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Proposition 9.10. Compactness and Algebraic Properties

Proposition 9.10

Proposition 9.10. Compactness and Algebraic Properties.
Suppose we are given normed linear spaces X , Y , and Z , a scalar α,
operators S ,T ∈ B(X ,Y ), and A ∈ B(Y ,Z ). We have:

(a) If T is compact, then so is αT .

(b) If S and T are compact, then so is S + T .

(c) If T is compact, then so is A ◦ T = AT .

(d) If A is compact, then so is A ◦ T = AT .

Proof. (a) Multiplying a subset by a scalar preserves relative compactness.
So if T (B(1)) is relatively compact then so is αT (B(1)) and the
compactness of T implies the compactness of αT .

(b) If T is a compact operator, then by the definition of “compact
operator,” for any sequence (xn) in B(1), the sequence (T (xn) has a
convergent subsequence, say (x ′n) in B(1). Similarly, the sequence (S(x ′n))
has a convergent subsequence x ′′n ). So the sequence ((S + T )(x ′′n )
converges and by the definition of “compact operator,” S + T is compact.
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Proposition 9.10. Compactness and Algebraic Properties

Proposition 9.10 (continued)

Proposition 9.10. Compactness and Algebraic Properties.
Suppose we are given normed linear spaces X , Y , and Z , a scalar α,
operators S ,T ∈ B(X ,Y ), and A ∈ B(Y ,Z ). We have:

(a) If T is compact, then so is αT .

(b) If S and T are compact, then so is S + T .

(c) If T is compact, then so is A ◦ T = AT .

(d) If A is compact, then so is A ◦ T = AT .

Proof (continued). (c) If T is a compact operator, then by the definition
of “compact operator,” for any sequence (x0) in B(1), the sequence
(T (xn)) has a convergent subsequence, say (T (x ′n)). Since A is continuous
then ((S ◦ T )(x ′n)) = (ST (x ′n)) converges. So ST is compact.

(d) Since T is bounded, then T (B(1)) is bounded. Since A is compact,
then by the definition of “compact operator,” A(T (B(1)) is relatively
compact. So (again, by definition) A ◦ T = AT is compact.
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Proposition 9.11. Compactness and Limits

Proposition 9.11

Proposition 9.11. Compactness and Limits.
If T = lim Tn, in which (Tn) is a sequence of compact operators in
B(X ,Y ), then T is compact.

Proof. Let ε > 0. Choose N ∈ N such that ‖T − TN‖ < ε/2. Since TN is
a compact operator, then (by the definition and the note on page 187)
T (B(1)) is relatively compact. So by Proposition 9.2 there is finite
dimensional Y ⊂ Z such that YN(B(1)) ⊆ε/2 Y .

Now for any x ∈ B(1),
‖T (x)− TN(x)‖Z = ‖(T − TN)(x)‖Z ≤ ‖T − TN‖‖x‖X < ε/2, so
T (B(1)) ⊆ε/2 TN(B(1)). Therefore, T (B(1)) ⊆ε Y , so T (B(1)) is
relatively compact by Proposition 9.2. That is, T is (by definition and
page 187) compact.
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Proposition 9.12. Compactness and Adjoints

Proposition 9.12

Proposition 9.12. Compactness and Adjoints.
Let T ∈ B(X ,Y ). If T is compact, then its adjoint T ∗ is compact. If Y is
complete, then compactness of T ∗ implies that of T .

Proof. Suppose T is compact. Let (gn) be a sequence in B∗(1) (the unit
ball of Y ∗). Now B∗(1) is a set of bounded functionals defined on all of Y
(and so these functionals are continuous).

For B(1) ⊂ X we have
T (B(1)) ⊂ Y , so we can restrict each element of B∗(1) to the compact
set T (B(1)) (since T is compact, T (B(1)) is relatively compact and so
[by the definition of “relatively compact”] T (B(1)) is compact). By
Example 9.4, B∗(1) (restricted to T (B(1))) is equicontinuous. So B∗(1)
(restricted) is bounded and equicontinuous, and hence by the Arzela-Ascoli
Theorem (Theorem 9.5) (with S = T (B(1)) and A ⊂ C (T (B(1))) as the
set of elements of B∗(1) restricted to T (B(1))) B∗(1) (restricted) is
relatively compact.
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Proposition 9.12. Compactness and Adjoints

Proposition 9.12 (continued 1)

Proposition 9.12. Compactness and Adjoints.
Let T ∈ B(X ,Y ). If T is compact, then its adjoint T ∗ is compact. If Y is
complete, then compactness of T ∗ implies that of T .

Proof (continued). So (by definition and the note on page 187)
(gn) ⊂ B∗(1) has a convergent subsequence (gnk

) where (gnk
) → g for

some g ∈ C (T (B(1))). Since C (T (B(1))) has the sup norm (see
Proposition 9.3), then g converges uniformly to g . So for given ε > 0
there is N ∈ N such that for n ≥ N and for x ∈ B(1) we have
|gnk

(Tx−g(Tx)| < ε (notice Tx ∈ T (B(1)) ⊂ T (B(1))). By the definition
of adjoint (see Section 6.2), since T : X → Y and gnk

, g ∈ B∗(1) ⊂ Y ∗

then (T ∗g)(x) = g(T (Tx) and T ∗gnk
)(x) = gnk

(Tx). Therefore
((T ∗gnk

)(x)− (T ∗g)(x)| < ε.

Hence (T ∗gnk
) → T ∗g . So for arbitrary

sequence (gn) in B∗(1) the sequence (T ∗gn) has a convergent
subsequence. So (by the note on page 187), T ∗ is compact.
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Proposition 9.12. Compactness and Adjoints

Proposition 9.12 (continued 2)

Proposition 9.12. Compactness and Adjoints.
Let T ∈ B(X ,Y ). If T is compact, then its adjoint T ∗ is compact. If Y is
complete, then compactness of T ∗ implies that of T .

Proof (continued). Conversely, suppose T ∗ is compact. By the previous
paragraph, T ∗∗ is compact. Let j denote the natural embedding of X in
X ∗∗ (see Theorem 6.8 where the notation would be j(x) = x̂). By Exercise

6.5 we have T ∗∗(x̂) = T̂ (x), or T ∗∗(j(B(1)) = j(T (B(1)). Since j is an
isometry by Theorem 6.8, j(B(1)) is a subset of the unit ball in X ∗∗ and
so is bounded. Since T ∗∗ is hypothesized to be compact the (by
definition) T ∗∗(j(B(1))) is relatively compact.

By Corollary 9.2.A,
T ∗∗(j(B(1))) is therefore totally bounded. So j(T (B(1))) is totally
bounded. Since j is an isometry, then T (B(1)) is totally bounded. Y is
hypothesized to be complete, so by Corollary 9.2.A, T (B(1)) is relatively
compact. That is, by definition, T is compact.
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