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Proposition 9.17

Proposition 9.17

Proposition 9.17. If M is invariant for compact, self adjoint operator T
on a Hilbert space then M= is invariant for T. Moreover, the restrictions
of T to both M and M are also self adjoint.
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Proposition 9.17

Proposition 9.17. If M is invariant for compact, self adjoint operator T
on a Hilbert space then M= is invariant for T. Moreover, the restrictions
of T to both M and M are also self adjoint.

Proof. For all x € M and y € M+ we have

(Ty,x) = (y, T*x) = (y, Tx) = 0 since Tx € M because M is invariant
under T. Therefore Ty € M. Since y is an arbitrary element of M. then
M- is invariant under T.
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Proposition 9.17

Proposition 9.17. If M is invariant for compact, self adjoint operator T
on a Hilbert space then M= is invariant for T. Moreover, the restrictions
of T to both M and M are also self adjoint.

Proof. For all x € M and y € M+ we have

(Ty,x) = (y, T*x) = (y, Tx) = 0 since Tx € M because M is invariant
under T. Therefore Ty € M. Since y is an arbitrary element of M. then
M- is invariant under T.

Since T is self adjoint on H and M and M~ are invariant under T, the T
restricted to M and M= is self adjoint (that is, (Tx,y) = (x, Ty) for all
X,y € M and for all x,y € M*). O
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Theorem 9.18

Theorem 9.18. Spectral Theorem for Compact, Self Adjoint
Operators.

Let T be a compact, self adjoint operator on a Hilbert space H. There is
a sequence (either finite or countably infinite) of mutually orthogonal
closed subspaces (M,) whose closed linear span is all of H. There is a
corresponding sequence (\,) of real numbers which if countably infinite
converges to 0. For all n an dx € M,,, we have Tx = A\,x. Moreover, if
An # 0 then M, is finite dimensional.
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' peraos

Theorem 9.18

Theorem 9.18. Spectral Theorem for Compact, Self Adjoint
Operators.

Let T be a compact, self adjoint operator on a Hilbert space H. There is
a sequence (either finite or countably infinite) of mutually orthogonal
closed subspaces (M,) whose closed linear span is all of H. There is a
corresponding sequence (\,) of real numbers which if countably infinite
converges to 0. For all n an dx € M,,, we have Tx = A\,x. Moreover, if
An # 0 then M, is finite dimensional.

Proof. Let {\,} be the set of distinct eigenvalues of T. Notice that each
An is real by Proposition 8.18(a). Let M, be the eigenspace for A, (so
Tx = Apx for all x € M,). Let K be the closed span of all these
eigenspaces: K =3span{M, | nis an index for {\,}}.
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' peraos

Theorem 9.18

Theorem 9.18. Spectral Theorem for Compact, Self Adjoint
Operators.

Let T be a compact, self adjoint operator on a Hilbert space H. There is
a sequence (either finite or countably infinite) of mutually orthogonal
closed subspaces (M,) whose closed linear span is all of H. There is a
corresponding sequence (\,) of real numbers which if countably infinite
converges to 0. For all n an dx € M,,, we have Tx = A\,x. Moreover, if
An # 0 then M, is finite dimensional.

Proof. Let {\,} be the set of distinct eigenvalues of T. Notice that each
An is real by Proposition 8.18(a). Let M, be the eigenspace for A, (so
Tx = Apx for all x € M,). Let K be the closed span of all these
eigenspaces: K = span{M, | nis an index for {\,}}. Since the
eigenvalues of {\,} are distinct then the M, are mutually orthogonal by
Proposition 8.24. Since Hilbert space H is also a Banach space then by
Theorem 9.16 each M, is finite dimensional when A — n # 0 (and so
closed by Theorem 2.31(c)).
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Theorem 9.18 (continued 1)

Proof (continued). If 0 is an eigenvalue then the corresponding

eigenspace is the nullspace N(T) which is closed since T is continuous.

Also by Theorem 9.16, if there are a countably infinite number of
eigenvalues then they converge to 0.
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' peraos

Theorem 9.18 (continued 1)

Proof (continued). If 0 is an eigenvalue then the corresponding
eigenspace is the nullspace N(T) which is closed since T is continuous.
Also by Theorem 9.16, if there are a countably infinite number of
eigenvalues then they converge to 0.

Now we show the final claim that K = H. Since each M, is an eigenspace
for Ap, then M, is invariant under T. So K is invariant under T (since
each M, is invariant and T is continuous on H by Theorem 2.6). Then by
Proposition 9.17, K= is invariant under T.
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Theorem 9.18 (continued 1)

Proof (continued). If 0 is an eigenvalue then the corresponding
eigenspace is the nullspace N(T) which is closed since T is continuous.
Also by Theorem 9.16, if there are a countably infinite number of
eigenvalues then they converge to 0.

Now we show the final claim that K = H. Since each M, is an eigenspace
for Ap, then M, is invariant under T. So K is invariant under T (since
each M, is invariant and T is continuous on H by Theorem 2.6). Then by
Proposition 9.17, K is invariant under T. ASSUME K+ # 0. Let Ty
denote the restriction of T to K. Since a subset of any relatively
compact set is relatively compact (the closure of the subset is a closed
subset of the [compact] closure of the superset and so is compact; see
page 18), from the definition of “compact operator” we have that the
restriction of a compact operator must be compact.
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Theorem 9.18 (continued 1)

Proof (continued). If 0 is an eigenvalue then the corresponding
eigenspace is the nullspace N(T) which is closed since T is continuous.
Also by Theorem 9.16, if there are a countably infinite number of
eigenvalues then they converge to 0.

Now we show the final claim that K = H. Since each M, is an eigenspace
for Ap, then M, is invariant under T. So K is invariant under T (since
each M, is invariant and T is continuous on H by Theorem 2.6). Then by
Proposition 9.17, K is invariant under T. ASSUME K+ # 0. Let Ty
denote the restriction of T to K. Since a subset of any relatively
compact set is relatively compact (the closure of the subset is a closed
subset of the [compact] closure of the superset and so is compact; see
page 18), from the definition of “compact operator” we have that the
restriction of a compact operator must be compact. By Proposition 9.17,
Ty is self adjoint (on KL). If Ty is the zero operator on K, then there is
some nonzero element x of K= mapped to 0 by T; and T.
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Theorem 9.18 (continued 2)

Proof (continued). But then 0 is an eigenvalue for T and so x is in the
eigenspace associated with eigenvalue 0 (it's one of the M,’s) and so

x € K, a contradiction since K N K- = {0} by the Projection Theorem
[Theorem 4.14]); so Ty is not the zero operator on K*. By Proposition
8.21 either || T1|| or —|| T1]| is in o(T7).
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Theorem 9.18 (continued 2)

Proof (continued). But then 0 is an eigenvalue for T and so x is in the
eigenspace associated with eigenvalue 0 (it's one of the M,’s) and so

x € K, a contradiction since K N K- = {0} by the Projection Theorem
[Theorem 4.14]); so Ty is not the zero operator on K*. By Proposition
8.21 either || T1|| or —|| T1]|| is in o(T1). Since the value is nonzero, by
Theorem 9.16 it is an eigenvalue of T1, and so also is an eigenvalue of T.
But then the corresponding (nonzero) eigenvectors is in both K an dK*, a
CONTRADICTION (again, by the Projection Theorem). So the
assumption that K+ # {0} is false, and K+ = {0}. That is,

H = K =span{M, | nis an index for {\,}}. O
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Theorem 9.19

Theorem 9.19. For T a compact, self adjoint operator on Hilbert space
H, T =5, AsE\, in which Ey, is the projection onto M, where M, is the
eigenspace associated with .
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Theorem 9.19

Theorem 9.19. For T a compact, self adjoint operator on Hilbert space
H, T =5, AsE\, in which Ey, is the projection onto M, where M, is the
eigenspace associated with .

Proof. If T only has a finite number of eigenvalues, A1, A2, ..., A,, then
H is the closed linear space of My, M, ..., M,; that is,

H=M; & My®--- @ M, (since there are only finitely many M's). But
then for any x € H, say x = x1 + x2 + - - - + x, where xx € My, we have

T(x) = TCa+x+-+x)=T(x1)+ Tx)+ -+ T(xn)

= Aixy +Xoxo+ -+ Apxn
= MEn(X) + X2Ey(x) + - 4+ AnEy, (X)

= Z/\kE,\k,
K

as claimed.
Introduction to Functional Analysis May 21, 2017 7/12



Theorem 9.19 (continued 1)

Proof (continued). If T has an infinite number of eigenvalues then, by
the Spectral Theorem for Compact, Self Adjoint Operators (Theorem
9.18), the eigenvalues form a (countable) sequence (A\,) with (A,) — 0.
Let ¢ > 0. Let S, = > "7 _; AkE), (the nth partial sum) and let

Th=T — 5, (the "tail").

8/ 12
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Theorem 9.19 (continued 1)

Proof (continued). If T has an infinite number of eigenvalues then, by
the Spectral Theorem for Compact, Self Adjoint Operators (Theorem
9.18), the eigenvalues form a (countable) sequence (A\,) with (A,) — 0.
Let ¢ > 0. Let S, = > "7 _; AkE), (the nth partial sum) and let

Tho=T — S, (the “tail”). Then there is N € N such that n > N implies
|An| < €. Recall that a projection P satisfies (by definition) P = P* and
P2 = P, so the projection Ej, is self adjoint. By Proposition 9.10(a,b), T,
is self adjoint for all n € N.
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Theorem 9.19 (continued 1)

Proof (continued). If T has an infinite number of eigenvalues then, by
the Spectral Theorem for Compact, Self Adjoint Operators (Theorem
9.18), the eigenvalues form a (countable) sequence (A\,) with (A,) — 0.
Let ¢ > 0. Let S, = > "7 _; AkE), (the nth partial sum) and let
Tho=T — S, (the “tail”). Then there is N € N such that n > N implies
|An| < €. Recall that a projection P satisfies (by definition) P = P* and
P2 = P, so the projection Ej, is self adjoint. By Proposition 9.10(a,b), T,
is self adjoint for all n € N. For x € M where 1 < k < n we have
n
Tox = (T =Sa)x=Tx=Y MEy)x
k=1

= Tx — MEy x since Ey,;x =0 for i # k

= AgX — Agx since x is in eigenspace M, of Ay

= 0.
So T, is 0 on K =span{M;, Ma,..., M,} because T, is continuous (since
it is bounded; see Theorem 2.6).
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Theorem 9.19 (continued 2)

Proof (continued). For x € K+ =span{M;, M, ..., M,}* we have

Tox = (T = Sp)x = Tx = > MEpx = Tx.
k=1
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Theorem 9.19 (continued 2)

Proof (continued). For x € K+ =span{M;, M, ..., M,}* we have

Tox = (T = Sp)x = Tx = > MEpx = Tx.
k=1

Next, if x is an eigenvector of T, where n > N with corresponding
eigenvalue A then

Ax = Tpx = Tu(xk + xk1) = Taxgr = Txk1

where xx € K and x,1 € K+, If x € K then x,. = 0. But then
Ax = Txyr =T0=0andso A =0.
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Theorem 9.19 (continued 2)

Proof (continued). For x € K+ =span{M;, M, ..., M,}* we have

Tox = (T = Sp)x = Tx = > MEpx = Tx.
k=1

Next, if x is an eigenvector of T, where n > N with corresponding
eigenvalue A then

Ax = Tpx = Tu(xk + xk1) = Taxgr = Txk1

where xx € K and x,1 € K+, If x € K then x,. = 0. But then
Ax=Txxr=T0=0andso A=0. If x ¢ K then x, 1. # 0. Since x € H
and H is the closed linear span of the M,'s, then x = 220:1 aix, where
xx € M.
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Theorem 9.19 (continued 3)

Proof (continued). Since T, is continuous then
oo o0

TnX = Tn (Z aka> = Z dk TnXk
k=1 k=1

(o]
= E ak Thxk since T, is 0 on My, Mo, ... M,
k=n+1

o0
= Z ay Txy since all such x, € K+

k=n+1
o0
= Z ak kX, since xi € M
k=n+1
o0 o0
= A= )\Z XK = Z ak)\xk.
k=1 k=1
Soai=ay=---=ap,=0and ag\ = ag\x for k > n+ 1.
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Theorem 9.19 (continued 4)

Proof (continued). Since x,1 # 0 then some ax # 0 for k > n+ 1 and
then A = A\ for some k > n+ 1. Since such Ay satisfies || < &, then
|A| < e. Therefore, any eigenvalue A of T, satisfies |\| < & when n > N.
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Theorem 9.19 (continued 4)

Proof (continued). Since x,1 # 0 then some ax # 0 for k > n+ 1 and
then A = A\ for some k > n+ 1. Since such Ay satisfies || < &, then

|A| < e. Therefore, any eigenvalue A of T, satisfies |\| < & when n > N.
Since T, is compact, by Theorem 9.16 the nonzero elements of the
spectrum are eigenvalues and so the spectral radius satisfies r(T,) < ¢.
Since T, is self adjoint, then T, = T} andso T,Ty = T} T,, so T, is (by
definition) normal. By Theorem 8.23, || T,,|| = r(T,) < e. That is, for
given € > 0 there exists N € N such that for n > N we have || T,|| < e. So
(Th) = 0or (T—=5,) —0o0rS,— T.
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Theorem 9.19 (continued 4)

Proof (continued). Since x,1 # 0 then some ax # 0 for k > n+ 1 and
then A = A\ for some k > n+ 1. Since such Ay satisfies || < &, then

|A| < e. Therefore, any eigenvalue A of T, satisfies |\| < & when n > N.
Since T, is compact, by Theorem 9.16 the nonzero elements of the
spectrum are eigenvalues and so the spectral radius satisfies r(T,) < ¢.
Since T, is self adjoint, then T, = T} andso T,Ty = T} T,, so T, is (by
definition) normal. By Theorem 8.23, || T,,|| = r(T,) < e. That is, for
given € > 0 there exists N € N such that for n > N we have || T,|| < e. So
(Th) = 0or (T—-S,) —=0o0rS,— T. Thatis,

T=lim S, = nli_fgozn:)‘kE/\k = i)\nEAn-
n=1

n—o00
k=1

O
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Theorem 9.20

Theorem 9.20. A compact, self adjoint operator T on a separable Hilbert
space is unitarily equivalent to a multiplication operator My on ¢2.
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Theorem 9.20

Theorem 9.20. A compact, self adjoint operator T on a separable Hilbert
space is unitarily equivalent to a multiplication operator My on ¢2.

Proof. Choose an orthonormal basis of eigenvectors (e,) and
corresponding eigenvalues () such that T(x) = )", pk(x, ex)ek, as
described in the note above.
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Theorem 9.20

Theorem 9.20. A compact, self adjoint operator T on a separable Hilbert
space is unitarily equivalent to a multiplication operator My on ¢2.

Proof. Choose an orthonormal basis of eigenvectors (e,) and
corresponding eigenvalues () such that T(x) = )", pk(x, ex)ek, as
described in the note above. Let U : /> — H be defined as U(d,) = e,
where 6, is the nth standard vector for £2. Then by Theorem 4.19 (see the
proof of it) U is an isometric isomorphism (and so is bijective).
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Theorem 9.20
Theorem 9.20. A compact, self adjoint operator T on a separable Hilbert
space is unitarily equivalent to a multiplication operator My on ¢2.

Proof. Choose an orthonormal basis of eigenvectors (e,) and
corresponding eigenvalues () such that T(x) = )", pk(x, ex)ek, as
described in the note above. Let U : /> — H be defined as U(d,) = e,
where 6, is the nth standard vector for £2. Then by Theorem 4.19 (see the
proof of it) U is an isometric isomorphism (and so is bijective). Now

UTLTUG,) = Ut T(en) = U (pn(en, en)en)

= U_l(u,,e,,) = u,,U_l(e,,) = findp.

So with f(x) = pp, then the multiplication operator My maps 8, to (ipd,.
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Theorem 9.20

Theorem 9.20. A compact, self adjoint operator T on a separable Hilbert
space is unitarily equivalent to a multiplication operator My on ¢2.

Proof. Choose an orthonormal basis of eigenvectors (e,) and
corresponding eigenvalues () such that T(x) = )", pk(x, ex)ek, as
described in the note above. Let U : /> — H be defined as U(d,) = e,
where 6, is the nth standard vector for £2. Then by Theorem 4.19 (see the
proof of it) U is an isometric isomorphism (and so is bijective). Now

UTLTUG,) = Ut T(en) = U (pn(en, en)en)

= U_l(u,,e,,) = u,,U_l(e,,) = findp.

So with f(x) = pn, then the multiplication operator My maps d, to fndn.
Since U1 TU and My agree on the basis {3,}5°; of ¢, then U~ TU and
My are equal on £2. So My and T are (by definition) unitarily

equivalent. O
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