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Proposition 9.17

Proposition 9.17

Proposition 9.17. If M is invariant for compact, self adjoint operator T
on a Hilbert space then M⊥ is invariant for T . Moreover, the restrictions
of T to both M and M⊥ are also self adjoint.

Proof. For all x ∈ M and y ∈ M⊥ we have
〈Ty , x〉 = 〈y ,T ∗x〉 = 〈y ,Tx〉 = 0 since Tx ∈ M because M is invariant
under T . Therefore Ty ∈ M⊥. Since y is an arbitrary element of M⊥ then
M⊥ is invariant under T .

Since T is self adjoint on H and M and M⊥ are invariant under T , the T
restricted to M and M⊥ is self adjoint (that is, 〈Tx , y〉 = 〈x ,Ty〉 for all
x , y ∈ M and for all x , y ∈ M⊥).
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Theorem 9.18. Spectral Theorem for Compact, Self Adjoint
Operators

Theorem 9.18

Theorem 9.18. Spectral Theorem for Compact, Self Adjoint
Operators.
Let T be a compact, self adjoint operator on a Hilbert space H. There is
a sequence (either finite or countably infinite) of mutually orthogonal
closed subspaces (Mn) whose closed linear span is all of H. There is a
corresponding sequence (λn) of real numbers which if countably infinite
converges to 0. For all n an dx ∈ Mn, we have Tx = λnx . Moreover, if
λn 6= 0 then Mn is finite dimensional.

Proof. Let {λn} be the set of distinct eigenvalues of T . Notice that each
λn is real by Proposition 8.18(a). Let Mn be the eigenspace for λn (so
Tx = λnx for all x ∈ Mn). Let K be the closed span of all these
eigenspaces: K = span{Mn | n is an index for {λn}}.

Since the
eigenvalues of {λn} are distinct then the Mn are mutually orthogonal by
Proposition 8.24. Since Hilbert space H is also a Banach space then by
Theorem 9.16 each Mn is finite dimensional when λ− n 6= 0 (and so
closed by Theorem 2.31(c)).
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Theorem 9.18. Spectral Theorem for Compact, Self Adjoint
Operators

Theorem 9.18 (continued 1)

Proof (continued). If 0 is an eigenvalue then the corresponding
eigenspace is the nullspace N(T ) which is closed since T is continuous.
Also by Theorem 9.16, if there are a countably infinite number of
eigenvalues then they converge to 0.

Now we show the final claim that K = H. Since each Mn is an eigenspace
for λn, then Mn is invariant under T . So K is invariant under T (since
each Mn is invariant and T is continuous on H by Theorem 2.6). Then by
Proposition 9.17, K⊥ is invariant under T .

ASSUME K⊥ 6= 0. Let T1

denote the restriction of T to K⊥. Since a subset of any relatively
compact set is relatively compact (the closure of the subset is a closed
subset of the [compact] closure of the superset and so is compact; see
page 18), from the definition of “compact operator” we have that the
restriction of a compact operator must be compact. By Proposition 9.17,
T1 is self adjoint (on K⊥). If T1 is the zero operator on K⊥, then there is
some nonzero element x of K⊥ mapped to 0 by T1 and T .
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Theorem 9.18. Spectral Theorem for Compact, Self Adjoint
Operators

Theorem 9.18 (continued 2)

Proof (continued). But then 0 is an eigenvalue for T and so x is in the
eigenspace associated with eigenvalue 0 (it’s one of the Mn’s) and so
x ∈ K , a contradiction since K ∩ K⊥ = {0} by the Projection Theorem
[Theorem 4.14]); so T1 is not the zero operator on K⊥. By Proposition
8.21 either ‖T1‖ or −‖T1‖ is in σ(T1). Since the value is nonzero, by
Theorem 9.16 it is an eigenvalue of T1, and so also is an eigenvalue of T .
But then the corresponding (nonzero) eigenvectors is in both K an dK⊥, a
CONTRADICTION (again, by the Projection Theorem). So the
assumption that K⊥ 6= {0} is false, and K⊥ = {0}. That is,
H = K = span{Mn | n is an index for {λn}}.
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Theorem 9.19

Theorem 9.19

Theorem 9.19. For T a compact, self adjoint operator on Hilbert space
H, T =

∑
n λnEλn in which Eλn is the projection onto Mn where Mn is the

eigenspace associated with λn.

Proof. If T only has a finite number of eigenvalues, λ1, λ2, . . . , λn, then
H is the closed linear space of M1,M2, . . . ,Mn; that is,
H = M1 ⊕M2 ⊕ · · · ⊕Mn (since there are only finitely many Mk ’s). But
then for any x ∈ H, say x = x1 + x2 + · · ·+ xn where xk ∈ Mk , we have

T (x) = T (x1 + x2 + · · ·+ xn) = T (x1) + T (x2) + · · ·+ T (xn)

= λ1x1 + λ2x2 + · · ·+ λnxn

= λ1Eλ1(x) + λ2Eλ2(x) + · · ·+ λnEλn(x)

=
∑
k

λkEλk
,

as claimed.
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Theorem 9.19

Theorem 9.19 (continued 1)

Proof (continued). If T has an infinite number of eigenvalues then, by
the Spectral Theorem for Compact, Self Adjoint Operators (Theorem
9.18), the eigenvalues form a (countable) sequence (λn) with (λn) → 0.
Let ε > 0. Let Sn =

∑n
k=1 λkEλk

(the nth partial sum) and let
Tn = T − Sn (the “tail”). Then there is N ∈ N such that n ≥ N implies
|λn| < ε. Recall that a projection P satisfies (by definition) P = P∗ and
P2 = P, so the projection Eλk

is self adjoint. By Proposition 9.10(a,b), Tn

is self adjoint for all n ∈ N.

For x ∈ Mk where 1 ≤ k ≤ n we have

Tnx = (T − Sn)x = Tx −
n∑

k=1

λkEλk
)x

= Tx − λkEλk
x since Eλi

x = 0 for i 6= k

= λkx − λkx since x is in eigenspace Mk of λk

= 0.

So Tn is 0 on K = span{M1,M2, . . . ,Mn} because Tn is continuous (since
it is bounded; see Theorem 2.6).
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Theorem 9.19

Theorem 9.19 (continued 2)

Proof (continued). For x ∈ K⊥ = span{M1,M2, . . . ,Mn}⊥ we have

Tnx = (T − Sn)x = Tx −
n∑

k=1

λkEλk
x = Tx .

Next, if x is an eigenvector of Tn where n ≥ N with corresponding
eigenvalue λ then

λx = Tnx = Tx(xK + xK⊥) = TnxK⊥ = TxK⊥

where xK ∈ K and xK⊥ ∈ K⊥. If x ∈ K then xK⊥ = 0. But then
λx = TxK⊥ = T0 = 0 and so λ = 0.

If x 6∈ K then xK⊥ 6= 0. Since x ∈ H
and H is the closed linear span of the Mn’s, then x =

∑∞
k=1 akxk where

xk ∈ Mk .
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Theorem 9.19

Theorem 9.19 (continued 3)

Proof (continued). Since Tn is continuous then

Tnx = Tn

( ∞∑
k=1

akxk

)
=

∞∑
k=1

akTnxk

=
∞∑

k=n+1

akTnxk since Tn is 0 on M1,M2, . . . ,Mn

=
∞∑

k=n+1

akTxk since all such xk ∈ K⊥

=
∞∑

k=n+1

akλkxk since xk ∈ Mk

= λx = λ

∞∑
k=1

akxk =
∞∑

k=1

akλxk .

So a1 = a2 = · · · = an = 0 and akλ = akλk for k ≥ n + 1.
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Theorem 9.19

Theorem 9.19 (continued 4)

Proof (continued). Since xK⊥ 6= 0 then some ak 6= 0 for k ≥ n + 1 and
then λ = λk for some k ≥ n + 1. Since such λk satisfies |λk | < ε, then
|λ| < ε. Therefore, any eigenvalue λ of Tn satisfies |λ| < ε when n > N.
Since Tn is compact, by Theorem 9.16 the nonzero elements of the
spectrum are eigenvalues and so the spectral radius satisfies r(Tn) < ε.
Since Tn is self adjoint, then Tn = T ∗n and so TnT

∗
N = T ∗n Tn, so Tn is (by

definition) normal. By Theorem 8.23, ‖Tn‖ = r(Tn) < ε. That is, for
given ε > 0 there exists N ∈ N such that for n > N we have ‖Tn‖ < ε. So
(Tn) → 0 or (T − Sn) → 0 or Sn → T .

That is,

T = lim
n→∞

Sn = lim
n→∞

n∑
k=1

λkEλk
=

∞∑
n=1

λnEλn .
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Theorem 9.20

Theorem 9.20

Theorem 9.20. A compact, self adjoint operator T on a separable Hilbert
space is unitarily equivalent to a multiplication operator Mf on `2.

Proof. Choose an orthonormal basis of eigenvectors (en) and
corresponding eigenvalues (µn) such that T (x) =

∑
k µk〈x , ek〉ek , as

described in the note above.

Let U : `2 → H be defined as U(δn) = en

where δn is the nth standard vector for `2. Then by Theorem 4.19 (see the
proof of it) U is an isometric isomorphism (and so is bijective). Now

U−1TU(δn) = U−1T (en) = U−1(µn〈en, en〉en)

= U−1(µnen) = µnU
−1(en) = µnδn.

So with f (x) = µn, then the multiplication operator Mf maps δn to µnδn.
Since U−1TU and Mf agree on the basis {δn}∞n=1 of `2, then U−1TU and
Mf are equal on `2. So Mf and T are (by definition) unitarily
equivalent.
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