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Lemma 9.13

Lemma 9.13

Lemma 9.13. Let S be a linear operator from any linear space to itself.
Consider the nested subsequences of subspace:

R(S) D R(S?) D R(S3) D --- and N(S) C N(S?) c N(S3) C ---.

(a) Suppose that S is one to one (injective) but not onto
(surjective). Then all inclusions in the range sequence are
strict.

(b) Suppose that S is onto (surjective) but not one to one

(injective). Then all inclusions in the null space sequence are
strict.
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Lemma 9.13

Lemma 9.13. Let S be a linear operator from any linear space to itself.
Consider the nested subsequences of subspace:
R(S) D R(S?) D R(S3) D --- and N(S) C N(S?) c N(S3) C ---.

(a) Suppose that S is one to one (injective) but not onto
(surjective). Then all inclusions in the range sequence are
strict.

(b) Suppose that S is onto (surjective) but not one to one
(injective). Then all inclusions in the null space sequence are
strict.

Proof. (a) Suppose that S is one to one. If S is not onto, we can choose
x1 & R(S). For this x1, consider Sx;. Certainly Sx; € R(S). ASSUME
Sx; € R(S?). Then Sx; = S2%y for some y. But since S is one to one then
this implies x; = Sy and so x; € R(S), a CONTRADICTION.
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Lemma 9.13

Lemma 9.13. Let S be a linear operator from any linear space to itself.
Consider the nested subsequences of subspace:
R(S) D R(S?) D R(S3) D --- and N(S) C N(S?) c N(S3) C ---.

(a) Suppose that S is one to one (injective) but not onto
(surjective). Then all inclusions in the range sequence are
strict.

(b) Suppose that S is onto (surjective) but not one to one
(injective). Then all inclusions in the null space sequence are
strict.

Proof. (a) Suppose that S is one to one. If S is not onto, we can choose
x1 & R(S). For this x1, consider Sx;. Certainly Sx; € R(S). ASSUME
Sx; € R(S?). Then Sx; = S2%y for some y. But since S is one to one then
this implies x; = Sy and so x; € R(S), a CONTRADICTION. So
Sx ¢ R(S?) and R(S?) is a proper subset of R(S). Similarly we can show
there is some x with S¥x, € R(S¥) but Skx, ¢ R(S¥T1).

Introduction to Functional Analysis May 16, 2017 3/ 14



Lemma 9.13

Lemma 9.13 (continued)

Lemma 9.13. Let S be a linear operator from any linear space to itself.
Consider the nested subsequences of subspace:

R(S) D R(S%) > R(S3) D --- and N(S) C N(S?) c N(S3) C ---

(a) Suppose that S is one to one (injective) but not onto
(surjective). Then all inclusions in the range sequence are
strict.

(b) Suppose that S is onto (surjective) but not one to one

(injective). Then all inclusions in the null space sequence are
strict.
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Lemma 9.13 (continued)

Lemma 9.13. Let S be a linear operator from any linear space to itself.
Consider the nested subsequences of subspace:
R(S) D R(S%) > R(S3) D --- and N(S) C N(S?) c N(S3) C ---

(a) Suppose that S is one to one (injective) but not onto

(surjective). Then all inclusions in the range sequence are
strict.

(b) Suppose that S is onto (surjective) but not one to one
(injective). Then all inclusions in the null space sequence are
strict.

Proof (continued). (b) Suppose that S is onto. If S is not one to one,
we can choose z; # 0 in N(S) (recall that S is one to one if and only if
N(S) = {0}; see page 5). Since S is onto, x = Sx; for some xj.
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Lemma 9.13 (continued)

Lemma 9.13. Let S be a linear operator from any linear space to itself.
Consider the nested subsequences of subspace:
R(S) D R(S%) D R(S3) D> -+ and N(S) C N(S?) Cc N(S3) C ---
(a) Suppose that S is one to one (injective) but not onto
(surjective). Then all inclusions in the range sequence are
strict.

(b) Suppose that S is onto (surjective) but not one to one
(injective). Then all inclusions in the null space sequence are
strict.

Proof (continued). (b) Suppose that S is onto. If S is not one to one,
we can choose z; # 0 in N(S) (recall that S is one to one if and only if
N(S) = {0}; see page 5). Since S is onto, x = Sx; for some x1. So

S2x1 = Sz =0and x; € N(52) but x; & N(S) since Sx; = z # 0.
Similarly, we can show there is x, € N(S**1) but x, & N(S*). O
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Lemma 9.14

Lemma 9.14. Let X be a Banach space and let Y € B(X) be compact.
Let (A\,) be a sequence of real or complex scalars. Suppose we have a
strictly increasing sequence of (topologically) closed subspaces of X:

Y1 C Yo C Y3 C--- suchthat (T — A,/)Y, C Y,—1 for all n > 1. Then
(|An]) is not bounded below (in the sense given in Section 3.4). The same
conclusion holds if we have a strictly decreasing sequence of closed
subspaces of X: Z1 D Z, D Z3 D -+ such that (T — A\,1)Z, D Zy41 for
all ne N.
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Lemma 9.14

Lemma 9.14. Let X be a Banach space and let Y € B(X) be compact.
Let (A\,) be a sequence of real or complex scalars. Suppose we have a
strictly increasing sequence of (topologically) closed subspaces of X:

Y1 C Yo C Y3 C--- suchthat (T — A,/)Y, C Y,—1 for all n > 1. Then
(|An]) is not bounded below (in the sense given in Section 3.4). The same
conclusion holds if we have a strictly decreasing sequence of closed
subspaces of X: Z1 D Z, D Z3 D -+ such that (T — A\,1)Z, D Zy41 for
all ne N.

Proof. We give a proof for the increasing case, with the decreasing case
being similar. ASSUME (\,) is a sequence of scalars satisfying the stated
conditions, where (|A,|) is bounded below. Then there is r > 0 such that
|An| > r for all n € N. By Theorem 2.33 (Riesz's Lemma) with € = 1/2,
for each n € N there is a unit vector y, € Y, with d(yn, Yo—1) > 1/2.
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Lemma 9.14

Lemma 9.14. Let X be a Banach space and let Y € B(X) be compact.
Let (A\,) be a sequence of real or complex scalars. Suppose we have a
strictly increasing sequence of (topologically) closed subspaces of X:
Y1 C Yo C Y3 C--- suchthat (T — A,/)Y, C Y,—1 for all n > 1. Then
(|An]) is not bounded below (in the sense given in Section 3.4). The same
conclusion holds if we have a strictly decreasing sequence of closed
subspaces of X: Z1 D Z, D Z3 D -+ such that (T — A\,1)Z, D Zy41 for
all ne N.
Proof. We give a proof for the increasing case, with the decreasing case
being similar. ASSUME (\,) is a sequence of scalars satisfying the stated
conditions, where (|A,|) is bounded below. Then there is r > 0 such that
|An| > r for all n € N. By Theorem 2.33 (Riesz's Lemma) with € = 1/2,
for each n € N there is a unit vector y, € Y, with d(yn, Yo—1) > 1/2.
Consider the resulting sequence (of “almost perpendiculars”) (y,). For any
k < n we have
I Tyk = Tyall = | = Anyn +{(T = MD)yk = (T = Anl)yn + Aeyic -
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Lemma 9.14

Lemma 9.14 (continued)

Proof (continued). We hypothesized that (T — A\,/)Y, C Y,-1, so
(T — Anl)yn € Yp_1, since k < nthen Agyx € Yx C Yp_1, and

Yk € Yk C Y, implies (by hypothesis) (T — \¢/) Yk € Yp—1. So

{(T - Ak/))/k - (T - )\nl))/n + )\k}/k} € Th-1 and

{(T — )\kl)yk — (T — /\,,l)y,, + /\kyk}/)\n € Yno1.
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Lemma 9.14 (continued)

Proof (continued). We hypothesized that (T — A\,/)Y, C Y,-1, so

(T — Anl)yn € Yp_1, since k < nthen Agyx € Yx C Yp_1, and

Yk € Yk C Y, implies (by hypothesis) (T — \¢/) Yk € Yp—1. So

{(T - Ak/))/k - (T - )\nl))/n + )\k}/k} € Th-1 and

{(T =XcDyk = (T = Aol yn + MYk} /An € Yn—1. Hence by the choice of
¥n We have

175 = Tyl = Pallyn — €7 = Al = (T = Aal)ya + My /Aol
> Anld (v Yoo1) = /2.

But the sequence (Ty,) C X cannot have a Cauchy subsequence and
hence cannot have a convergent subsequence. But this contradicts the
definition of compact operator (see page 187), CONTRADICTING the
fact that T is compact.
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Lemma 9.14 (continued)

Proof (continued). We hypothesized that (T — A\,/)Y, C Y,-1, so

(T — Anl)yn € Yp_1, since k < nthen Agyx € Yx C Yp_1, and

Yk € Yk C Y, implies (by hypothesis) (T — \¢/) Yk € Yp—1. So

{(T - Ak/))/k - (T - )\nl))/n + )\k}/k} € Tp-1 and

{(T =XcDyk = (T = Aol yn + MYk} /An € Yn—1. Hence by the choice of

¥n We have
I Tyic = Tyall = [Aalllyn = (T = Ael)yie = (T = Aal)yn + Ayi}/Anll

> ’)\n’d(yn; Yn—l) > r/2-

But the sequence (Ty,) C X cannot have a Cauchy subsequence and
hence cannot have a convergent subsequence. But this contradicts the
definition of compact operator (see page 187), CONTRADICTING the
fact that T is compact. So the assumption that (|A,|) is bounded below is
false, and sequence (\,) satisfying the stated conditions must satisfy the
fact that (J]\,]|) is not bounded below. O
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Corollary 9.4.A

Corollary 9.4.A. Let A be a nonzero scalar and let T € B(X) be compact
where X is a Banach space. If S = T — A/ is onto then it is one to one.
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Corollary 9.4.A

Corollary 9.4.A. Let A be a nonzero scalar and let T € B(X) be compact
where X is a Banach space. If S = T — A/ is onto then it is one to one.

Proof. Consider the sequence of scalars (A,) where A\, = X for all n € N.
Then (|An|) is bounded below and with Y, = N(S") for n € N, we have
N(S) C N(S?) C N(S3) C --- (notice that these nullspaces are all
topologically closed) and

(T = A)Yn =S¥, = S(N(S")) € N(S"1) = Y1

for all n > 1 (since x € N(S") implies S"x = 0, so Sx € N(5"1) because
S"71(Sx) = S"x = 0).
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Corollary 9.4.A

Corollary 9.4.A. Let A be a nonzero scalar and let T € B(X) be compact
where X is a Banach space. If S = T — A/ is onto then it is one to one.

Proof. Consider the sequence of scalars (A,) where A\, = X for all n € N.
Then (|An|) is bounded below and with Y, = N(S") for n € N, we have
N(S) C N(S?) C N(S3) C --- (notice that these nullspaces are all
topologically closed) and

(T = A)Yn =S¥, = S(N(S")) € N(S"1) = Y1

for all n > 1 (since x € N(S") implies S"x = 0, so Sx € N(5"1) because
S$"1(Sx) = S"x = 0). Therefore, Lemma 9.14 implies that the sequence
N(S) C N(S%) c N(S3) C --- cannot be strictly increasing. With S onto,

by Lemma 9.13(b) we have that S must be one to one. O
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Proposition 9.15

Proposition 9.15

Proposition 9.15. Let X be a Banach space and let T € B(X) be a

compact operator. Then the range R(T — /) is (topologically) closed.
(This is the range of R — A\l where A =1.)
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Proposition 9.15

Proposition 9.15. Let X be a Banach space and let T € B(X) be a
compact operator. Then the range R(T — /) is (topologically) closed.
(This is the range of R — A\l where A =1.)

Proof. Let S = T — | and consider the quotient space X/N(S). Then we
have (see page 32) S = Sy where w: X — X/N(S) is the onto canonical
projection m(x) = x + N(S) and S1 : X/N(S) — X is a onto to one
mapping defined as S;(x + N(S)) = Sx (S — 1 is denoted “T" on page
32).
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Proposition 9.15

Proposition 9.15. Let X be a Banach space and let T € B(X) be a
compact operator. Then the range R(T — /) is (topologically) closed.
(This is the range of R — A\l where A =1.)

Proof. Let S = T — | and consider the quotient space X/N(S). Then we
have (see page 32) S = Sy where w: X — X/N(S) is the onto canonical
projection m(x) = x + N(S) and S1 : X/N(S) — X is a onto to one
mapping defined as S;(x + N(S)) = Sx (S — 1 is denoted “T" on page
32).

First, we show that S; is bounded below (see Section 3.4). ASSUME S is
not bounded below. Then there is a sequence of unit vectors
(zn) € X/N(S) such that S1z, — 0. Let z, = x, + N(S).
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Proposition 9.15

Proposition 9.15. Let X be a Banach space and let T € B(X) be a
compact operator. Then the range R(T — /) is (topologically) closed.
(This is the range of R — A\l where A =1.)

Proof. Let S = T — | and consider the quotient space X/N(S). Then we
have (see page 32) S = Sy where w: X — X/N(S) is the onto canonical
projection m(x) = x + N(S) and S1 : X/N(S) — X is a onto to one
mapping defined as S;(x + N(S)) = Sx (S — 1 is denoted “T" on page
32).

First, we show that S; is bounded below (see Section 3.4). ASSUME S is
not bounded below. Then there is a sequence of unit vectors
(zn) C X/N(S) such that S1z, — 0. Let z, = x, + N(S). Then by the
definition of the norm on X/N(S),
llzn|| = d(zn, N(S)) = inf{||x, — z|| | z€ N(S)} = 1. So fall all ¢ > 0
there is 2/ € N(S) such that d(x,,a) < 1+e. In particular, with e =1,
there is z, € N(S) such that d(xp,z),) = |[x» — z,|| < 2.
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Proposition 9.15 (continued 1)

Proof (continued). Now x, — z,, € x + N(S) and

7(xp — 2,) = 7(xn) = zn. For for each n € R, there is x}, € X (in our
notation, x,, = x, — z,,). Then by Lemma 9.1.B, the bounded sequence
{x3}, the sequence (Tx;) has a convergent subsequence, say (Txj, ).
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Proposition 9.15 (continued 1)

Proof (continued). Now x, — z,, € x + N(S) and
7(xp — 2,) = 7(xn) = zn. For for each n € R, there is x}, € X (in our
notation, x,, = x, — z,,). Then by Lemma 9.1.B, the bounded sequence

{x3}, the sequence (Tx;) has a convergent subsequence, say (Tx; ). But
also

Sxp, = (S17)x, since S = Sy

= S1z, since w(x,) = zp,

so that Sx,, = 51z, — 0. This means, since S =T —/,

Xpe = Ixn, = (T = S)Xn, = TXp, — SXn, = z—0=x.
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Proposition 9.15 (continued 1)

Proof (continued). Now x, — z,, € x + N(S) and
7(xp — 2,) = 7(xn) = zn. For for each n € R, there is x}, € X (in our
notation, x,, = x, — z,,). Then by Lemma 9.1.B, the bounded sequence
{x3}, the sequence (Tx;) has a convergent subsequence, say (Tx; ). But
also

Sxp, = (S17)x, since S = Sy

= S1z, since w(x,) = zp,
so that Sx,, = 51z, — 0. This means, since S =T —/,
Xpe = Ixn, = (T = S)Xn, = TXp, — SXn, = z—0=x.

Since S = T — | is bounded then it is continuous (by Theorem 2.6) and so
Sxp, — Sx, and so Sx =0 and x € N(S). Hence 7(x) = 0. By Theorem
2.27(c), ||| = 1 and so it is a bounded linear operator and hence is
continuous (Theorem 2.6), so z,, = 7(xp,) — 7(x) = 0. But each x,, is a
unit vector (by choice) and a limit of unit vectors cannot equal the 0
vector (because the norm is continuous), a CONTRADICTION.
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Proposition 9.15

Proposition 9.15 (continued 2)

Proposition 9.15. Let X be a Banach space and let T € B(X) be a

compact operator. Then the range R(T — /) is closed. (This is the range
of R — Al where A = 1.)
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Proposition 9.15 (continued 2)

Proposition 9.15. Let X be a Banach space and let T € B(X) be a
compact operator. Then the range R(T — /) is closed. (This is the range
of R — Al where A = 1.)

Proof (continued). So the assumption that S is not bounded below. By

Theorem 3.6, R(S1) is closed . Since 7w : X — X/N(S) is onto and
S = Sy, then R(S) = R(S1) and so R(S) = R(T — 1) is closed. O
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Corollary 9.4.B

Corollary 9.4.B. Let A be a nonzero scalar and let T € B(X) be compact
where X is a Banach space. If S = T — A/ is one to one then it is onto.
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Corollary 9.4.B

Corollary 9.4.B

Corollary 9.4.B. Let A be a nonzero scalar and let T € B(X) be compact
where X is a Banach space. If S = T — A/ is one to one then it is onto.

Proof. Consider the sequence of scalars (A,) where A\, = A for all n € N,
Then (|An]) is bounded below and with Y,, = R(S") for n € N we have
R(S) D R(5%) D R(S3) D --- and each R(S) is a (topologically) closed
subspace of X by Proposition 9.15.
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Corollary 9.4.B

Corollary 9.4.B. Let A be a nonzero scalar and let T € B(X) be compact
where X is a Banach space. If S = T — A/ is one to one then it is onto.

Proof. Consider the sequence of scalars (A,) where A\, = A for all n € N,
Then (|An]) is bounded below and with Y,, = R(S") for n € N we have
R(S) D R(5%) D R(S3) D --- and each R(S) is a (topologically) closed
subspace of X by Proposition 9.15. So by Lemma 9.14 the sequence

R(S) D R(5%) D R(S3) D --- (with Y, = R(S")) cannot be strictly
increasing. With S one to one, by Lemma 9.13(a) we have that S must be

onto. ]
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Theorem 9.16

Theorem 9.16. Let T be a compact operator in B(X), in which X is a
Banach space. Then, the nonzero elements of the spectrum of T are
eigenvalues. There are only countably many eigenvalues, and, in the case
of infinitely many, they form a sequence tending to 0. The eigenspaces are
all finite-dimensional.
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Theorem 9.16

Theorem 9.16. Let T be a compact operator in B(X), in which X is a
Banach space. Then, the nonzero elements of the spectrum of T are
eigenvalues. There are only countably many eigenvalues, and, in the case
of infinitely many, they form a sequence tending to 0. The eigenspaces are
all finite-dimensional.

Proof. Let A £ 0. If T — Al is one to one then it is onto by Corollary
9.4.B. So T — Al is then a bijection and hence is invertible. So A cannot
be in the spectrum then T — A/ must not be invertible and hence (by
definition) A is in the point spectrum of T; that is, A is an eigenvalue of T
and the first claim holds.
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Theorem 9.16

Theorem 9.16. Let T be a compact operator in B(X), in which X is a
Banach space. Then, the nonzero elements of the spectrum of T are
eigenvalues. There are only countably many eigenvalues, and, in the case
of infinitely many, they form a sequence tending to 0. The eigenspaces are
all finite-dimensional.

Proof. Let A £ 0. If T — Al is one to one then it is onto by Corollary
9.4.B. So T — Al is then a bijection and hence is invertible. So A cannot
be in the spectrum then T — A/ must not be invertible and hence (by
definition) A is in the point spectrum of T; that is, A is an eigenvalue of T
and the first claim holds.

Now we show the eigenspaces are finite dimensional. Suppose we have a
sequence of vectors (x,) of norm less than 1 in the eigenspace for
eigenvalue A. Since (x,) is bounded and T is, by hypothesis, compact
then by Corollary 9.1.B the sequence (Tx,) has a convergent subsequence,
say (Txp,)-

Introduction to Functional Analysis May 16, 2017 12 / 14



Theorem 9.16 (continued 1)

Proof (continued). Since the x,,'s are in the eigenspace, the convergent
subsequence satisfies ( Txp, ) = Axp, ). Since (Axn,) = A(Xn,) converges
then (xp,) converges. So arbitrary sequence (x,) in the open unit ball of
the eigenspace has a convergent subsequence, then by Corollary 9.1.A the
open unit ball of the eigenspace is relatively compact.
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Theorem 9.16 (continued 1)

Proof (continued). Since the x,,'s are in the eigenspace, the convergent
subsequence satisfies ( Txp, ) = Axp, ). Since (Axn,) = A(Xn,) converges
then (xp,) converges. So arbitrary sequence (x,) in the open unit ball of
the eigenspace has a convergent subsequence, then by Corollary 9.1.A the
open unit ball of the eigenspace is relatively compact. That is, B(1) is a
compact subset of the eigenspace. So by Reisz'z Theorem (Theorem 2.34)
the eigenspace is finite dimensional.
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Theorem 9.16 (continued 1)

Proof (continued). Since the x,,'s are in the eigenspace, the convergent
subsequence satisfies ( Txp, ) = Axp, ). Since (Axn,) = A(Xn,) converges
then (xp,) converges. So arbitrary sequence (x,) in the open unit ball of
the eigenspace has a convergent subsequence, then by Corollary 9.1.A the
open unit ball of the eigenspace is relatively compact. That is, B(1) is a
compact subset of the eigenspace. So by Reisz'z Theorem (Theorem 2.34)
the eigenspace is finite dimensional.

We now consider the number and distribution of the eigenvalues. For any
r > 0. Let & be the set of all eigenvalues of T with absolute
value/modulus greater than r.
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Theorem 9.16 (continued 1)

Proof (continued). Since the x,,'s are in the eigenspace, the convergent
subsequence satisfies ( Txp, ) = Axp, ). Since (Axn,) = A(Xn,) converges
then (xp,) converges. So arbitrary sequence (x,) in the open unit ball of
the eigenspace has a convergent subsequence, then by Corollary 9.1.A the
open unit ball of the eigenspace is relatively compact. That is, B(1) is a
compact subset of the eigenspace. So by Reisz'z Theorem (Theorem 2.34)
the eigenspace is finite dimensional.

We now consider the number and distribution of the eigenvalues. For any
r > 0. Let & be the set of all eigenvalues of T with absolute
value/modulus greater than r. ASSUME &, is infinite. Then we can
choose a sequence of distinct eigenvalues (Ax) in &,. Let xx be an
eigenvector for Ax and let Y, = span{xi, x2,...,x,}. Since x, is an
eigenvector for A, then (T — \,/)x, = 0.
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Theorem 9.16 (continued 1)

Proof (continued).
Notice that for a < kK < n— 1 we have

(T — )\nl)Xk = tX) — ApXk = AeXk — ApXi = ()\k — )\n)Xk €Y1,
so (T —=Ap)Yn C Yoo1.
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Theorem 9.16 (continued 1)

Proof (continued).
Notice that for a < kK < n— 1 we have

(T — )\nl)Xk = Xk — AnXk = Ak Xk — AnXk = ()\k — )\n)Xk € Y,,,l,

so (T — Apl)Y, C Yn—1. Promislow borrows a “basic fact” from linear
algebra that a set of vectors for distinct eigenvalues is linearly independent.
So Y1 C Yo C Y3 C .- is a strictly increasing sequence of closed
subspaces (by Theorem 2.31(c), since Y, is finite dimensional). Now

(An) C &r so [Ap| > r for all n € N. But this implies that the sequence
|An| is bounded below (see Section 3.4), CONTRADICTING Lemma 9.14.
So the assumption that &, is infinite is false and hence each &, is finite.
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Theorem 9.16 (continued 1)

Proof (continued).
Notice that for a < kK < n— 1 we have

(T — )\nl)Xk = Xk — AnXk = Ak Xk — AnXk = ()\k — )\n)Xk € Y,,,l,

so (T — Apl)Y, C Yn—1. Promislow borrows a “basic fact” from linear
algebra that a set of vectors for distinct eigenvalues is linearly independent.
So Y1 C Yo C Y3 C .- is a strictly increasing sequence of closed
subspaces (by Theorem 2.31(c), since Y, is finite dimensional). Now

(An) C &r so [Ap| > r for all n € N. But this implies that the sequence
|An| is bounded below (see Section 3.4), CONTRADICTING Lemma 9.14.
So the assumption that &, is infinite is false and hence each &, is finite. So
the set of eigenvalues for T is U;2; &/, (with O possibly included) and so
is countable. If there are an infinite number of eigenvalues then for each

€ > 0, the open ball centered at 0 with radius € contains infinitely many
eigenvalues (all but the finitely many in &) and hence the eigenvalues of
T (no matter how enumerated) from a sequence with limit 0. O
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