Introduction to Functional Analysis

Chapter 9. Compact Operators
9.3. New Compact Operators from Old—Proofs of Theorems
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Proposition 9.10

Proposition 9.10. Compactness and Algebraic Properties.
Suppose we are given normed linear spaces X, Y, and Z, a scalar «,
operators S, T € B(X,Y), and A€ B(Y,Z). We have:

(a) If T is compact, then sois aT.

(b) If S and T are compact, thensois S+ T.

(c) If T is compact, then sois Ao T = AT.

(d) If Ais compact, thensois Ao T = AT.
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Proposition 9.10

Proposition 9.10. Compactness and Algebraic Properties.
Suppose we are given normed linear spaces X, Y, and Z, a scalar «,
operators S, T € B(X,Y), and A€ B(Y,Z). We have:

(a) If T is compact, then sois aT.

(b) If S and T are compact, thensois S+ T.

(c) If T is compact, then sois Ao T = AT.

(d) If Ais compact, thensois Ao T = AT.

Proof. (a) Multiplying a subset by a scalar preserves relative compactness.
So if T(B(1)) is relatively compact then so is aT(B(1)) and the
compactness of T implies the compactness of o T.
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Proposition 9.10

Proposition 9.10. Compactness and Algebraic Properties.
Suppose we are given normed linear spaces X, Y, and Z, a scalar «,
operators S, T € B(X,Y), and A€ B(Y,Z). We have:

(a) If T is compact, then sois aT.
(b) If S and T are compact, thensois S+ T.
(c) If T is compact, then sois Ao T = AT.
(d) If Ais compact, thensois Ao T = AT.

Proof. (a) Multiplying a subset by a scalar preserves relative compactness.
So if T(B(1)) is relatively compact then so is aT(B(1)) and the
compactness of T implies the compactness of o T.

(b) If T is a compact operator, then by the definition of “compact
operator,” for any sequence (x,) in B(1), the sequence (T (x,) has a
convergent subsequence, say (x;,) in B(1). Similarly, the sequence (S(x}))
has a convergent subsequence x/). So the sequence ((S + T)(x/)
converges and by the definition of “compact operator,” S + T is compact.
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Proposition 9.10 (continued)

Proposition 9.10. Compactness and Algebraic Properties.
Suppose we are given normed linear spaces X, Y, and Z, a scalar «,
operators S, T € B(X,Y), and A€ B(Y,Z). We have:

(a) If T is compact, then sois aT.

(b) If S and T are compact, thensois S+ T.

(c) If T is compact, thensois Ao T = AT.

(d) If Ais compact, thensois Ao T = AT.
Proof (continued). (c) If T is a compact operator, then by the definition
of “compact operator,” for any sequence (xp) in B(1), the sequence

(T(xn)) has a convergent subsequence, say (T(x,)). Since A is continuous
then ((So T)(x},)) = (ST(x],)) converges. So ST is compact.
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Proposition 9.10 (continued)

Proposition 9.10. Compactness and Algebraic Properties.
Suppose we are given normed linear spaces X, Y, and Z, a scalar «,
operators S, T € B(X,Y), and A€ B(Y,Z). We have:

(a) If T is compact, then sois aT.

(b) If S and T are compact, thensois S+ T.
(c) If T is compact, thensois Ao T = AT.
(d) If Ais compact, thensois Ao T = AT.

Proof (continued). (c) If T is a compact operator, then by the definition
of “compact operator,” for any sequence (xp) in B(1), the sequence
(T(xn)) has a convergent subsequence, say (T(x,)). Since A is continuous
then ((So T)(x},)) = (ST(x],)) converges. So ST is compact.

(d) Since T is bounded, then T(B(1)) is bounded. Since A is compact,
then by the definition of “compact operator,” A(T(B(1)) is relatively
compact. So (again, by definition) Ao T = AT is compact. O
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Proposition 9.11

Proposition 9.11. Compactness and Limits.

If T =1im T,, in which (T,) is a sequence of compact operators in
B(X,Y), then T is compact.
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Proposition 9.11

Proposition 9.11. Compactness and Limits.
If T =1im T,, in which (T,) is a sequence of compact operators in
B(X,Y), then T is compact.

Proof. Let ¢ > 0. Choose N € N such that || T — Ty|| < ¢/2. Since Ty is
a compact operator, then (by the definition and the note on page 187)
T(B(1)) is relatively compact. So by Proposition 9.2 there is finite
dimensional Y C Z such that Yy(B(1)) C*/? Y.
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Proposition 9.11

Proposition 9.11. Compactness and Limits.
If T =1im T,, in which (T,) is a sequence of compact operators in
B(X,Y), then T is compact.

Proof. Let ¢ > 0. Choose N € N such that || T — Ty|| < ¢/2. Since Ty is
a compact operator, then (by the definition and the note on page 187)
T(B(1)) is relatively compact. So by Proposition 9.2 there is finite
dimensional Y C Z such that Yy(B(1)) €/ Y. Now for any x € B(1),
[T() = Tn()llz = I(T = Tw)()llz < [T = Twlllix]x <e/2, so
T(B(1)) C€/2 Tn(B(1)). Therefore, T(B(1)) C° Y, so T(B(1)) is
relatively compact by Proposition 9.2. That is, T is (by definition and
page 187) compact. O
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Proposition 9.12

Proposition 9.12. Compactness and Adjoints.

Let T € B(X,Y). If T is compact, then its adjoint T* is compact. If Y is
complete, then compactness of T* implies that of T.
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Proposition 9.12

Proposition 9.12. Compactness and Adjoints.

Let T € B(X,Y). If T is compact, then its adjoint T* is compact. If Y is
complete, then compactness of T* implies that of T.

Proof. Suppose T is compact. Let (g,) be a sequence in B*(1) (the unit
ball of Y*). Now B*(1) is a set of bounded functionals defined on all of Y
(and so these functionals are continuous).
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Proposition 9.12

Proposition 9.12. Compactness and Adjoints.
Let T € B(X,Y). If T is compact, then its adjoint T* is compact. If Y is
complete, then compactness of T* implies that of T.

Proof. Suppose T is compact. Let (g,) be a sequence in B*(1) (the unit
ball of Y*). Now B*(1) is a set of bounded functionals defined on all of Y
(and so these functionals are continuous). For B(1) C X we have
T(B(1)) C Y, so we can restrict each element of B*(1) to the compact
set T(B(1)) (since T is compact, T(B(1)) is relatively compact and so
[by the definition of “relatively compact”] T(B(1)) is compact). By
Example 9.4, B*(1) (restricted to T(B(1))) is equicontinuous.
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Proposition 9.12. Compactness and Adjoints.
Let T € B(X,Y). If T is compact, then its adjoint T* is compact. If Y is
complete, then compactness of T* implies that of T.

Proof. Suppose T is compact. Let (g,) be a sequence in B*(1) (the unit
ball of Y*). Now B*(1) is a set of bounded functionals defined on all of Y
(and so these functionals are continuous). For B(1) C X we have
T(B(1)) C Y, so we can restrict each element of B*(1) to the compact
set T(B(1)) (since T is compact, T(B(1)) is relatively compact and so
[by the definition of “relatively compact”] T(B(1)) is compact). By
Example 9.4, B*(1) (restricted to T(B(1))) is equicontinuous. So B*(1)
(restricted) is bounded and equicontinuous, and hence by the Arzela-Ascoli

Theorem (Theorem 9.5) (with S = T(B(1)) and A C C(T(B(1))) as the

set of elements of B*(1) restricted to T(B(1))) B*(1) (restricted) is
relatively compact.
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Proposition 9.12 (continued 1)

Proposition 9.12. Compactness and Adjoints.
Let T € B(X,Y). If T is compact, then its adjoint T* is compact. If Y is
complete, then compactness of T* implies that of T.

Proof (continued). So (by definition and the note on page 187)

(gn) C B*(1) has a convergent subsequence (g, ) where (gn,) — g for
some g € C(T(B(1))). Since C(T(B(1))) has the sup norm (see
Proposition 9.3), then g converges uniformly to g.
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Proposition 9.12 (continued 1)

Proposition 9.12. Compactness and Adjoints.
Let T € B(X,Y). If T is compact, then its adjoint T* is compact. If Y is
complete, then compactness of T* implies that of T.

Proof (continued). So (by definition and the note on page 187)

(gn) C B*(1) has a convergent subsequence (g, ) where (gn,) — g for
some g € C(T(B(1))). Since C(T(B(1))) has the sup norm (see
Proposition 9.3), then g converges uniformly to g. So for given ¢ > 0
there is N € N such that for n > N and for x € B(1) we have

|gn, (Tx_g(Tx)| < € (notice Tx € T(B(1)) C T(B(1))). By the definition
of adjoint (see Section 6.2), since T : X — Y and gp,,g € B*(1) C Y*
then (T*g)(x) = g(T(Tx) and T*gp,)(x) = gn,(Tx). Therefore

((T7gn)(x) = (Tg)(x)| <e.
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Proposition 9.12 (continued 1)

Proposition 9.12. Compactness and Adjoints.
Let T € B(X,Y). If T is compact, then its adjoint T* is compact. If Y is
complete, then compactness of T* implies that of T.

Proof (continued). So (by definition and the note on page 187)

(gn) C B*(1) has a convergent subsequence (g, ) where (gn,) — g for
some g € C(T(B(1))). Since C(T(B(1))) has the sup norm (see
Proposition 9.3), then g converges uniformly to g. So for given ¢ > 0
there is N € N such that for n > N and for x € B(1) we have

|gn, (Tx_g(Tx)| < € (notice Tx € T(B(1)) C T(B(1))). By the definition
of adjoint (see Section 6.2), since T : X — Y and gp,,g € B*(1) C Y*
then (T*g)(x) = g(T(Tx) and T*gp,)(x) = gn,(Tx). Therefore
((T*gn )(x) = (T*g)(x)| < e. Hence (T*gn,) — T*g. So for arbitrary
sequence (g,) in B*(1) the sequence (T*g,) has a convergent
subsequence. So (by the note on page 187), T* is compact.
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Proposition 9.12 (continued 2)

Proposition 9.12. Compactness and Adjoints.

Let T € B(X,Y). If T is compact, then its adjoint T* is compact. If Y is
complete, then compactness of T* implies that of T.

Proof (continued). Conversely, suppose T* is compact. By the previous
paragraph, T** is compact. Let j denote the natural embedding of X in
X** (see Theorem 6.8 where the notation would be j(x) = X).
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Proposition 9.12 (continued 2)

Proposition 9.12. Compactness and Adjoints.
Let T € B(X,Y). If T is compact, then its adjoint T* is compact. If Y is
complete, then compactness of T* implies that of T.

Proof (continued). Conversely, suppose T* is compact. By the previous
paragraph, T** is compact. Let j denote the natural embedding of X in
X** (see Theorem 6.8 where the notation would be j(x) = X). By Exercise
6.5 we have T**(%) = T(x), or T**(j(B(1)) = j(T(B(1)). Since j is an
isometry by Theorem 6.8, j(B(1)) is a subset of the unit ball in X** and
so is bounded. Since T** is hypothesized to be compact the (by
definition) T**(j(B(1))) is relatively compact.
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Proposition 9.12 (continued 2)

Proposition 9.12. Compactness and Adjoints.
Let T € B(X,Y). If T is compact, then its adjoint T* is compact. If Y is
complete, then compactness of T* implies that of T.

Proof (continued). Conversely, suppose T* is compact. By the previous
paragraph, T** is compact. Let j denote the natural embedding of X in
X** (see Theorem 6.8 where the notation would be j(x) = X). By Exercise
6.5 we have T**(%) = T(x), or T**(j(B(1)) = j(T(B(1)). Since j is an
isometry by Theorem 6.8, j(B(1)) is a subset of the unit ball in X** and
so is bounded. Since T** is hypothesized to be compact the (by
definition) T**(j(B(1))) is relatively compact. By Corollary 9.2.A,
T**(j(B(1))) is therefore totally bounded. So j(T(B(1))) is totally
bounded. Since j is an isometry, then T(B(1)) is totally bounded. Y is
hypothesized to be complete, so by Corollary 9.2.A, T(B(1)) is relatively
compact. That is, by definition, T is compact. O
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