# Introduction to Functional Analysis

#### **Chapter 9. Compact Operators** 9.3. New Compact Operators from Old—Proofs of Theorems



#### 1 Proposition 9.10. Compactness and Algebraic Properties

#### 2 Proposition 9.11. Compactness and Limits

3 Proposition 9.12. Compactness and Adjoints

#### Proposition 9.10. Compactness and Algebraic Properties.

Suppose we are given normed linear spaces X, Y, and Z, a scalar  $\alpha$ , operators  $S, T \in \mathcal{B}(X, Y)$ , and  $A \in \mathcal{B}(Y, Z)$ . We have:

- (a) If T is compact, then so is  $\alpha T$ .
- (b) If S and T are compact, then so is S + T.
- (c) If T is compact, then so is  $A \circ T = AT$ .
- (d) If A is compact, then so is  $A \circ T = AT$ .

**Proof.** (a) Multiplying a subset by a scalar preserves relative compactness. So if T(B(1)) is relatively compact then so is  $\alpha T(B(1))$  and the compactness of T implies the compactness of  $\alpha T$ .

#### Proposition 9.10. Compactness and Algebraic Properties.

Suppose we are given normed linear spaces X, Y, and Z, a scalar  $\alpha$ , operators  $S, T \in \mathcal{B}(X, Y)$ , and  $A \in \mathcal{B}(Y, Z)$ . We have:

- (a) If T is compact, then so is  $\alpha T$ .
- (b) If S and T are compact, then so is S + T.
- (c) If T is compact, then so is  $A \circ T = AT$ .

(d) If A is compact, then so is  $A \circ T = AT$ .

**Proof.** (a) Multiplying a subset by a scalar preserves relative compactness. So if T(B(1)) is relatively compact then so is  $\alpha T(B(1))$  and the compactness of T implies the compactness of  $\alpha T$ .

(b) If T is a compact operator, then by the definition of "compact operator," for any sequence  $(x_n)$  in B(1), the sequence  $(T(x_n)$  has a convergent subsequence, say  $(x'_n)$  in B(1). Similarly, the sequence  $(S(x'_n))$  has a convergent subsequence  $x''_n$ . So the sequence  $((S + T)(x''_n)$  converges and by the definition of "compact operator," S + T is compact.

#### Proposition 9.10. Compactness and Algebraic Properties.

Suppose we are given normed linear spaces X, Y, and Z, a scalar  $\alpha$ , operators  $S, T \in \mathcal{B}(X, Y)$ , and  $A \in \mathcal{B}(Y, Z)$ . We have:

- (a) If T is compact, then so is  $\alpha T$ .
- (b) If S and T are compact, then so is S + T.
- (c) If T is compact, then so is  $A \circ T = AT$ .

(d) If A is compact, then so is  $A \circ T = AT$ .

**Proof.** (a) Multiplying a subset by a scalar preserves relative compactness. So if T(B(1)) is relatively compact then so is  $\alpha T(B(1))$  and the compactness of T implies the compactness of  $\alpha T$ .

(b) If T is a compact operator, then by the definition of "compact operator," for any sequence  $(x_n)$  in B(1), the sequence  $(T(x_n)$  has a convergent subsequence, say  $(x'_n)$  in B(1). Similarly, the sequence  $(S(x'_n))$  has a convergent subsequence  $x''_n$ . So the sequence  $((S + T)(x''_n)$  converges and by the definition of "compact operator," S + T is compact.

### Proposition 9.10 (continued)

**Proposition 9.10. Compactness and Algebraic Properties.** Suppose we are given normed linear spaces X, Y, and Z, a scalar  $\alpha$ , operators S,  $T \in \mathcal{B}(X, Y)$ , and  $A \in \mathcal{B}(Y, Z)$ . We have:

(a) If T is compact, then so is  $\alpha T$ .

(b) If S and T are compact, then so is S + T.

(c) If T is compact, then so is  $A \circ T = AT$ .

(d) If A is compact, then so is  $A \circ T = AT$ .

**Proof (continued).** (c) If T is a compact operator, then by the definition of "compact operator," for any sequence  $(x_0)$  in B(1), the sequence  $(T(x_n))$  has a convergent subsequence, say  $(T(x'_n))$ . Since A is continuous then  $((S \circ T)(x'_n)) = (ST(x'_n))$  converges. So ST is compact.

(d) Since T is bounded, then T(B(1)) is bounded. Since A is compact, then by the definition of "compact operator," A(T(B(1))) is relatively compact. So (again, by definition)  $A \circ T = AT$  is compact.

### Proposition 9.10 (continued)

**Proposition 9.10. Compactness and Algebraic Properties.** Suppose we are given normed linear spaces X, Y, and Z, a scalar  $\alpha$ , operators S,  $T \in \mathcal{B}(X, Y)$ , and  $A \in \mathcal{B}(Y, Z)$ . We have:

(a) If T is compact, then so is  $\alpha T$ .

(b) If S and T are compact, then so is S + T.

(c) If T is compact, then so is  $A \circ T = AT$ .

(d) If A is compact, then so is  $A \circ T = AT$ .

**Proof (continued).** (c) If T is a compact operator, then by the definition of "compact operator," for any sequence  $(x_0)$  in B(1), the sequence  $(T(x_n))$  has a convergent subsequence, say  $(T(x'_n))$ . Since A is continuous then  $((S \circ T)(x'_n)) = (ST(x'_n))$  converges. So ST is compact.

(d) Since T is bounded, then T(B(1)) is bounded. Since A is compact, then by the definition of "compact operator," A(T(B(1))) is relatively compact. So (again, by definition)  $A \circ T = AT$  is compact.

# **Proposition 9.11. Compactness and Limits.** If $T = \lim T_n$ , in which $(T_n)$ is a sequence of compact operators in $\mathcal{B}(X, Y)$ , then T is compact.

**Proof.** Let  $\varepsilon > 0$ . Choose  $N \in \mathbb{N}$  such that  $||T - T_N|| < \varepsilon/2$ . Since  $T_N$  is a compact operator, then (by the definition and the note on page 187) T(B(1)) is relatively compact. So by Proposition 9.2 there is finite dimensional  $Y \subset Z$  such that  $Y_N(B(1)) \subseteq^{\varepsilon/2} Y$ .

#### Proposition 9.11. Compactness and Limits.

If  $T = \lim T_n$ , in which  $(T_n)$  is a sequence of compact operators in  $\mathcal{B}(X, Y)$ , then T is compact.

**Proof.** Let  $\varepsilon > 0$ . Choose  $N \in \mathbb{N}$  such that  $||T - T_N|| < \varepsilon/2$ . Since  $T_N$  is a compact operator, then (by the definition and the note on page 187) T(B(1)) is relatively compact. So by Proposition 9.2 there is finite dimensional  $Y \subset Z$  such that  $Y_N(B(1)) \subseteq^{\varepsilon/2} Y$ . Now for any  $x \in B(1)$ ,  $||T(x) - T_N(x)||_Z = ||(T - T_N)(x)||_Z \le ||T - T_N|| ||x||_X < \varepsilon/2$ , so  $T(B(1)) \subseteq^{\varepsilon/2} T_N(B(1))$ . Therefore,  $T(B(1)) \subseteq^{\varepsilon} Y$ , so T(B(1)) is relatively compact by Proposition 9.2. That is, T is (by definition and page 187) compact.

#### Proposition 9.11. Compactness and Limits.

If  $T = \lim T_n$ , in which  $(T_n)$  is a sequence of compact operators in  $\mathcal{B}(X, Y)$ , then T is compact.

**Proof.** Let  $\varepsilon > 0$ . Choose  $N \in \mathbb{N}$  such that  $||T - T_N|| < \varepsilon/2$ . Since  $T_N$  is a compact operator, then (by the definition and the note on page 187) T(B(1)) is relatively compact. So by Proposition 9.2 there is finite dimensional  $Y \subset Z$  such that  $Y_N(B(1)) \subseteq^{\varepsilon/2} Y$ . Now for any  $x \in B(1)$ ,  $||T(x) - T_N(x)||_Z = ||(T - T_N)(x)||_Z \le ||T - T_N|| ||x||_X < \varepsilon/2$ , so  $T(B(1)) \subseteq^{\varepsilon/2} T_N(B(1))$ . Therefore,  $T(B(1)) \subseteq^{\varepsilon} Y$ , so T(B(1)) is relatively compact by Proposition 9.2. That is, T is (by definition and page 187) compact.

#### Proposition 9.12. Compactness and Adjoints.

Let  $T \in \mathcal{B}(X, Y)$ . If T is compact, then its adjoint  $T^*$  is compact. If Y is complete, then compactness of  $T^*$  implies that of T.

**Proof.** Suppose T is compact. Let  $(g_n)$  be a sequence in  $B^*(1)$  (the unit ball of  $Y^*$ ). Now  $B^*(1)$  is a set of bounded functionals defined on all of Y (and so these functionals are continuous).

#### Proposition 9.12. Compactness and Adjoints.

Let  $T \in \mathcal{B}(X, Y)$ . If T is compact, then its adjoint  $T^*$  is compact. If Y is complete, then compactness of  $T^*$  implies that of T.

**Proof.** Suppose *T* is compact. Let  $(g_n)$  be a sequence in  $B^*(1)$  (the unit ball of  $Y^*$ ). Now  $B^*(1)$  is a set of bounded functionals defined on all of *Y* (and so these functionals are continuous). For  $B(1) \subset X$  we have  $\overline{T(B(1))} \subset Y$ , so we can restrict each element of  $B^*(1)$  to the compact set T(B(1)) (since *T* is compact, T(B(1)) is relatively compact and so [by the definition of "relatively compact"]  $\overline{T(B(1))}$  is compact). By Example 9.4,  $B^*(1)$  (restricted to  $\overline{T(B(1))}$ ) is equicontinuous.

#### Proposition 9.12. Compactness and Adjoints.

Let  $T \in \mathcal{B}(X, Y)$ . If T is compact, then its adjoint  $T^*$  is compact. If Y is complete, then compactness of  $T^*$  implies that of T.

**Proof.** Suppose T is compact. Let  $(g_n)$  be a sequence in  $B^*(1)$  (the unit ball of  $Y^*$ ). Now  $B^*(1)$  is a set of bounded functionals defined on all of Y (and so these functionals are continuous). For  $B(1) \subset X$  we have  $T(B(1)) \subset Y$ , so we can restrict each element of  $B^*(1)$  to the compact set T(B(1)) (since T is compact, T(B(1)) is relatively compact and so [by the definition of "relatively compact"] T(B(1)) is compact). By Example 9.4,  $B^*(1)$  (restricted to T(B(1))) is equicontinuous. So  $B^*(1)$ (restricted) is bounded and equicontinuous, and hence by the Arzela-Ascoli Theorem (Theorem 9.5) (with S = T(B(1)) and  $A \subset C(T(B(1)))$  as the set of elements of  $B^*(1)$  restricted to  $\overline{T(B(1))}$   $B^*(1)$  (restricted) is relatively compact.

#### Proposition 9.12. Compactness and Adjoints.

Let  $T \in \mathcal{B}(X, Y)$ . If T is compact, then its adjoint  $T^*$  is compact. If Y is complete, then compactness of  $T^*$  implies that of T.

**Proof.** Suppose T is compact. Let  $(g_n)$  be a sequence in  $B^*(1)$  (the unit ball of  $Y^*$ ). Now  $B^*(1)$  is a set of bounded functionals defined on all of Y (and so these functionals are continuous). For  $B(1) \subset X$  we have  $T(B(1)) \subset Y$ , so we can restrict each element of  $B^*(1)$  to the compact set T(B(1)) (since T is compact, T(B(1)) is relatively compact and so [by the definition of "relatively compact"] T(B(1)) is compact). By Example 9.4,  $B^*(1)$  (restricted to T(B(1))) is equicontinuous. So  $B^*(1)$ (restricted) is bounded and equicontinuous, and hence by the Arzela-Ascoli Theorem (Theorem 9.5) (with S = T(B(1)) and  $A \subset C(T(B(1)))$  as the set of elements of  $B^*(1)$  restricted to  $\overline{T(B(1))}$   $B^*(1)$  (restricted) is relatively compact.

### Proposition 9.12 (continued 1)

#### Proposition 9.12. Compactness and Adjoints.

Let  $T \in \mathcal{B}(X, Y)$ . If T is compact, then its adjoint  $T^*$  is compact. If Y is complete, then compactness of  $T^*$  implies that of T.

**Proof (continued).** So (by definition and the note on page 187)  $(g_n) \subset B^*(1)$  has a convergent subsequence  $(g_{n_k})$  where  $(g_{n_k}) \to g$  for some  $g \in C(\overline{T(B(1))})$ . Since  $C(\overline{T(B(1))})$  has the sup norm (see Proposition 9.3), then g converges uniformly to g. So for given  $\varepsilon > 0$ there is  $N \in \mathbb{N}$  such that for  $n \ge N$  and for  $x \in B(1)$  we have  $|g_{n_k}(Tx_-g(Tx)| < \varepsilon$  (notice  $Tx \in T(B(1)) \subset \overline{T(B(1))}$ ). By the definition of adjoint (see Section 6.2), since  $T : X \to Y$  and  $g_{n_k}, g \in B^*(1) \subset Y^*$ then  $(T^*g)(x) = g(T(Tx) \text{ and } T^*g_{n_k})(x) = g_{n_k}(Tx)$ . Therefore  $((T^*g_{n_k})(x) - (T^*g)(x)| < \varepsilon$ .

### Proposition 9.12 (continued 1)

#### Proposition 9.12. Compactness and Adjoints.

Let  $T \in \mathcal{B}(X, Y)$ . If T is compact, then its adjoint  $T^*$  is compact. If Y is complete, then compactness of  $T^*$  implies that of T.

**Proof (continued).** So (by definition and the note on page 187)  $(g_n) \subset B^*(1)$  has a convergent subsequence  $(g_{n_{\nu}})$  where  $(g_{n_{\nu}}) \to g$  for some  $g \in C(T(B(1)))$ . Since C(T(B(1))) has the sup norm (see Proposition 9.3), then g converges uniformly to g. So for given  $\varepsilon > 0$ there is  $N \in \mathbb{N}$  such that for  $n \geq N$  and for  $x \in B(1)$  we have  $|g_{n_{\ell}}(T_{x-g}(T_{x})| < \varepsilon$  (notice  $T_{x} \in T(B(1)) \subset T(B(1))$ ). By the definition of adjoint (see Section 6.2), since  $T: X \to Y$  and  $g_{n_{\mu}}, g \in B^*(1) \subset Y^*$ then  $(T^*g)(x) = g(T(Tx) \text{ and } T^*g_{n_k})(x) = g_{n_k}(Tx)$ . Therefore  $((T^*g_{n_k})(x) - (T^*g)(x)) < \varepsilon$ . Hence  $(T^*g_{n_k}) \to T^*g$ . So for arbitrary sequence  $(g_n)$  in  $B^*(1)$  the sequence  $(T^*g_n)$  has a convergent subsequence. So (by the note on page 187),  $T^*$  is compact.

### Proposition 9.12 (continued 1)

#### Proposition 9.12. Compactness and Adjoints.

Let  $T \in \mathcal{B}(X, Y)$ . If T is compact, then its adjoint  $T^*$  is compact. If Y is complete, then compactness of  $T^*$  implies that of T.

**Proof (continued).** So (by definition and the note on page 187)  $(g_n) \subset B^*(1)$  has a convergent subsequence  $(g_{n_{\nu}})$  where  $(g_{n_{\nu}}) \to g$  for some  $g \in C(T(B(1)))$ . Since C(T(B(1))) has the sup norm (see Proposition 9.3), then g converges uniformly to g. So for given  $\varepsilon > 0$ there is  $N \in \mathbb{N}$  such that for  $n \geq N$  and for  $x \in B(1)$  we have  $|g_{n_{\ell}}(T_{x-g}(T_{x})| < \varepsilon$  (notice  $T_{x} \in T(B(1)) \subset T(B(1))$ ). By the definition of adjoint (see Section 6.2), since  $T: X \to Y$  and  $g_{n_{\mu}}, g \in B^*(1) \subset Y^*$ then  $(T^*g)(x) = g(T(Tx) \text{ and } T^*g_{n_k})(x) = g_{n_k}(Tx)$ . Therefore  $((T^*g_{n_k})(x) - (T^*g)(x)) < \varepsilon$ . Hence  $(T^*g_{n_k}) \to T^*g$ . So for arbitrary sequence  $(g_n)$  in  $B^*(1)$  the sequence  $(T^*g_n)$  has a convergent subsequence. So (by the note on page 187),  $T^*$  is compact.

## Proposition 9.12 (continued 2)

#### Proposition 9.12. Compactness and Adjoints.

Let  $T \in \mathcal{B}(X, Y)$ . If T is compact, then its adjoint  $T^*$  is compact. If Y is complete, then compactness of  $T^*$  implies that of T.

**Proof (continued).** Conversely, suppose  $T^*$  is compact. By the previous paragraph,  $T^{**}$  is compact. Let j denote the natural embedding of X in  $X^{**}$  (see Theorem 6.8 where the notation would be  $j(x) = \hat{x}$ ). By Exercise 6.5 we have  $T^{**}(\hat{x}) = \widehat{T(x)}$ , or  $T^{**}(j(B(1)) = j(T(B(1)))$ . Since j is an isometry by Theorem 6.8, j(B(1)) is a subset of the unit ball in  $X^{**}$  and so is bounded. Since  $T^{**}$  is hypothesized to be compact the (by definition)  $T^{**}(j(B(1)))$  is relatively compact.

### Proposition 9.12 (continued 2)

#### Proposition 9.12. Compactness and Adjoints.

Let  $T \in \mathcal{B}(X, Y)$ . If T is compact, then its adjoint  $T^*$  is compact. If Y is complete, then compactness of  $T^*$  implies that of T.

**Proof (continued).** Conversely, suppose  $T^*$  is compact. By the previous paragraph,  $T^{**}$  is compact. Let *j* denote the natural embedding of X in  $X^{**}$  (see Theorem 6.8 where the notation would be  $j(x) = \hat{x}$ ). By Exercise 6.5 we have  $T^{**}(\hat{x}) = T(\hat{x})$ , or  $T^{**}(j(B(1)) = j(T(B(1)))$ . Since j is an isometry by Theorem 6.8, j(B(1)) is a subset of the unit ball in  $X^{**}$  and so is bounded. Since  $T^{**}$  is hypothesized to be compact the (by definition)  $T^{**}(i(B(1)))$  is relatively compact. By Corollary 9.2.A,  $T^{**}(i(B(1)))$  is therefore totally bounded. So i(T(B(1))) is totally bounded. Since *j* is an isometry, then T(B(1)) is totally bounded. Y is hypothesized to be complete, so by Corollary 9.2.A, T(B(1)) is relatively compact. That is, by definition, T is compact.

## Proposition 9.12 (continued 2)

#### Proposition 9.12. Compactness and Adjoints.

Let  $T \in \mathcal{B}(X, Y)$ . If T is compact, then its adjoint  $T^*$  is compact. If Y is complete, then compactness of  $T^*$  implies that of T.

**Proof (continued).** Conversely, suppose  $T^*$  is compact. By the previous paragraph,  $T^{**}$  is compact. Let *j* denote the natural embedding of X in  $X^{**}$  (see Theorem 6.8 where the notation would be  $j(x) = \hat{x}$ ). By Exercise 6.5 we have  $T^{**}(\hat{x}) = \hat{T}(\hat{x})$ , or  $T^{**}(j(B(1)) = j(T(B(1)))$ . Since j is an isometry by Theorem 6.8, j(B(1)) is a subset of the unit ball in  $X^{**}$  and so is bounded. Since  $T^{**}$  is hypothesized to be compact the (by definition)  $T^{**}(i(B(1)))$  is relatively compact. By Corollary 9.2.A,  $T^{**}(i(B(1)))$  is therefore totally bounded. So i(T(B(1))) is totally bounded. Since *j* is an isometry, then T(B(1)) is totally bounded. Y is hypothesized to be complete, so by Corollary 9.2.A, T(B(1)) is relatively compact. That is, by definition, T is compact.