Theorem 9.18 (continued)

Proposition 9.17. If M is invariant under T, then T^* is self-adjoint on M. Moreover, if M is invariant under T and T^* is self-adjoint on M, then M is invariant under T.

Proof. Let $x, y \in M$ and for all $x, y \in M$, restricted to M and M^* is self-adjoint (that is, $\langle \lambda x, \lambda y \rangle = \lambda^* \langle x, y \rangle$). Since T is self-adjoint on M and M^* are invariant under T, the T^* is invariant under T. Since $x, y \in M$, therefore $\langle x, y \rangle = \langle T^* x, T^* y \rangle = \langle x, y \rangle$.

Proposition 9.17 (continued). If M is invariant for compact self-adjoint operators T, then T is invariant on M. Moreover, the restrictions of T to both M and M^* are also self-adjoint.
Theorem 9.19 (continued 1)

Proof (continued). If \(T \) has an infinite number of eigenvalues, then by the spectral theorem for compact, self-adjoint operators (Theorem 9.18), the eigenspace for \(T \) is not the zero operator. By Proposition 9.14 (the spectral theorem for compact, self-adjoint operators (Theorem 9.18)), the eigenspace for \(T \) is an eigenspace of \(T \) with \(\lambda \neq 0 \), where \(\lambda \) is an eigenvalue of \(T \).

Theorem 9.19 (continued 2)

If \(\lambda \) is an eigenvalue of \(T \), then \(\lambda = \langle \lambda, \lambda \rangle \) by the definition of \(T \).

Proving that \(T \) is self-adjoint for all \(n \in N \). For \(x \in M \) where \(\langle x, x \rangle \neq 0 \), the eigenvector is \(x = x \). By Proposition 9.14 (the spectral theorem for compact, self-adjoint operators (Theorem 9.18)), the eigenspace for \(T \) is not the zero operator. By Proposition 9.14 (the spectral theorem for compact, self-adjoint operators (Theorem 9.18)), the eigenspace for \(T \) is an eigenspace of \(T \) with \(\lambda \neq 0 \), where \(\lambda \) is an eigenvalue of \(T \).

Theorem 9.19 (continued 2)

If \(\lambda \) is an eigenvalue of \(T \), then \(\lambda = \langle \lambda, \lambda \rangle \) by the definition of \(T \).
Theorem 9.20. A compact, self-adjoint operator T on a separable Hilbert space is unitarily equivalent to a multiplication operator M^g on L^2. Proof. Choose an orthonormal basis of eigenvectors $\{\phi_n\}$ and so is bijective. Now, ϕ is the norm of f. Then by Theorem 4.19 (see the descriptioen of ϕ above). That is, the ϕ corresponds but not to ϕ. Such that $\phi = \phi$. Choose an orthonormal basis of eigenvectors $\{\phi_n\}$ and

Proof (continued). Since T is compact, by Theorem 9.16, the nonzero elements of the form ϕ_n are eigenvectors. Since the spectral radius satisfies $R(T) > 0$, T is self-adjoint, then $R(T) = ||T||$. Since T is self-adjoint, then $R(T) = ||T||. \Box

Theorem 9.19 (continued 4)

Theorem 9.19 (continued 3)