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Theorem 9.21

Theorem 9.21

Theorem 9.21. Let X be a complex Banach space of dimension greater
than 1. Any compact T ∈ B(X ) has a closed proper invariant subspace.

Proof. If T = 0 then any closed proper subspace is invariant under T . So
we assume T 6= 0. As commented in Note 2 above, if some Px is not
dense for an x 6= 0 then the closure of Px is a closed proper invariant
subspace of T . So we can also (without loss of generality) assume that
Px is dense for all nonzero x ∈ X .

Since T 6= 0, there is a unit vector
x0 ∈ X such that Tx0 6= 0. Choose a neighborhood W of Tx0 such that
the closure W does not contain 0. Choose a bounded neighborhood G of
x0 such that T (G ) ⊂ W (which can be done since T is continuous at x0).
Since x0 is a unit vector, we can choose G such that all elements of G
have norm greater than 1/2 (or else take the given G and intersect it with
the complement of the closed ball centered at 0 with radius 1.2).
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Theorem 9.21

Theorem 9.21 (continued 1)

Proof (continued). We make the following claim:

Claim. There is a positive constant k such that given any n ∈ N
and any x ∈ G , we can find p(T ) ∈ P with ‖p(T )‖ ≤ kn such
that p(T )T n ∈ G .

We first give constant k and verify CLAIM for n = 1. Given any
t ∈ T (G ) ⊂ W , we know y 6= 0 (since 0 6∈ W ) and so we have assumed
(without loss of generality) that Py is dense in X and so Py must
intersect open set G . So there is py (T ) ∈ P such that py (T )y ∈ G .

Since
py (T ) is continuous at y , there is a neighborhood Vy of y such that
py (T )(Vy ) ⊂ G . Since G is bounded (by choice) and T is compact then,
by definition of “compact operator,” T (G ) is relatively compact; that is,
T (G ) is compact. So for each y ∈ T (G ) create a corresponding open set
Vy containing y and a py (T ) ∈ P with these properties. Then

{Vy | y ∈ T (G )} is an open cover of T (G ) and since T (G ) is compact,

there are y1, y2, . . . , ym such that T (G ) ⊂ ∪m
i=1Vyi .
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Theorem 9.21

Theorem 9.21 (continued 2)

Proof (continued). Let k = max{‖pyi (T )‖ | i = 1, 2, . . . ,m}. Then

given n = 1 and any x ∈ G , we have Tx ∈ T (G ) ⊂ T (G ) and so Tx ∈ Vyi

for some i ∈ {1, 2, . . . ,m} and pyi (T )T 1x = pyi (T )Tx ∈ G (since
pyi (Vyi ) ⊂ G ) where ‖pyi (T )‖ ≤ k1. So CLAIM holds for n = 1.

We now prove CLAIM by induction. Notice that P is closed under
multiplication and all elements of P commute with T . Suppose CLAIM
holds for n. Then for given x ∈ G , we have pn(T ) ∈ P with ‖pn(T )‖ ≤ kn

such that pn(T )T nx ∈ G .

By considering pn(T )T nx as a point in G
(replacing x with pn(T )T nx in CLAIM) then since CLAIM holds for n = 1,
we have that there is p1(T ) ∈ P with ‖p1(T )‖ ≤ k and
p1(T )T 1(pn(T )T nx)− p1(T )pn(T )T n+1x ∈ G . So CLAIM holds with
pn+1(T ) = p1(T )pn(T ). Notice that

‖p1(T )pn(T )‖ ≤ ‖p1(T )‖‖p2(T )‖ ≤ kkn = kn+1

by Proposition 2.8. So CLAIM holds for n + 1.
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Theorem 9.21

Theorem 9.21 (continued 3)

Proof (continued). Now for any n ∈ N, let x = x0 where unit vector
x0 ∈ X with Tx0 6= 0 is from the first part of the proof. from CLAIM there
is positive constant k and p(T ) ∈ P such that ‖p(T )‖ ≤ kn and
p(T )T nx0 ∈ G . We then have (since all elements of G have norm greater
than 1/2)

1

2
< ‖p(T )T nx0‖ ≤ ‖p(T )‖‖T n‖‖x0‖ by proposition 2.8

and the definition of operator norm

≤ kn‖T‖n since ‖x0‖ = 1.

This implies that

‖T n‖1/n ≥ (1/2)1/n

k
≥ 1

2k
.

Now B(X ) is a Banach algebra (see page 170), so by Theorem 8.15 the
spectral radius if r(T ) = inf ‖T n‖1/n ≥ 1/(2k). So the spectrum of T
must contain a nonzero value.
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Theorem 9.21

Theorem 9.21 (continued 4)

Theorem 9.21. Let X be a complex Banach space of dimension greater
than 1. Any compact T ∈ B(X ) has a closed proper invariant subspace.

Proof (continued). Since X is a Banach space and T is compact, by
Theorem 9.16 the nonzero element of the spectrum is an eigenvalue. Then
(by Note 1) the eigenspace associated with this eigenvalue is a nontrivial
invariant subspace and by Theorem 9.16 the eigenspace is finite
dimensional and so (by Theorem 2.31(c)) the eigenspace is closed.

If the
eigenspace is all of X , then any proper subspace of X which exists since
the dimension of X is greater than 1) is also invariant and the result
follows.
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Theorem 9.22

Theorem 9.22

Theorem 9.22. Let X be a complex Banach space of dimension greater
than 1. If A ∈ B(X ) commutes with a nonzero compact operator T , then
A has an invariant proper subspace.

Proof. If X is finite dimensional then every linear operator has only
eigenvalues in it spectrum and so each eigenspace is an invariant subspace.
So we can assume X is infinite dimensional without loss of generality.

Replace P in the proof of Theorem 9.21 by A = {S ∈ B(X ) | ST = TS}
(the collection of bounded operators which commute with T ). Since A
commutes with T by hypothesis, then for all A ∈ A we have
(AS)T = A(ST ) = A(TS) = (AT )S = (T (AS) and so AS ∈ A.
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Theorem 9.22

Theorem 9.22 (continued)

Theorem 9.22. Let X be a complex Banach space of dimension greater
than 1. If A ∈ B(X ) commutes with a nonzero compact operator T , then
A has an invariant proper subspace.

Proof (continued). So the argument in Note 2 above holds and we can
assume that Ax is dense for all x ∈ X as in the proof of Theorem 9.21.
The same proof as given for Theorem 9.21 also carries through to show
that T has a nonzero eigenvalue λ. Let Mλ be the associated eigenspace.
Then T (Ax) = ATx = A(λx) = λ(Ax) for all x ∈ Mλ, that is Ax ∈ Mλ

and so Mλ is invariant under A. By Theorem 9.16, Mλ is finite
dimensional and so is a proper subspace of X .
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