Introduction to Functional Analysis

Chapter 9. Compact Operators 9.4. Spectrum of a Compact Operator—Proofs of Theorems

Table of contents

- 1 Lemma 9.13
- 2 Lemma 9.14
- 3 Corollary 9.4.A
- Proposition 9.15
- 5 Corollary 9.4.B
- 6 Theorem 9.16

Lemma 9.13. Let S be a linear operator from any linear space to itself. Consider the nested subsequences of subspace:

 $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ and $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$.

- (a) Suppose that S is one to one (injective) but not onto (surjective). Then all inclusions in the range sequence are strict.
- (b) Suppose that S is onto (surjective) but not one to one (injective). Then all inclusions in the null space sequence are strict.

Proof. (a) Suppose that S is one to one. If S is not onto, we can choose $x_1 \notin R(S)$. For this x_1 , consider Sx_1 . Certainly $Sx_1 \in R(S)$. ASSUME $Sx_1 \in R(S^2)$. Then $Sx_1 = S^2y$ for some y. But since S is one to one then this implies $x_1 = Sy$ and so $x_1 \in R(S)$, a CONTRADICTION.

Lemma 9.13. Let S be a linear operator from any linear space to itself. Consider the nested subsequences of subspace:

 $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ and $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$.

- (a) Suppose that S is one to one (injective) but not onto (surjective). Then all inclusions in the range sequence are strict.
- (b) Suppose that S is onto (surjective) but not one to one (injective). Then all inclusions in the null space sequence are strict.

Proof. (a) Suppose that S is one to one. If S is not onto, we can choose $x_1 \notin R(S)$. For this x_1 , consider Sx_1 . Certainly $Sx_1 \in R(S)$. ASSUME $Sx_1 \in R(S^2)$. Then $Sx_1 = S^2y$ for some y. But since S is one to one then this implies $x_1 = Sy$ and so $x_1 \in R(S)$, a CONTRADICTION. So $Sx \notin R(S^2)$ and $R(S^2)$ is a proper subset of R(S). Similarly we can show there is some x_k with $S^k x_k \in R(S^k)$ but $S^k x_k \notin R(S^{k+1})$.

Lemma 9.13. Let S be a linear operator from any linear space to itself. Consider the nested subsequences of subspace:

 $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ and $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$.

- (a) Suppose that S is one to one (injective) but not onto (surjective). Then all inclusions in the range sequence are strict.
- (b) Suppose that S is onto (surjective) but not one to one (injective). Then all inclusions in the null space sequence are strict.

Proof. (a) Suppose that S is one to one. If S is not onto, we can choose $x_1 \notin R(S)$. For this x_1 , consider Sx_1 . Certainly $Sx_1 \in R(S)$. ASSUME $Sx_1 \in R(S^2)$. Then $Sx_1 = S^2y$ for some y. But since S is one to one then this implies $x_1 = Sy$ and so $x_1 \in R(S)$, a CONTRADICTION. So $Sx \notin R(S^2)$ and $R(S^2)$ is a proper subset of R(S). Similarly we can show there is some x_k with $S^k x_k \in R(S^k)$ but $S^k x_k \notin R(S^{k+1})$.

Lemma 9.13 (continued)

Lemma 9.13. Let S be a linear operator from any linear space to itself. Consider the nested subsequences of subspace:

 $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ and $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$.

- (a) Suppose that S is one to one (injective) but not onto (surjective). Then all inclusions in the range sequence are strict.
- (b) Suppose that S is onto (surjective) but not one to one (injective). Then all inclusions in the null space sequence are strict.

Proof (continued). (b) Suppose that *S* is onto. If *S* is not one to one, we can choose $z_1 \neq 0$ in N(S) (recall that *S* is one to one if and only if $N(S) = \{0\}$; see page 5). Since *S* is onto, $x = Sx_1$ for some x_1 .

Lemma 9.13 (continued)

Lemma 9.13. Let S be a linear operator from any linear space to itself. Consider the nested subsequences of subspace:

 $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ and $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$.

- (a) Suppose that S is one to one (injective) but not onto (surjective). Then all inclusions in the range sequence are strict.
- (b) Suppose that S is onto (surjective) but not one to one (injective). Then all inclusions in the null space sequence are strict.

Proof (continued). (b) Suppose that S is onto. If S is not one to one, we can choose $z_1 \neq 0$ in N(S) (recall that S is one to one if and only if $N(S) = \{0\}$; see page 5). Since S is onto, $x = Sx_1$ for some x_1 . So $S^2x_1 = Sz = 0$ and $x_1 \in N(S^2)$ but $x_1 \notin N(S)$ since $Sx_1 = z \neq 0$. Similarly, we can show there is $x_k \in N(S^{k+1})$ but $x_k \notin N(S^k)$.

Lemma 9.13 (continued)

Lemma 9.13. Let S be a linear operator from any linear space to itself. Consider the nested subsequences of subspace:

 $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ and $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$.

- (a) Suppose that S is one to one (injective) but not onto (surjective). Then all inclusions in the range sequence are strict.
- (b) Suppose that S is onto (surjective) but not one to one (injective). Then all inclusions in the null space sequence are strict.

Proof (continued). (b) Suppose that *S* is onto. If *S* is not one to one, we can choose $z_1 \neq 0$ in N(S) (recall that *S* is one to one if and only if $N(S) = \{0\}$; see page 5). Since *S* is onto, $x = Sx_1$ for some x_1 . So $S^2x_1 = Sz = 0$ and $x_1 \in N(S^2)$ but $x_1 \notin N(S)$ since $Sx_1 = z \neq 0$. Similarly, we can show there is $x_k \in N(S^{k+1})$ but $x_k \notin N(S^k)$.

Lemma 9.14. Let X be a Banach space and let $Y \in \mathcal{B}(X)$ be compact. Let (λ_n) be a sequence of real or complex scalars. Suppose we have a strictly increasing sequence of (topologically) closed subspaces of X: $Y_1 \subset Y_2 \subset Y_3 \subset \cdots$ such that $(T - \lambda_n I)Y_n \subset Y_{n-1}$ for all n > 1. Then $(|\lambda_n|)$ is not bounded below (in the sense given in Section 3.4). The same conclusion holds if we have a strictly decreasing sequence of closed subspaces of X: $Z_1 \supset Z_2 \supset Z_3 \supset \cdots$ such that $(T - \lambda_n I)Z_n \supset Z_{n+1}$ for all $n \in \mathbb{N}$.

Proof. We give a proof for the increasing case, with the decreasing case being similar. ASSUME (λ_n) is a sequence of scalars satisfying the stated conditions, where $(|\lambda_n|)$ is bounded below. Then there is r > 0 such that $|\lambda_n| \ge r$ for all $n \in \mathbb{N}$. By Theorem 2.33 (Riesz's Lemma) with $\varepsilon = 1/2$, for each $n \in \mathbb{N}$ there is a unit vector $y_n \in Y_n$ with $d(y_n, Y_{n-1}) \ge 1/2$.

Lemma 9.14. Let X be a Banach space and let $Y \in \mathcal{B}(X)$ be compact. Let (λ_n) be a sequence of real or complex scalars. Suppose we have a strictly increasing sequence of (topologically) closed subspaces of X: $Y_1 \subset Y_2 \subset Y_3 \subset \cdots$ such that $(T - \lambda_n I)Y_n \subset Y_{n-1}$ for all n > 1. Then $(|\lambda_n|)$ is not bounded below (in the sense given in Section 3.4). The same conclusion holds if we have a strictly decreasing sequence of closed subspaces of X: $Z_1 \supset Z_2 \supset Z_3 \supset \cdots$ such that $(T - \lambda_n I)Z_n \supset Z_{n+1}$ for all $n \in \mathbb{N}$.

Proof. We give a proof for the increasing case, with the decreasing case being similar. ASSUME (λ_n) is a sequence of scalars satisfying the stated conditions, where $(|\lambda_n|)$ is bounded below. Then there is r > 0 such that $|\lambda_n| \ge r$ for all $n \in \mathbb{N}$. By Theorem 2.33 (Riesz's Lemma) with $\varepsilon = 1/2$, for each $n \in \mathbb{N}$ there is a unit vector $y_n \in Y_n$ with $d(y_n, Y_{n-1}) \ge 1/2$. Consider the resulting sequence (of "almost perpendiculars") (y_n) . For any k < n we have

$$\|Ty_k - Ty_n\| = \|-\lambda_n y_n + \{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\}\|.$$

Lemma 9.14. Let X be a Banach space and let $Y \in \mathcal{B}(X)$ be compact. Let (λ_n) be a sequence of real or complex scalars. Suppose we have a strictly increasing sequence of (topologically) closed subspaces of X: $Y_1 \subset Y_2 \subset Y_3 \subset \cdots$ such that $(T - \lambda_n I)Y_n \subset Y_{n-1}$ for all n > 1. Then $(|\lambda_n|)$ is not bounded below (in the sense given in Section 3.4). The same conclusion holds if we have a strictly decreasing sequence of closed subspaces of X: $Z_1 \supset Z_2 \supset Z_3 \supset \cdots$ such that $(T - \lambda_n I)Z_n \supset Z_{n+1}$ for all $n \in \mathbb{N}$.

Proof. We give a proof for the increasing case, with the decreasing case being similar. ASSUME (λ_n) is a sequence of scalars satisfying the stated conditions, where $(|\lambda_n|)$ is bounded below. Then there is r > 0 such that $|\lambda_n| \ge r$ for all $n \in \mathbb{N}$. By Theorem 2.33 (Riesz's Lemma) with $\varepsilon = 1/2$, for each $n \in \mathbb{N}$ there is a unit vector $y_n \in Y_n$ with $d(y_n, Y_{n-1}) \ge 1/2$. Consider the resulting sequence (of "almost perpendiculars") (y_n) . For any k < n we have

$$\|Ty_k - Ty_n\| = \|-\lambda_n y_n + \{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\}\|.$$

Lemma 9.14 (continued)

Proof (continued). We hypothesized that $(T - \lambda_n I)Y_n \subset Y_{n-1}$, so $(T - \lambda_n I)y_n \in Y_{n-1}$, since k < n then $\lambda_k y_k \in Y_k \subset Y_{n-1}$, and $y_k \in Y_k \subset Y_n$ implies (by hypothesis) $(T - \lambda_k I)Y_k \in Y_{n-1}$. So $\{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\} \in T_{n-1}$ and $\{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\}/\lambda_n \in Y_{n-1}$. Hence by the choice of y_n we have

$$\|Ty_k - Ty_n\| = |\lambda_n| \|y_n - \{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\}/\lambda_n\|$$

$$\geq |\lambda_n| d(y_n, Y_{n-1}) \geq r/2.$$

But the sequence $(Ty_n) \subset X$ cannot have a Cauchy subsequence and hence cannot have a convergent subsequence. But this contradicts the definition of compact operator (see page 187), CONTRADICTING the fact that T is compact.

Lemma 9.14 (continued)

Proof (continued). We hypothesized that $(T - \lambda_n I)Y_n \subset Y_{n-1}$, so $(T - \lambda_n I)y_n \in Y_{n-1}$, since k < n then $\lambda_k y_k \in Y_k \subset Y_{n-1}$, and $y_k \in Y_k \subset Y_n$ implies (by hypothesis) $(T - \lambda_k I)Y_k \in Y_{n-1}$. So $\{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\} \in T_{n-1}$ and $\{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\}/\lambda_n \in Y_{n-1}$. Hence by the choice of y_n we have

$$\|Ty_k - Ty_n\| = |\lambda_n| \|y_n - \{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\}/\lambda_n\|$$

$$\geq |\lambda_n| d(y_n, Y_{n-1}) \geq r/2.$$

But the sequence $(Ty_n) \subset X$ cannot have a Cauchy subsequence and hence cannot have a convergent subsequence. But this contradicts the definition of compact operator (see page 187), CONTRADICTING the fact that T is compact. So the assumption that $(|\lambda_n|)$ is bounded below is false, and sequence (λ_n) satisfying the stated conditions must satisfy the fact that $(|\lambda_n|)$ is not bounded below.

Lemma 9.14 (continued)

Proof (continued). We hypothesized that $(T - \lambda_n I)Y_n \subset Y_{n-1}$, so $(T - \lambda_n I)y_n \in Y_{n-1}$, since k < n then $\lambda_k y_k \in Y_k \subset Y_{n-1}$, and $y_k \in Y_k \subset Y_n$ implies (by hypothesis) $(T - \lambda_k I)Y_k \in Y_{n-1}$. So $\{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\} \in T_{n-1}$ and $\{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\}/\lambda_n \in Y_{n-1}$. Hence by the choice of y_n we have

$$\|Ty_k - Ty_n\| = |\lambda_n| \|y_n - \{(T - \lambda_k I)y_k - (T - \lambda_n I)y_n + \lambda_k y_k\}/\lambda_n\|$$

$$\geq |\lambda_n| d(y_n, Y_{n-1}) \geq r/2.$$

But the sequence $(Ty_n) \subset X$ cannot have a Cauchy subsequence and hence cannot have a convergent subsequence. But this contradicts the definition of compact operator (see page 187), CONTRADICTING the fact that T is compact. So the assumption that $(|\lambda_n|)$ is bounded below is false, and sequence (λ_n) satisfying the stated conditions must satisfy the fact that $(|\lambda_n|)$ is not bounded below.

Corollary 9.4.A

Corollary 9.4.A. Let λ be a nonzero scalar and let $T \in \mathcal{B}(X)$ be compact where X is a Banach space. If $S = T - \lambda I$ is onto then it is one to one.

Proof. Consider the sequence of scalars (λ_n) where $\lambda_n = \lambda$ for all $n \in \mathbb{N}$. Then $(|\lambda_n|)$ is bounded below and with $Y_n = N(S^n)$ for $n \in \mathbb{N}$, we have $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$ (notice that these nullspaces are all topologically closed) and

$$(T - \lambda I)Y_n = SY_n = S(N(S^n)) \subset N(S^{n-1}) = Y_{n-1}$$

for all n > 1 (since $x \in N(S^n)$ implies $S^n x = 0$, so $Sx \in N(S^{n-1})$ because $S^{n-1}(Sx) = S^n x = 0$).

Corollary 9.4.A

Corollary 9.4.A. Let λ be a nonzero scalar and let $T \in \mathcal{B}(X)$ be compact where X is a Banach space. If $S = T - \lambda I$ is onto then it is one to one.

Proof. Consider the sequence of scalars (λ_n) where $\lambda_n = \lambda$ for all $n \in \mathbb{N}$. Then $(|\lambda_n|)$ is bounded below and with $Y_n = N(S^n)$ for $n \in \mathbb{N}$, we have $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$ (notice that these nullspaces are all topologically closed) and

$$(T - \lambda I)Y_n = SY_n = S(N(S^n)) \subset N(S^{n-1}) = Y_{n-1}$$

for all n > 1 (since $x \in N(S^n)$ implies $S^n x = 0$, so $Sx \in N(S^{n-1})$ because $S^{n-1}(Sx) = S^n x = 0$). Therefore, Lemma 9.14 implies that the sequence $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$ cannot be strictly increasing. With S onto, by Lemma 9.13(b) we have that S must be one to one.

Corollary 9.4.A

Corollary 9.4.A. Let λ be a nonzero scalar and let $T \in \mathcal{B}(X)$ be compact where X is a Banach space. If $S = T - \lambda I$ is onto then it is one to one.

Proof. Consider the sequence of scalars (λ_n) where $\lambda_n = \lambda$ for all $n \in \mathbb{N}$. Then $(|\lambda_n|)$ is bounded below and with $Y_n = N(S^n)$ for $n \in \mathbb{N}$, we have $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$ (notice that these nullspaces are all topologically closed) and

$$(T - \lambda I)Y_n = SY_n = S(N(S^n)) \subset N(S^{n-1}) = Y_{n-1}$$

for all n > 1 (since $x \in N(S^n)$ implies $S^n x = 0$, so $Sx \in N(S^{n-1})$ because $S^{n-1}(Sx) = S^n x = 0$). Therefore, Lemma 9.14 implies that the sequence $N(S) \subset N(S^2) \subset N(S^3) \subset \cdots$ cannot be strictly increasing. With S onto, by Lemma 9.13(b) we have that S must be one to one.

Proposition 9.15. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be a compact operator. Then the range R(T - I) is (topologically) closed. (This is the range of $R - \lambda I$ where $\lambda = 1$.)

Proof. Let S = T - I and consider the quotient space X/N(S). Then we have (see page 32) $S = S_1\pi$ where $\pi : X \to X/N(S)$ is the onto canonical projection $\pi(x) = x + N(S)$ and $S_1 : X/N(S) \to X$ is a onto to one mapping defined as $S_1(x + N(S)) = Sx (S - 1)$ is denoted " \tilde{T} " on page 32).

Proposition 9.15. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be a compact operator. Then the range R(T - I) is (topologically) closed. (This is the range of $R - \lambda I$ where $\lambda = 1$.)

Proof. Let S = T - I and consider the quotient space X/N(S). Then we have (see page 32) $S = S_1\pi$ where $\pi : X \to X/N(S)$ is the onto canonical projection $\pi(x) = x + N(S)$ and $S_1 : X/N(S) \to X$ is a onto to one mapping defined as $S_1(x + N(S)) = Sx (S - 1)$ is denoted " \tilde{T} " on page 32).

First, we show that S_1 is bounded below (see Section 3.4). ASSUME S_1 is not bounded below. Then there is a sequence of unit vectors $(z_n) \subset X/N(S)$ such that $S_1z_n \to 0$. Let $z_n = x_n + N(S)$.

Proposition 9.15. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be a compact operator. Then the range R(T - I) is (topologically) closed. (This is the range of $R - \lambda I$ where $\lambda = 1$.)

Proof. Let S = T - I and consider the quotient space X/N(S). Then we have (see page 32) $S = S_1\pi$ where $\pi : X \to X/N(S)$ is the onto canonical projection $\pi(x) = x + N(S)$ and $S_1 : X/N(S) \to X$ is a onto to one mapping defined as $S_1(x + N(S)) = Sx (S - 1)$ is denoted " \tilde{T} " on page 32).

First, we show that S_1 is bounded below (see Section 3.4). ASSUME S_1 is not bounded below. Then there is a sequence of unit vectors $(z_n) \subset X/N(S)$ such that $S_1z_n \to 0$. Let $z_n = x_n + N(S)$. Then by the definition of the norm on X/N(S), $||z_n|| = d(z_n, N(S)) = \inf\{||x_n - z|| \mid z \in N(S)\} = 1$. So fall all $\varepsilon > 0$ there is $z' \in N(S)$ such that $d(x_n, a) < 1 + \varepsilon$. In particular, with $\varepsilon = 1$, there is $z'_n \in N(S)$ such that $d(x_n, z'_n) = ||x_n - z'_n|| \le 2$.

Proposition 9.15. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be a compact operator. Then the range R(T - I) is (topologically) closed. (This is the range of $R - \lambda I$ where $\lambda = 1$.)

Proof. Let S = T - I and consider the quotient space X/N(S). Then we have (see page 32) $S = S_1\pi$ where $\pi : X \to X/N(S)$ is the onto canonical projection $\pi(x) = x + N(S)$ and $S_1 : X/N(S) \to X$ is a onto to one mapping defined as $S_1(x + N(S)) = Sx (S - 1)$ is denoted " \tilde{T} " on page 32).

First, we show that S_1 is bounded below (see Section 3.4). ASSUME S_1 is not bounded below. Then there is a sequence of unit vectors $(z_n) \subset X/N(S)$ such that $S_1z_n \to 0$. Let $z_n = x_n + N(S)$. Then by the definition of the norm on X/N(S), $||z_n|| = d(z_n, N(S)) = \inf\{||x_n - z|| \mid z \in N(S)\} = 1$. So fall all $\varepsilon > 0$ there is $z' \in N(S)$ such that $d(x_n, a) < 1 + \varepsilon$. In particular, with $\varepsilon = 1$,

there is $z'_n \in N(S)$ such that $d(x_n, z'_n) = ||x_n - z'_n|| \le 2$.

Proposition 9.15 (continued 1)

Proof (continued). Now $x_n - z'_n \in x + N(S)$ and $\pi(x_n - z'_n) = \pi(x_n) = z_n$. For for each $n \in \mathbb{R}$, there is $x'_n \in X$ (in our notation, $x'_n = x_n - z'_n$). Then by Lemma 9.1.B, the bounded sequence $\{x'_n\}$, the sequence (Tx'_n) has a convergent subsequence, say (Tx'_{n_k}) . But also

 $Sx_n = (S_1\pi)x_n \text{ since } S = S_1\pi$ $= S_1z_n \text{ since } \pi(x_n) = z_n,$

so that $Sx_{n_k} = S_1 z_{n_k} \rightarrow 0$. This means, since S = T - I,

 $x_{n_k} = lx_{n_k} = (T - S)x_{n_k} = Tx_{n_k} - Sx_{n_k} \to z - 0 = x.$

Proposition 9.15 (continued 1)

Proof (continued). Now $x_n - z'_n \in x + N(S)$ and $\pi(x_n - z'_n) = \pi(x_n) = z_n$. For for each $n \in \mathbb{R}$, there is $x'_n \in X$ (in our notation, $x'_n = x_n - z'_n$). Then by Lemma 9.1.B, the bounded sequence $\{x'_n\}$, the sequence (Tx'_n) has a convergent subsequence, say (Tx'_{n_k}) . But also

$$Sx_n = (S_1\pi)x_n \text{ since } S = S_1\pi$$

= $S_1z_n \text{ since } \pi(x_n) = z_n,$

so that $Sx_{n_k} = S_1 z_{n_k} \rightarrow 0$. This means, since S = T - I,

$$x_{n_k} = Ix_{n_k} = (T - S)x_{n_k} = Tx_{n_k} - Sx_{n_k} \to z - 0 = x.$$

Since S = T - I is bounded then it is continuous (by Theorem 2.6) and so $Sx_{n_k} \to Sx$, and so Sx = 0 and $x \in N(S)$. Hence $\pi(x) = 0$. By Theorem 2.27(c), $||\pi|| = 1$ and so it is a bounded linear operator and hence is continuous (Theorem 2.6), so $z_{n_k} = \pi(x_{n_k}) \to \pi(x) = 0$. But each x_{n_k} is a unit vector (by choice) and a limit of unit vectors cannot equal the 0 vector (because the norm is continuous), a CONTRADICTION.

Proposition 9.15 (continued 1)

Proof (continued). Now $x_n - z'_n \in x + N(S)$ and $\pi(x_n - z'_n) = \pi(x_n) = z_n$. For for each $n \in \mathbb{R}$, there is $x'_n \in X$ (in our notation, $x'_n = x_n - z'_n$). Then by Lemma 9.1.B, the bounded sequence $\{x'_n\}$, the sequence (Tx'_n) has a convergent subsequence, say (Tx'_{n_k}) . But also

$$Sx_n = (S_1\pi)x_n \text{ since } S = S_1\pi$$

= $S_1z_n \text{ since } \pi(x_n) = z_n,$

so that $Sx_{n_k} = S_1 z_{n_k} \rightarrow 0$. This means, since S = T - I,

$$x_{n_k} = Ix_{n_k} = (T - S)x_{n_k} = Tx_{n_k} - Sx_{n_k} \to z - 0 = x.$$

Since S = T - I is bounded then it is continuous (by Theorem 2.6) and so $Sx_{n_k} \to Sx$, and so Sx = 0 and $x \in N(S)$. Hence $\pi(x) = 0$. By Theorem 2.27(c), $||\pi|| = 1$ and so it is a bounded linear operator and hence is continuous (Theorem 2.6), so $z_{n_k} = \pi(x_{n_k}) \to \pi(x) = 0$. But each x_{n_k} is a unit vector (by choice) and a limit of unit vectors cannot equal the 0 vector (because the norm is continuous), a CONTRADICTION.

()

Proposition 9.15 (continued 2)

Proposition 9.15. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be a compact operator. Then the range R(T - I) is closed. (This is the range of $R - \lambda I$ where $\lambda = 1$.)

Proof (continued). So the assumption that S_1 is not bounded below. By Theorem 3.6, $R(S_1)$ is closed. Since $\pi : X \to X/N(S)$ is onto and $S = S_1\pi$, then $R(S) = R(S_1)$ and so R(S) = R(T - I) is closed.

Proposition 9.15 (continued 2)

Proposition 9.15. Let X be a Banach space and let $T \in \mathcal{B}(X)$ be a compact operator. Then the range R(T - I) is closed. (This is the range of $R - \lambda I$ where $\lambda = 1$.)

Proof (continued). So the assumption that S_1 is not bounded below. By Theorem 3.6, $R(S_1)$ is closed. Since $\pi : X \to X/N(S)$ is onto and $S = S_1\pi$, then $R(S) = R(S_1)$ and so R(S) = R(T - I) is closed.

Corollary 9.4.B. Let λ be a nonzero scalar and let $T \in \mathcal{B}(X)$ be compact where X is a Banach space. If $S = T - \lambda I$ is one to one then it is onto.

Proof. Consider the sequence of scalars (λ_n) where $\lambda_n = \lambda$ for all $n \in \mathbb{N}$. Then $(|\lambda_n|)$ is bounded below and with $Y_n = R(S^n)$ for $n \in \mathbb{N}$ we have $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ and each R(S) is a (topologically) closed subspace of X by Proposition 9.15. **Corollary 9.4.B.** Let λ be a nonzero scalar and let $T \in \mathcal{B}(X)$ be compact where X is a Banach space. If $S = T - \lambda I$ is one to one then it is onto.

Proof. Consider the sequence of scalars (λ_n) where $\lambda_n = \lambda$ for all $n \in \mathbb{N}$. Then $(|\lambda_n|)$ is bounded below and with $Y_n = R(S^n)$ for $n \in \mathbb{N}$ we have $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ and each R(S) is a (topologically) closed subspace of X by Proposition 9.15. So by Lemma 9.14 the sequence $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ (with $Y_n = R(S^n)$) cannot be strictly increasing. With S one to one, by Lemma 9.13(a) we have that S must be onto. **Corollary 9.4.B.** Let λ be a nonzero scalar and let $T \in \mathcal{B}(X)$ be compact where X is a Banach space. If $S = T - \lambda I$ is one to one then it is onto.

Proof. Consider the sequence of scalars (λ_n) where $\lambda_n = \lambda$ for all $n \in \mathbb{N}$. Then $(|\lambda_n|)$ is bounded below and with $Y_n = R(S^n)$ for $n \in \mathbb{N}$ we have $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ and each R(S) is a (topologically) closed subspace of X by Proposition 9.15. So by Lemma 9.14 the sequence $R(S) \supset R(S^2) \supset R(S^3) \supset \cdots$ (with $Y_n = R(S^n)$) cannot be strictly increasing. With S one to one, by Lemma 9.13(a) we have that S must be onto.

()

Theorem 9.16

Theorem 9.16. Let T be a compact operator in $\mathcal{B}(X)$, in which X is a Banach space. Then, the nonzero elements of the spectrum of T are eigenvalues. There are only countably many eigenvalues, and, in the case of infinitely many, they form a sequence tending to 0. The eigenspaces are all finite-dimensional.

Proof. Let $\lambda \neq 0$. If $T - \lambda I$ is one to one then it is onto by Corollary 9.4.B. So $T - \lambda I$ is then a bijection and hence is invertible. So λ cannot be in the spectrum then $T - \lambda I$ must not be invertible and hence (by definition) λ is in the point spectrum of T; that is, λ is an eigenvalue of T and the first claim holds.

Theorem 9.16

Theorem 9.16. Let T be a compact operator in $\mathcal{B}(X)$, in which X is a Banach space. Then, the nonzero elements of the spectrum of T are eigenvalues. There are only countably many eigenvalues, and, in the case of infinitely many, they form a sequence tending to 0. The eigenspaces are all finite-dimensional.

Proof. Let $\lambda \neq 0$. If $T - \lambda I$ is one to one then it is onto by Corollary 9.4.B. So $T - \lambda I$ is then a bijection and hence is invertible. So λ cannot be in the spectrum then $T - \lambda I$ must not be invertible and hence (by definition) λ is in the point spectrum of T; that is, λ is an eigenvalue of T and the first claim holds.

Now we show the eigenspaces are finite dimensional. Suppose we have a sequence of vectors (x_n) of norm less than 1 in the eigenspace for eigenvalue λ . Since (x_n) is bounded and T is, by hypothesis, compact then by Corollary 9.1.B the sequence (Tx_n) has a convergent subsequence, say (Tx_{n_k}) .

Theorem 9.16

Theorem 9.16. Let T be a compact operator in $\mathcal{B}(X)$, in which X is a Banach space. Then, the nonzero elements of the spectrum of T are eigenvalues. There are only countably many eigenvalues, and, in the case of infinitely many, they form a sequence tending to 0. The eigenspaces are all finite-dimensional.

Proof. Let $\lambda \neq 0$. If $T - \lambda I$ is one to one then it is onto by Corollary 9.4.B. So $T - \lambda I$ is then a bijection and hence is invertible. So λ cannot be in the spectrum then $T - \lambda I$ must not be invertible and hence (by definition) λ is in the point spectrum of T; that is, λ is an eigenvalue of T and the first claim holds.

Now we show the eigenspaces are finite dimensional. Suppose we have a sequence of vectors (x_n) of norm less than 1 in the eigenspace for eigenvalue λ . Since (x_n) is bounded and T is, by hypothesis, compact then by Corollary 9.1.B the sequence (Tx_n) has a convergent subsequence, say (Tx_{n_k}) .

Proof (continued). Since the x_{n_k} 's are in the eigenspace, the convergent subsequence satisfies $(Tx_{n_k}) = \lambda x_{n_k}$). Since $(\lambda x_{n_k}) = \lambda(x_{n_k})$ converges then (x_{n_k}) converges. So arbitrary sequence (x_n) in the open unit ball of the eigenspace has a convergent subsequence, then by Corollary 9.1.A the open unit ball of the eigenspace is relatively compact. That is, B(1) is a compact subset of the eigenspace. So by Reisz'z Theorem (Theorem 2.34) the eigenspace is finite dimensional.

Proof (continued). Since the x_{n_k} 's are in the eigenspace, the convergent subsequence satisfies $(Tx_{n_k}) = \lambda x_{n_k}$). Since $(\lambda x_{n_k}) = \lambda(x_{n_k})$ converges then (x_{n_k}) converges. So arbitrary sequence (x_n) in the open unit ball of the eigenspace has a convergent subsequence, then by Corollary 9.1.A the open unit ball of the eigenspace is relatively compact. That is, B(1) is a compact subset of the eigenspace. So by Reisz'z Theorem (Theorem 2.34) the eigenspace is finite dimensional.

We now consider the number and distribution of the eigenvalues. For any r > 0. Let \mathcal{E}_r be the set of all eigenvalues of T with absolute value/modulus greater than r.

Proof (continued). Since the x_{n_k} 's are in the eigenspace, the convergent subsequence satisfies $(Tx_{n_k}) = \lambda x_{n_k}$). Since $(\lambda x_{n_k}) = \lambda(x_{n_k})$ converges then (x_{n_k}) converges. So arbitrary sequence (x_n) in the open unit ball of the eigenspace has a convergent subsequence, then by Corollary 9.1.A the open unit ball of the eigenspace is relatively compact. That is, B(1) is a compact subset of the eigenspace. So by Reisz'z Theorem (Theorem 2.34) the eigenspace is finite dimensional.

We now consider the number and distribution of the eigenvalues. For any r > 0. Let \mathcal{E}_r be the set of all eigenvalues of T with absolute value/modulus greater than r. ASSUME \mathcal{E}_r is infinite. Then we can choose a sequence of distinct eigenvalues (λ_k) in \mathcal{E}_r . Let x_k be an eigenvector for λ_k and let $Y_n = \text{span}\{x_1, x_2, \dots, x_n\}$. Since x_n is an eigenvector for λ_n then $(T - \lambda_n I)x_n = 0$.

Proof (continued). Since the x_{n_k} 's are in the eigenspace, the convergent subsequence satisfies $(Tx_{n_k}) = \lambda x_{n_k}$). Since $(\lambda x_{n_k}) = \lambda(x_{n_k})$ converges then (x_{n_k}) converges. So arbitrary sequence (x_n) in the open unit ball of the eigenspace has a convergent subsequence, then by Corollary 9.1.A the open unit ball of the eigenspace is relatively compact. That is, B(1) is a compact subset of the eigenspace. So by Reisz'z Theorem (Theorem 2.34) the eigenspace is finite dimensional.

We now consider the number and distribution of the eigenvalues. For any r > 0. Let \mathcal{E}_r be the set of all eigenvalues of T with absolute value/modulus greater than r. ASSUME \mathcal{E}_r is infinite. Then we can choose a sequence of distinct eigenvalues (λ_k) in \mathcal{E}_r . Let x_k be an eigenvector for λ_k and let $Y_n = \text{span}\{x_1, x_2, \dots, x_n\}$. Since x_n is an eigenvector for λ_n then $(T - \lambda_n I)x_n = 0$.

Proof (continued).

Notice that for $a \le k \le n-1$ we have

$$(T - \lambda_n I)x_k = tx_k - \lambda_n x_k = \lambda_k x_k - \lambda_n x_k = (\lambda_k - \lambda_n)x_k \in Y_{n-1},$$

so $(T - \lambda_n I)Y_n \subset Y_{n-1}$. Promislow borrows a "basic fact" from linear algebra that a set of vectors for distinct eigenvalues is linearly independent. So $Y_1 \subset Y_2 \subset Y_3 \subset \cdots$ is a strictly increasing sequence of closed subspaces (by Theorem 2.31(c), since Y_n is finite dimensional). Now $(\lambda_n) \subset \mathcal{E}_r$ so $|\lambda_n| \ge r$ for all $n \in \mathbb{N}$. But this implies that the sequence $|\lambda_n|$ is bounded below (see Section 3.4), CONTRADICTING Lemma 9.14. So the assumption that \mathcal{E}_r is infinite is false and hence each \mathcal{E}_r is finite.

Proof (continued).

Notice that for $a \leq k \leq n-1$ we have

$$(T - \lambda_n I)x_k = tx_k - \lambda_n x_k = \lambda_k x_k - \lambda_n x_k = (\lambda_k - \lambda_n)x_k \in Y_{n-1},$$

so $(T - \lambda_n I) Y_n \subset Y_{n-1}$. Promislow borrows a "basic fact" from linear algebra that a set of vectors for distinct eigenvalues is linearly independent. So $Y_1 \subset Y_2 \subset Y_3 \subset \cdots$ is a strictly increasing sequence of closed subspaces (by Theorem 2.31(c), since Y_n is finite dimensional). Now $(\lambda_n) \subset \mathcal{E}_r$ so $|\lambda_n| \ge r$ for all $n \in \mathbb{N}$. But this implies that the sequence $|\lambda_n|$ is bounded below (see Section 3.4), CONTRADICTING Lemma 9.14. So the assumption that \mathcal{E}_r is infinite is false and hence each \mathcal{E}_r is finite. So the set of eigenvalues for T is $\bigcup_{n=1}^{\infty} \mathcal{E}_{1/m}$ (with 0 possibly included) and so is countable. If there are an infinite number of eigenvalues then for each $\varepsilon > 0$, the open ball centered at 0 with radius ε contains infinitely many eigenvalues (all but the finitely many in $\mathcal{E}_{\varepsilon}$) and hence the eigenvalues of T (no matter how enumerated) from a sequence with limit 0.

Proof (continued).

Notice that for $a \leq k \leq n-1$ we have

$$(T - \lambda_n I)x_k = tx_k - \lambda_n x_k = \lambda_k x_k - \lambda_n x_k = (\lambda_k - \lambda_n)x_k \in Y_{n-1},$$

so $(T - \lambda_n I) Y_n \subset Y_{n-1}$. Promislow borrows a "basic fact" from linear algebra that a set of vectors for distinct eigenvalues is linearly independent. So $Y_1 \subset Y_2 \subset Y_3 \subset \cdots$ is a strictly increasing sequence of closed subspaces (by Theorem 2.31(c), since Y_n is finite dimensional). Now $(\lambda_n) \subset \mathcal{E}_r$ so $|\lambda_n| \ge r$ for all $n \in \mathbb{N}$. But this implies that the sequence $|\lambda_n|$ is bounded below (see Section 3.4), CONTRADICTING Lemma 9.14. So the assumption that \mathcal{E}_r is infinite is false and hence each \mathcal{E}_r is finite. So the set of eigenvalues for T is $\bigcup_{n=1}^{\infty} \mathcal{E}_{1/m}$ (with 0 possibly included) and so is countable. If there are an infinite number of eigenvalues then for each $\varepsilon > 0$, the open ball centered at 0 with radius ε contains infinitely many eigenvalues (all but the finitely many in $\mathcal{E}_{\varepsilon}$) and hence the eigenvalues of T (no matter how enumerated) from a sequence with limit 0.