Consider the resulting sequence of \(\langle y_n \rangle \) in the normed space \(X \). For any \(n \in \mathbb{N} \) and for all \(k \in \mathbb{Z} \), there is an index \(l \geq 1 \) such that \(y_{kn} \geq 0 \). Let \(Z = \{ y_n : n \in \mathbb{N} \} \). Then \(Z \) is a bounded above set in \(X \).

Lemma 9.13. Let \(Z \) be a bounded set. Suppose that \(Z \) is not onto. (b) Suppose that \(Z \) is onto.

Proof. (a) Suppose that \(Z \) is not onto (surjective). But since \(Z \) is one-to-one, its range is not onto. (b) Suppose that \(Z \) is onto. Let \(x \in X \). Then for some \(z \in Z \), \(x = f(z) \).

4.4 Spectrum of a Compact Operator—Problems of Theorems

Chapter 4. Compact Operators
Proposition 9.15 (continued)

First, we show that \(S \) is bounded below (see Section 3.4). Assume \(S \) is bounded below.

\[\|z\| - \|x\| = \left\| \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \right\| - \left\| \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \right\| = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2} - \sqrt{b_1^2 + b_2^2 + \ldots + b_n^2} \]

for \(a_i, b_i \geq 0 \) and \(a_i, b_i \leq 1 \) for all \(i \).

Then by Theorem 7.2, \(S \) is bounded below.

Furthermore, let \(S \) and \(T \) be subspaces of \(\mathbb{R}^n \) such that \(S \subseteq T \). Then \(\|x\| \leq \|y\| \) for all \(x \in S \) and \(y \in T \).

Finally, we have that \(S \) is bounded below.

Proposition 9.16

Let \(S \) be a Banach space and let \(T \subseteq S \) be a bounded linear operator. Then \(\|T\| = \sup \{ \|Tx\| : \|x\| \leq 1 \} \).

Corollary 9.4

Let \(x \in \mathbb{R}^n \) and let \(T \subseteq \mathbb{R}^n \) be a subset. Then \(\|x\| \leq \|T\| \) for all \(x \in T \).

Lemma 9.1

Theorem 9.5

Due to the boundedness of \(S \) as a subset of \(\mathbb{R}^n \), we have that \(S \) is bounded below.

Again, note that these three subspaces are all compact.

Consider the sequence of scalars \((\lambda_k) \subseteq \mathbb{R} \) where \(\lambda_k = \lambda \) for all \(k \in \mathbb{N} \).

Notice that these three subspaces are all compact.

Notice that these three subspaces are all compact.

Notice that these three subspaces are all compact.
Theorem 9.16. Let T be a compact operator in $\mathcal{B}(X)$, in which X is a Banach space. Then the nonzero elements of the spectrum of T are all finite-dimensional, and any sequence of distinct eigenvalues (λ_n) in the spectrum of T has a convergent subsequence.

Proof. Let λ be a nonzero element of the spectrum of T. Then the operator $T - \lambda I$ is not bounded below. By Proposition 3.6, the range of $T - \lambda I$ is closed. Since T is compact, its range is closed. Therefore, the range of $T - \lambda I$ is closed. This is the range of a compact operator. Hence, the range of $T - \lambda I$ is closed. Therefore, λ is an eigenvalue of T.

Corollary 9.4.B. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be a compact operator.

Corollary 9.15. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be a compact operator. Then the range of $T - \lambda I$ is closed.

Theorem 9.15. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be a compact operator. Then the range of $T - \lambda I$ is closed.
Theorem 9.16 (continued)

Proof (continued).

Notice that for $a \leq k \leq n - 1$ we have

$$x^a - x^k = x^a(x^{k-a} - 1).$$