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Lemma 9.13

Lemma 9.13

Lemma 9.13. Let S be a linear operator from any linear space to itself.
Consider the nested subsequences of subspace:
R(S) ⊃ R(S2) ⊃ R(S3) ⊃ · · · and N(S) ⊂ N(S2) ⊂ N(S3) ⊂ · · · .

(a) Suppose that S is one to one (injective) but not onto
(surjective). Then all inclusions in the range sequence are
strict.

(b) Suppose that S is onto (surjective) but not one to one
(injective). Then all inclusions in the null space sequence are
strict.

Proof. (a) Suppose that S is one to one. If S is not onto, we can choose
x1 6∈ R(S). For this x1, consider Sx1. Certainly Sx1 ∈ R(S). ASSUME
Sx1 ∈ R(S2). Then Sx1 = S2y for some y . But since S is one to one then
this implies x1 = Sy and so x1 ∈ R(S), a CONTRADICTION.

So
Sx 6∈ R(S2) and R(S2) is a proper subset of R(S). Similarly we can show
there is some xk with Skxk ∈ R(Sk) but Skxk 6∈ R(Sk+1).
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Lemma 9.13

Lemma 9.13 (continued)

Lemma 9.13. Let S be a linear operator from any linear space to itself.
Consider the nested subsequences of subspace:
R(S) ⊃ R(S2) ⊃ R(S3) ⊃ · · · and N(S) ⊂ N(S2) ⊂ N(S3) ⊂ · · · .

(a) Suppose that S is one to one (injective) but not onto
(surjective). Then all inclusions in the range sequence are
strict.

(b) Suppose that S is onto (surjective) but not one to one
(injective). Then all inclusions in the null space sequence are
strict.

Proof (continued). (b) Suppose that S is onto. If S is not one to one,
we can choose z1 6= 0 in N(S) (recall that S is one to one if and only if
N(S) = {0}; see page 5). Since S is onto, x = Sx1 for some x1.

So
S2x1 = Sz = 0 and x1 ∈ N(S2) but x1 6∈ N(S) since Sx1 = z 6= 0.
Similarly, we can show there is xk ∈ N(Sk+1) but xk 6∈ N(Sk).
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Lemma 9.14

Lemma 9.14

Lemma 9.14. Let X be a Banach space and let Y ∈ B(X ) be compact.
Let (λn) be a sequence of real or complex scalars. Suppose we have a
strictly increasing sequence of (topologically) closed subspaces of X :
Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · such that (T − λnI )Yn ⊂ Yn−1 for all n > 1. Then
(|λn|) is not bounded below (in the sense given in Section 3.4). The same
conclusion holds if we have a strictly decreasing sequence of closed
subspaces of X : Z1 ⊃ Z2 ⊃ Z3 ⊃ · · · such that (T − λnI )Zn ⊃ Zn+1 for
all n ∈ N.
Proof. We give a proof for the increasing case, with the decreasing case
being similar. ASSUME (λn) is a sequence of scalars satisfying the stated
conditions, where (|λn|) is bounded below. Then there is r > 0 such that
|λn| ≥ r for all n ∈ N. By Theorem 2.33 (Riesz’s Lemma) with ε = 1/2,
for each n ∈ N there is a unit vector yn ∈ Yn with d(yn,Yn−1) ≥ 1/2.

Consider the resulting sequence (of “almost perpendiculars”) (yn). For any
k < n we have

‖Tyk − Tyn‖ = ‖ − λnyn + {(T − λk I )yk − (T − λnI )yn + λkyk}‖.

() Introduction to Functional Analysis May 16, 2017 5 / 14



Lemma 9.14

Lemma 9.14

Lemma 9.14. Let X be a Banach space and let Y ∈ B(X ) be compact.
Let (λn) be a sequence of real or complex scalars. Suppose we have a
strictly increasing sequence of (topologically) closed subspaces of X :
Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · such that (T − λnI )Yn ⊂ Yn−1 for all n > 1. Then
(|λn|) is not bounded below (in the sense given in Section 3.4). The same
conclusion holds if we have a strictly decreasing sequence of closed
subspaces of X : Z1 ⊃ Z2 ⊃ Z3 ⊃ · · · such that (T − λnI )Zn ⊃ Zn+1 for
all n ∈ N.
Proof. We give a proof for the increasing case, with the decreasing case
being similar. ASSUME (λn) is a sequence of scalars satisfying the stated
conditions, where (|λn|) is bounded below. Then there is r > 0 such that
|λn| ≥ r for all n ∈ N. By Theorem 2.33 (Riesz’s Lemma) with ε = 1/2,
for each n ∈ N there is a unit vector yn ∈ Yn with d(yn,Yn−1) ≥ 1/2.
Consider the resulting sequence (of “almost perpendiculars”) (yn). For any
k < n we have

‖Tyk − Tyn‖ = ‖ − λnyn + {(T − λk I )yk − (T − λnI )yn + λkyk}‖.
() Introduction to Functional Analysis May 16, 2017 5 / 14



Lemma 9.14

Lemma 9.14

Lemma 9.14. Let X be a Banach space and let Y ∈ B(X ) be compact.
Let (λn) be a sequence of real or complex scalars. Suppose we have a
strictly increasing sequence of (topologically) closed subspaces of X :
Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · such that (T − λnI )Yn ⊂ Yn−1 for all n > 1. Then
(|λn|) is not bounded below (in the sense given in Section 3.4). The same
conclusion holds if we have a strictly decreasing sequence of closed
subspaces of X : Z1 ⊃ Z2 ⊃ Z3 ⊃ · · · such that (T − λnI )Zn ⊃ Zn+1 for
all n ∈ N.
Proof. We give a proof for the increasing case, with the decreasing case
being similar. ASSUME (λn) is a sequence of scalars satisfying the stated
conditions, where (|λn|) is bounded below. Then there is r > 0 such that
|λn| ≥ r for all n ∈ N. By Theorem 2.33 (Riesz’s Lemma) with ε = 1/2,
for each n ∈ N there is a unit vector yn ∈ Yn with d(yn,Yn−1) ≥ 1/2.
Consider the resulting sequence (of “almost perpendiculars”) (yn). For any
k < n we have

‖Tyk − Tyn‖ = ‖ − λnyn + {(T − λk I )yk − (T − λnI )yn + λkyk}‖.
() Introduction to Functional Analysis May 16, 2017 5 / 14



Lemma 9.14

Lemma 9.14 (continued)

Proof (continued). We hypothesized that (T − λnI )Yn ⊂ Yn−1, so
(T − λnI )yn ∈ Yn−1, since k < n then λkyk ∈ Yk ⊂ Yn−1, and
yk ∈ Yk ⊂ Yn implies (by hypothesis) (T − λk I )Yk ∈ Yn−1. So
{(T − λk I )yk − (T − λnI )yn + λkyk} ∈ Tn−1 and
{(T − λk I )yk − (T − λnI )yn + λkyk}/λn ∈ Yn−1. Hence by the choice of
yn we have

‖Tyk − Tyn‖ = |λn|‖yn − {(T − λk I )yk − (T − λnI )yn + λkyk}/λn‖

≥ |λn|d(yn,Yn−1) ≥ r/2.

But the sequence (Tyn) ⊂ X cannot have a Cauchy subsequence and
hence cannot have a convergent subsequence. But this contradicts the
definition of compact operator (see page 187), CONTRADICTING the
fact that T is compact.

So the assumption that (|λn|) is bounded below is
false, and sequence (λn) satisfying the stated conditions must satisfy the
fact that (|λn|) is not bounded below.
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Corollary 9.4.A

Corollary 9.4.A

Corollary 9.4.A. Let λ be a nonzero scalar and let T ∈ B(X ) be compact
where X is a Banach space. If S = T − λI is onto then it is one to one.

Proof. Consider the sequence of scalars (λn) where λn = λ for all n ∈ N.
Then (|λn|) is bounded below and with Yn = N(Sn) for n ∈ N, we have
N(S) ⊂ N(S2) ⊂ N(S3) ⊂ · · · (notice that these nullspaces are all
topologically closed) and

(T − λI )Yn = SYn = S(N(Sn)) ⊂ N(Sn−1) = Yn−1

for all n > 1 (since x ∈ N(Sn) implies Snx = 0, so Sx ∈ N(Sn−1) because
Sn−1(Sx) = Snx = 0).

Therefore, Lemma 9.14 implies that the sequence
N(S) ⊂ N(S2) ⊂ N(S3) ⊂ · · · cannot be strictly increasing. With S onto,
by Lemma 9.13(b) we have that S must be one to one.
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Proposition 9.15

Proposition 9.15

Proposition 9.15. Let X be a Banach space and let T ∈ B(X ) be a
compact operator. Then the range R(T − I ) is (topologically) closed.
(This is the range of R − λI where λ = 1.)

Proof. Let S = T − I and consider the quotient space X/N(S). Then we
have (see page 32) S = S1π where π : X → X/N(S) is the onto canonical
projection π(x) = x + N(S) and S1 : X/N(S) → X is a onto to one
mapping defined as S1(x + N(S)) = Sx (S − 1 is denoted “T̃” on page
32).

First, we show that S1 is bounded below (see Section 3.4). ASSUME S1 is
not bounded below. Then there is a sequence of unit vectors
(zn) ⊂ X/N(S) such that S1zn → 0. Let zn = xn + N(S). Then by the
definition of the norm on X/N(S),
‖zn‖ = d(zn,N(S)) = inf{‖xn − z‖ | z ∈ N(S)} = 1. So fall all ε > 0
there is z ′ ∈ N(S) such that d(xn, a) < 1 + ε. In particular, with ε = 1,
there is z ′n ∈ N(S) such that d(xn, z

′
n) = ‖xn − z ′n‖ ≤ 2.
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Proposition 9.15

Proposition 9.15 (continued 1)

Proof (continued). Now xn − z ′n ∈ x + N(S) and
π(xn − z ′n) = π(xn) = zn. For for each n ∈ R, there is x ′n ∈ X (in our
notation, x ′n = xn − z ′n). Then by Lemma 9.1.B, the bounded sequence
{x ′n}, the sequence (Tx ′n) has a convergent subsequence, say (Tx ′nk

). But
also

Sxn = (S1π)xn since S = S1π

= S1zn since π(xn) = zn,

so that Sxnk
= S1znk

→ 0. This means, since S = T − I ,

xnk
= Ixnk

= (T − S)xnk
= Txnk

− Sxnk
→ z − 0 = x .

Since S = T − I is bounded then it is continuous (by Theorem 2.6) and so
Sxnk

→ Sx , and so Sx = 0 and x ∈ N(S). Hence π(x) = 0. By Theorem
2.27(c), ‖π‖ = 1 and so it is a bounded linear operator and hence is
continuous (Theorem 2.6), so znk

= π(xnk
) → π(x) = 0. But each xnk

is a
unit vector (by choice) and a limit of unit vectors cannot equal the 0
vector (because the norm is continuous), a CONTRADICTION.
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is a
unit vector (by choice) and a limit of unit vectors cannot equal the 0
vector (because the norm is continuous), a CONTRADICTION.
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Proposition 9.15 (continued 2)

Proposition 9.15. Let X be a Banach space and let T ∈ B(X ) be a
compact operator. Then the range R(T − I ) is closed. (This is the range
of R − λI where λ = 1.)

Proof (continued). So the assumption that S1 is not bounded below. By
Theorem 3.6, R(S1) is closed . Since π : X → X/N(S) is onto and
S = S1π, then R(S) = R(S1) and so R(S) = R(T − I ) is closed.
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Corollary 9.4.B

Corollary 9.4.B. Let λ be a nonzero scalar and let T ∈ B(X ) be compact
where X is a Banach space. If S = T − λI is one to one then it is onto.

Proof. Consider the sequence of scalars (λn) where λn = λ for all n ∈ N.
Then (|λn|) is bounded below and with Yn = R(Sn) for n ∈ N we have
R(S) ⊃ R(S2) ⊃ R(S3) ⊃ · · · and each R(S) is a (topologically) closed
subspace of X by Proposition 9.15.

So by Lemma 9.14 the sequence
R(S) ⊃ R(S2) ⊃ R(S3) ⊃ · · · (with Yn = R(Sn)) cannot be strictly
increasing. With S one to one, by Lemma 9.13(a) we have that S must be
onto.
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Theorem 9.16

Theorem 9.16. Let T be a compact operator in B(X ), in which X is a
Banach space. Then, the nonzero elements of the spectrum of T are
eigenvalues. There are only countably many eigenvalues, and, in the case
of infinitely many, they form a sequence tending to 0. The eigenspaces are
all finite-dimensional.

Proof. Let λ 6= 0. If T − λI is one to one then it is onto by Corollary
9.4.B. So T − λI is then a bijection and hence is invertible. So λ cannot
be in the spectrum then T − λI must not be invertible and hence (by
definition) λ is in the point spectrum of T ; that is, λ is an eigenvalue of T
and the first claim holds.

Now we show the eigenspaces are finite dimensional. Suppose we have a
sequence of vectors (xn) of norm less than 1 in the eigenspace for
eigenvalue λ. Since (xn) is bounded and T is, by hypothesis, compact
then by Corollary 9.1.B the sequence (Txn) has a convergent subsequence,
say (Txnk

).
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Theorem 9.16

Theorem 9.16 (continued 1)

Proof (continued). Since the xnk
’s are in the eigenspace, the convergent

subsequence satisfies (Txnk
) = λxnk

). Since (λxnk
) = λ(xnk

) converges
then (xnk

) converges. So arbitrary sequence (xn) in the open unit ball of
the eigenspace has a convergent subsequence, then by Corollary 9.1.A the
open unit ball of the eigenspace is relatively compact. That is, B(1) is a
compact subset of the eigenspace. So by Reisz’z Theorem (Theorem 2.34)
the eigenspace is finite dimensional.

We now consider the number and distribution of the eigenvalues. For any
r > 0. Let Er be the set of all eigenvalues of T with absolute
value/modulus greater than r . ASSUME Er is infinite. Then we can
choose a sequence of distinct eigenvalues (λk) in Er . Let xk be an
eigenvector for λk and let Yn = span{x1, x2, . . . , xn}. Since xn is an
eigenvector for λn then (T − λnI )xn = 0.
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Theorem 9.16 (continued 1)

Proof (continued).
Notice that for a ≤ k ≤ n − 1 we have

(T − λnI )xk = txk − λnxk = λkxk − λnxk = (λk − λn)xk ∈ Yn−1,

so (T − λnI )Yn ⊂ Yn−1. Promislow borrows a “basic fact” from linear
algebra that a set of vectors for distinct eigenvalues is linearly independent.
So Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · is a strictly increasing sequence of closed
subspaces (by Theorem 2.31(c), since Yn is finite dimensional). Now
(λn) ⊂ Er so |λn| ≥ r for all n ∈ N. But this implies that the sequence
|λn| is bounded below (see Section 3.4), CONTRADICTING Lemma 9.14.
So the assumption that Er is infinite is false and hence each Er is finite.

So
the set of eigenvalues for T is ∪∞n=1E1/m (with 0 possibly included) and so
is countable. If there are an infinite number of eigenvalues then for each
ε > 0, the open ball centered at 0 with radius ε contains infinitely many
eigenvalues (all but the finitely many in Eε) and hence the eigenvalues of
T (no matter how enumerated) from a sequence with limit 0.
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