Introduction to Functional Analysis

Chapter 9. Compact Operators
9.6. Invariant Subspaces—Proofs of Theorems
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Theorem 9.21

Theorem 9.21. Let X be a complex Banach space of dimension greater
than 1. Any compact T € B(X) has a closed proper invariant subspace.
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Theorem 9.21

Theorem 9.21. Let X be a complex Banach space of dimension greater
than 1. Any compact T € B(X) has a closed proper invariant subspace.

Proof. If T =0 then any closed proper subspace is invariant under T. So
we assume T # 0. As commented in Note 2 above, if some Px is not
dense for an x # 0 then the closure of Px is a closed proper invariant
subspace of T. So we can also (without loss of generality) assume that
Px is dense for all nonzero x € X.
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Theorem 9.21

Theorem 9.21. Let X be a complex Banach space of dimension greater
than 1. Any compact T € B(X) has a closed proper invariant subspace.

Proof. If T =0 then any closed proper subspace is invariant under T. So
we assume T # 0. As commented in Note 2 above, if some Px is not
dense for an x # 0 then the closure of Px is a closed proper invariant
subspace of T. So we can also (without loss of generality) assume that
Px is dense for all nonzero x € X. Since T # 0, there is a unit vector

xp € X such that Txp # 0. Choose a neighborhood W of Txp such that
the closure W does not contain 0. Choose a bounded neighborhood G of
xo such that T(G) C W (which can be done since T is continuous at xp).
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Theorem 9.21

Theorem 9.21. Let X be a complex Banach space of dimension greater
than 1. Any compact T € B(X) has a closed proper invariant subspace.

Proof. If T =0 then any closed proper subspace is invariant under T. So
we assume T # 0. As commented in Note 2 above, if some Px is not
dense for an x # 0 then the closure of Px is a closed proper invariant
subspace of T. So we can also (without loss of generality) assume that
Px is dense for all nonzero x € X. Since T # 0, there is a unit vector

xp € X such that Txp # 0. Choose a neighborhood W of Txp such that
the closure W does not contain 0. Choose a bounded neighborhood G of
xo such that T(G) C W (which can be done since T is continuous at xp).
Since xg is a unit vector, we can choose G such that all elements of G
have norm greater than 1/2 (or else take the given G and intersect it with
the complement of the closed ball centered at 0 with radius 1.2).
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Theorem 9.21 (continued 1)

Proof (continued). We make the following claim:

Claim. There is a positive constant k such that given any n € N
and any x € G, we can find p(T) € P with ||p(T)| < k" such
that p(T)T" € G.

We first give constant k and verify CLAIM for n = 1.
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Theorem 9.21 (continued 1)

Proof (continued). We make the following claim:

Claim. There is a positive constant k such that given any n € N
and any x € G, we can find p(T) € P with ||p(T)| < k" such
that p(T)T" € G.

We first give constant k and verify CLAIM for n = 1. Given any

t € T(G) C W, we know y # 0 (since 0 ¢ W) and so we have assumed
(without loss of generality) that Py is dense in X and so Py must
intersect open set G. So there is p,(T) € P such that p,(T)y € G.
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Theorem 9.21 (continued 1)

Proof (continued). We make the following claim:

Claim. There is a positive constant k such that given any n € N
and any x € G, we can find p(T) € P with ||p(T)| < k" such
that p(T)T" € G.

We first give constant k and verify CLAIM for n = 1. Given any

t € T(G) C W, we know y # 0 (since 0 ¢ W) and so we have assumed
(without loss of generality) that Py is dense in X and so Py must
intersect open set G. So there is p,(T) € P such that p,(T)y € G. Since
py(T) is continuous at y, there is a neighborhood V| of y such that
py(T)(V,) C G. Since G is bounded (by choice) and T is compact then,
by definition of “compact operator,” T(G) is relatively compact; that is,
T(G) is compact.
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Theorem 9.21 (continued 1)

Proof (continued). We make the following claim:

Claim. There is a positive constant k such that given any n € N
and any x € G, we can find p(T) € P with ||p(T)| < k" such
that p(T)T" € G.

We first give constant k and verify CLAIM for n = 1. Given any

t € T(G) C W, we know y # 0 (since 0 ¢ W) and so we have assumed
(without loss of generality) that Py is dense in X and so Py must
intersect open set G. So there is p,(T) € P such that p,(T)y € G. Since
py(T) is continuous at y, there is a neighborhood V| of y such that
py(T)(V,) C G. Since G is bounded (by choice) and T is compact then,
by definition of “compact operator,” T(G) is relatively compact; that is,
T(G) is compact. So for each y € W create a corresponding open set
V) containing y and a p,(T) € P with these properties. Then

{V, |y € T(G)} is an open cover of T(G) and since T(G) is compact,
there are y1,y», ..., ym such that T(G) C U, V,,.
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Theorem 9.21 (continued 2)

Proof (continued). Let k = max{||p,,(T)|||i=1,2,...,m}. Then
given n =1 and any x € G, we have Tx € T(G) C T(G) and so Tx € V|,
for some i € {1,2,...,m} and p,.(T)T'x = p,,(T)Tx € G (since
py;(Vy,) C G) where ||p,,(T)|| < k. So CLAIM holds for n = 1.
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Theorem 9.21 (continued 2)

Proof (continued). Let k = max{||p,,(T)|||i=1,2,...,m}. Then
given n =1 and any x € G, we have Tx € T(G) C T(G) and so Tx € V|,
for some i € {1,2,...,m} and p,.(T)T'x = p,,(T)Tx € G (since
py;(Vy,) C G) where ||p,,(T)|| < k. So CLAIM holds for n = 1.

We now prove CLAIM by induction. Notice that P is closed under
multiplication and all elements of P commute with T. Suppose CLAIM
holds for n. Then for given x € G, we have p,(T) € P with ||p,(T)| < k"
such that p,(T)T"x € G.
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Theorem 9.21 (continued 2)

Proof (continued). Let k = max{||p,,(T)|||i=1,2,...,m}. Then
given n =1 and any x € G, we have Tx € T(G) C T(G) and so Tx € V|,
for some i € {1,2,...,m} and p,.(T)T'x = p,,(T)Tx € G (since
py;(Vy,) C G) where ||p,,(T)|| < k. So CLAIM holds for n = 1.

We now prove CLAIM by induction. Notice that P is closed under
multiplication and all elements of P commute with T. Suppose CLAIM
holds for n. Then for given x € G, we have p,(T) € P with ||p,(T)|| < k"
such that p,(T)T"x € G. By considering p,(T)T"x as a point in G
(replacing x with p,(T)T"x in CLAIM) then since CLAIM holds for n =1,
we have that there is p;(T) € P with ||p1(T)|| < k and

pU(T) T (pa(T)Tx) — p1(T)pa(T)T™1x € G. So CLAIM holds with
Pn+1(T) = p1(T)pn(T). Notice that

P (T)pa( D < (T IP2(T)I| < kK" = K7

by Proposition 2.8. So CLAIM holds for n + 1.
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Theorem 9.21 (continued 3)

Proof (continued). Now for any n € N, let x = xp where unit vector

xp € X with Txg # 0 is from the first part of the proof. from CLAIM there
is positive constant k and p(T) € P such that ||p(T)| < k" and
p(T)T"x € G.
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Theorem 9.21 (continued 3)

Proof (continued). Now for any n € N, let x = xp where unit vector
xp € X with Txg # 0 is from the first part of the proof. from CLAIM there
is positive constant k and p(T) € P such that ||p(T)| < k" and
p(T)T"xg € G. We then have (since all elements of G have norm greater
than 1/2)
1 "
5 < (M) T"xoll < l(T)IIIIT"[ll|xol| by proposition 2.8

and the definition of operator norm

< Kk"[|T|" since ||xo| = 1.

This implies that
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Theorem 9.21 (continued 3)

Proof (continued). Now for any n € N, let x = xp where unit vector

xp € X with Txg # 0 is from the first part of the proof. from CLAIM there
is positive constant k and p(T) € P such that ||p(T)| < k" and
p(T)T"xg € G. We then have (since all elements of G have norm greater
than 1/2)

1 iy
5 < (M) T"xoll < l(T)IIIIT"[ll|xol| by proposition 2.8

and the definition of operator norm
< Kk"[|T|" since ||xo| = 1.

This implies that
(a2 1

k — 2k
Now B(X) is a Banach algebra (see page 170), so by Theorem 8.15 the
spectral radius if r(T) = inf | T"||*/" > 1/(2k). So the spectrum of T
must contain a nonzero value.
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Theorem 9.21 (continued 4)

Theorem 9.21. Let X be a complex Banach space of dimension greater
than 1. Any compact T € B(X) has a closed proper invariant subspace.
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Theorem 9.21 (continued 4)

Theorem 9.21. Let X be a complex Banach space of dimension greater
than 1. Any compact T € B(X) has a closed proper invariant subspace.

Proof (continued). Since X is a Banach space and T is compact, by
Theorem 9.16 the nonzero element of the spectrum is an eigenvalue. Then
(by Note 1) the eigenspace associated with this eigenvalue is a nontrivial
invariant subspace and by Theorem 9.16 the eigenspace is finite
dimensional and so (by Theorem 2.31(c)) the eigenspace is closed.
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Theorem 9.21 (continued 4)

Theorem 9.21. Let X be a complex Banach space of dimension greater
than 1. Any compact T € B(X) has a closed proper invariant subspace.

Proof (continued). Since X is a Banach space and T is compact, by
Theorem 9.16 the nonzero element of the spectrum is an eigenvalue. Then
(by Note 1) the eigenspace associated with this eigenvalue is a nontrivial
invariant subspace and by Theorem 9.16 the eigenspace is finite
dimensional and so (by Theorem 2.31(c)) the eigenspace is closed. If the
eigenspace is all of X, then any proper subspace of X which exists since
the dimension of X is greater than 1) is also invariant and the result
follows. Ol
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Theorem 9.22

Theorem 9.22. Let X be a complex Banach space of dimension greater
than 1. If A € B(X) commutes with a nonzero compact operator T, then
A has an invariant proper subspace.

Introduction to Functional Analysis May 22, 2017 8/8



Theorem 9.22

Theorem 9.22. Let X be a complex Banach space of dimension greater
than 1. If A € B(X) commutes with a nonzero compact operator T, then
A has an invariant proper subspace.

Proof. If X is finite dimensional then every linear operator has only

eigenvalues in it spectrum and so each eigenspace is an invariant subspace.
So we can assume X is infinite dimensional without loss of generality.
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Theorem 9.22

Theorem 9.22. Let X be a complex Banach space of dimension greater
than 1. If A € B(X) commutes with a nonzero compact operator T, then
A has an invariant proper subspace.

Proof. If X is finite dimensional then every linear operator has only
eigenvalues in it spectrum and so each eigenspace is an invariant subspace.
So we can assume X is infinite dimensional without loss of generality.
Replace P in the proof of Theorem 9.21 by A= {S € B(X) | ST = TS}
(the collection of bounded operators which commute with T). Since A
commutes with T by hypothesis, then for all A € A we have

(AS)T = A(ST) = A(TS) = (AT)S = (T(AS) and so AS € A.
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Theorem 9.22 (continued)

Theorem 9.22. Let X be a complex Banach space of dimension greater
than 1. If A € B(X) commutes with a nonzero compact operator T, then
A has an invariant proper subspace.

Proof (continued). So the argument in Note 2 above holds and we can
assume that Ax is dense for all x € X as in the proof of Theorem 9.21.
The same proof as given for Theorem 9.21 also carries through to show
that T has a nonzero eigenvalue \. Let M) be the associated eigenspace.
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Theorem 9.22 (continued)

Theorem 9.22. Let X be a complex Banach space of dimension greater
than 1. If A € B(X) commutes with a nonzero compact operator T, then
A has an invariant proper subspace.

Proof (continued). So the argument in Note 2 above holds and we can
assume that Ax is dense for all x € X as in the proof of Theorem 9.21.
The same proof as given for Theorem 9.21 also carries through to show
that T has a nonzero eigenvalue \. Let M) be the associated eigenspace.
Then T(Ax) = ATx = A(Ax) = A(Ax) for all x € M, that is Ax € M),
and so M, is invariant under A. By Theorem 9.16, M, is finite
dimensional and so is a proper subspace of X. O
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