.7

Theorem 9.7 (continued)

Proof (continued). We consider the contrapositive of the converse.
Suppose f (n) does not converge to 0. Then there is ε0 > 0 and an infinite
set J ∈ N such that |f (n)| ≥ ε0 for all n ∈ J. Now B(1) is the open unit
ball in `p, so each standard basis vector Si satisfies δi/2 ∈ B(1). So
Mf (δi/2) ∈ Mf (B(1)) and hence Mf (B(1)) contains the points
(|f (n)|/2)δn for all n ∈ J. But the `p distance between any two such
points satisfies

‖(f (n)/2)δn − (f (m)/2)δm‖p = {|f (n)/2|p + |f (m)/2|p}1/p

≥ (εp
0/2p + εp

0/2p)1/p = 21/p−1ε > ε/2.

That is, Mf (B(1)) contains an infinite set of points, any pair of which are
a distance of at least ε0/2 apart.

Treating this infinite set as a sequence
(namely, ((f (n)/2)δn)n∈J) it has no Cauchy subsequence, so by
Proposition 9.2 Mf (B(1)) is not totally bounded. Hence (by definition and
the observation in the previous not) Mf is not a compact operator.
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Theorem 9.9

Theorem 9.9

Theorem 9.9. The operator K given in Example 9.8 if compact.

Proof. Since K is bounded then the set K (B(1)) is bounded. We now
show that K (B(1)) is equicontinuous.

Since k is continuous and the
closed unit square is compact, then k is uniformly continuous. So for give
ε > 0 there is δ > 0 such that if |s1 − s2| < δ, where s1, s2 ∈ [0, 1], then
|k(s1, t)− k(s2, t)| < ε for all t ∈ [0, 1]. So for all f ∈ B(1), if
|s1 − s2| < δ then

|K (f (s1))−K (f (s2))| ≤
∫ 1

0
|k(s1, t)−k(s2, t)||f (t)| dt ≤ ε

∫ 1

0
|f (t)| dt < ε

(since f ∈ B(1)). Therefore the set K (B(1)) is equicontinuous. By the
Azrela-Ascoli Theorem (Theorem 9.5), Mf (B(1)) is relatively compact.
Hence (by definition and the observation in the note above) Mf is a
compact operator.
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