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Lemma 5.1.1

Lemma 5.1.1

Lemma 5.1.1. Consider the homogeneous system of equations

ajlxy + apxe 4+ - 4+ aipxn = 0
aix1 + axxe + -+ + amxp = 0
amiX1 + ameXxe + - + amnxp = 0

with coefficients a;; (1 < i < m, 1 <j < n) and unknowns x, (1 < k < n)
from field F. If n > m then the system has a nontrivial solution (that is, a
solution x1, x2, . .., x, where x, # 0 for some 1 < k < n).
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Lemma 5.1.1

Lemma 5.1.1

Lemma 5.1.1. Consider the homogeneous system of equations

ajlxy + apxe 4+ - 4+ aipxn = 0
aix1 + axxe + -+ + amxp = 0
amiX1 + ameXxe + - + amnxp = 0

with coefficients a;; (1 < i < m, 1 <j < n) and unknowns x, (1 < k < n)
from field F. If n > m then the system has a nontrivial solution (that is, a
solution x1, x2, . .., x, where x, # 0 for some 1 < k < n).

Proof. We prove the result by induction on the number of equations m.
First, suppose we have m = 1 equation in n > 1 unknowns:

ai1xy + aexo + -+ aipx, = 0. If aj = 0 for 1 <j < n, then we have the
nontrivial solution x; = xop = -+ = x, = 1.
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Lemma 5.1.1

Lemma 5.1.1 (continued 1)

Proof (continued). If some coefficient ajj« # 0, then we have the
nontrivial solution

. _{ 1 i k£
x —(ayj+) Yo + a2+ - +a—ay) if k=

This proves the result for m=1 and n > m.
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Lemma 5.1.1

Lemma 5.1.1 (continued 1)

Proof (continued). If some coefficient ajj« # 0, then we have the
nontrivial solution

B} _{ 1 i k£
x —(ayj+) Yo + a2+ - +a—ay) if k=

This proves the result for m=1 and n > m.

Next suppose the result holds for a system of m — 1 equations in
n—1> m— 1 unknowns. If all coefficients a;j = 0, then
Xy = Xp = -+ = X, = 1 is a nontrivial solution.
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Lemma 5.1.1

Lemma 5.1.1 (Continued 2)

Proof (continued). If some aj:j« # 0, then consider the system of
equations (this system is obtained from the original one by eliminating the
variable x;« from all equations):

(a11 — (aij<) tayrai)xa +

(a01 — (ajj«) tagjeai1)x1

+ o+ o+ + o+

(am1 — (ai*j*)_lamj* ajr1)x1 +

-1
+ (amjr — (@jej*) " amjrajje ) Xj» + - -
-1
+  (amn — (@i*j*) " amj*ain)Xn =0
Introduction to Functional Analysis June 8, 2021

a1z — (aij+) tayramo)xe + o

alj* — (af*j*)ilalj*af*j*)xj* —|— ..

a1n — (apj+) tagjain)xs = 0

(
(
(
(a2 — (ajj<) Lagjeaja)xa + -+ -
(
(

agje — (aije) Lajraije )xje + -

aon — (apj+) tagjeain)xs = 0

-1
m2 — i*j mj*dj
(am2 — (@j=j*) " " amj=aj=2)xa + - - -
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Lemma 5.1.1 (continued 3)

Proof (continued). Notice that the coefficient of x;j« is 0 in each
equation and that the j* equation is 0 = 0. Therefore, this is a system of
m — 1 equations in the n — 1 variables x1,xo, ..., Xj*_1, Xj* 1, Xj* 42,

..., Xpn. By the induction hypothesis, this system has a nontrivial solution,
and this solution along with

-1
Xjx = —(a,-*j*) (aj*lxl + ajxoxo + -+ - + ajx (j*—1)Xj*—1 + Aj (j*+1)Xj*+1

Faje(j2)Xje42 o 3jenXn)

forms a nontrivial solution to the original system of equations. Hence, by
induction, the result holds for all m > 1 and all n > m. O
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Theorem 5.1.1

Theorem 5.1.1. Let (V) be a vector space with bases {vi,vo,..., vy}
and {wi,ws,...,w,}. Then n=m.
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Theorem 5.1.1

Theorem 5.1.1

Theorem 5.1.1. Let (V) be a vector space with bases {vi,vo,..., vy}
and {wi,wa,...,w,}. Then n=m.

Proof. Suppose n > m. Since {vi, v,

..,Vm} is a basis, then for some
ajj where 1 </ <m, 1< < nwe have

Wi = a11Vi+ a2iVo + -+ amiVm
Wy = appvi+axve+ -+ ameVm
w, =

aipV1 + @2pV2 + -+ - + amnVm.
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Theorem 5.1.1

Theorem 5.1.1

Theorem 5.1.1. Let (V) be a vector space with bases {vi,vo,..., vy}
and {wi,wa,...,w,}. Then n=m.

Proof. Suppose n > m. Since {vi, v,

..,Vm} is a basis, then for some
ajj where 1 </ <m, 1< < nwe have

Wi = a11Vi+ a2iVo + -+ amiVm
Wy = appvi+axve+ -+ ameVm
w, =

aipV1 + a2pV2 + - + ampVm-
Let x1,x2, ..., %, be (“unknown™) elements of F. Then

XIW1+XoW2 + - -+ XpWp, = (Xx1811 +X2812+ - - +Xn310)V1 + (X1821 + X282+

cood Xpaop)Vo + -+ (X18m1 + X23m2 + -+ + Xpd@mn )Vm-
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Theorem 5.1.1 (continued)

Theorem 5.1.1. Let (V) be a vector space with bases {vi,va,..., vy}
and {wi,wy,...,wy}. Then n=m.

Proof (continued). The system of equations

X1811 + X2d12 + -+ - + Xpain

X121 + Xpax + - -+ Xpa2p =

X1am1 + Xoam2 + -+ Xpamn = O

has a nontrivial solution xy, x2, ..., X, by Lemma 5.1.1, since n > m.
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Theorem 5.1.1 (continued)

Theorem 5.1.1. Let (V) be a vector space with bases {vi,va,..., vy}
and {wi,wy,...,wy}. Then n=m.

Proof (continued). The system of equations

X1d11 + X812 + - -+ Xpd1p =

X121 + Xpax + - -+ Xpa2p =

X1am1 + Xe@m2 + -+ + Xpamn = 0
has a nontrivial solution xy, x2, ..., X, by Lemma 5.1.1, since n > m.
Therefore xywi + xowg + - - - + x,w, = 0 for x1, xo, . . . x, where x, # 0 for
some 1 < k < n. That is, the set of vectors {w1,wz,...,w,} is linearly
dependent. But this is a contradiction since {wy,w>,...,w,} is a basis for
(V,F), and hence is a linearly independent set. Therefore n < m.
Similarly, m < n and we conclude that n = m. O

Introduction to Functional Analysis June 8, 2021 8 /16



Theorem 5.1.2

Theorem 5.1.2 The Fundamental Theorem of Finite Dimensional
Vector Spaces.

If (V,F) is an n-dimensional vector space, then (V,TF) is isomorphic to

F" = (V* F) where V* ={(f, f,..., fn) | A1, f2,...,f, € F}, and scalar
multiplication and vector addition are defined component wise.
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Theorem 5.1.2

Theorem 5.1.2 The Fundamental Theorem of Finite Dimensional
Vector Spaces.

If (V,F) is an n-dimensional vector space, then (V,TF) is isomorphic to
F" = (V* F) where V* ={(f, f,..., fn) | A1, f2,...,f, € F}, and scalar
multiplication and vector addition are defined component wise.

Proof. Let {vi,vy,...,v,} be a basis of (V,F). Define p: V — V* as
o((fve + fova + -+ fvp)) = (1, 2, ... o).
Since {vi,Vv2,...,V,} is a linearly independent set, then ¢ is one-to-one.

Since {v1,v2,...,Vv,} is a spanning set of (V,FF) then ¢ is onto. Finally,
for any f,f' € F and v,v' € V we have:
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Theorem 5.1.2 (continued)

Proof (continued).

o(fv+ V') = o(f(fivi+ fva + - + fpun) + ' (fvi + fvo + - - -

+fv,)) where v = fivy + v + -+ + v,
and v = fivy + fHup + -+ + flv,

= o((fA+ i1+ (fo + f'f)va + - - (ffy + ' )vy,)

= (Rt LR Lt F)

= (ff,fo, ... o)+ (A, ... f'f)

= f(fh,b,....0)+F(H,6,....f)

= fo(fhvi+ hvo+ -+ fovy)
+f'o(f{v1 + fava + -+ + fvy)

= fo(v)+ fle(v).

Therefore ¢ is an isomorphism. Ol
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Theorem 5.1.3

Theorem 5.1.3. If T is a linear transformation from n-dimensional vector
space (V,FF) to m-dimensional vector space (W, F) then T is equivalent
to the action of an m x n matrix At : F" — F™.
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Theorem 5.1.3

Theorem 5.1.3. If T is a linear transformation from n-dimensional vector
space (V,FF) to m-dimensional vector space (W, F) then T is equivalent
to the action of an m x n matrix At : F" — F™.

Proof. Let v € V and consider the representation of v with respect to the
standard basis of (V,F), v=vie; + wvey + -+ + vye, := (vi,va,..., Vp).
Then applying T to v yields

T(V) = T(v1e1 + wey + -+ vne,,)
= T(el) =+ v T(e2) + -+ vy T(e,,).

The vectors T(e;), 1 < i < n are elements of W. Suppose that, with
respect to the standard basis for (W ,IF), we have the representation
T(ei) := (a1, a2, ..., ami) for 1 <i<n.
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Theorem 5.1.3 (continued)

Theorem 5.1.3. If T is a linear transformation from n-dimensional vector
space (V,IF) to m-dimensional vector space (W, F) then T is equivalent
to the action of an m x n matrix At : F" — F™.

Proof (continued.) Then defining

a1 d12 - din
a1 ax» -+ ax
AT - . . . ’
dml  dm2 dmn
we see that vector v is mapped equivalently under T and Ar. []
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Theorem 5.1.4

Theorem 5.1.4. Let (V,F) be a vector space. Then there exists a set of
vectors B C V such that (1) B is linearly independent and (2) for any

v € V there exists finite sets {bj,by,...,b,} C B and {fi, fp,...,f} such
that v= fib; + by + --- + f,b,. That is, B is a Hamel basis for (V ).
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Theorem 5.1.4

Theorem 5.1.4. Let (V,F) be a vector space. Then there exists a set of
vectors B C V such that (1) B is linearly independent and (2) for any

v € V there exists finite sets {bj,by,...,b,} C B and {fi, fp,...,f} such
that v= fib; + by + --- + f,b,. That is, B is a Hamel basis for (V ).

Proof. Let P be the class whose members are the linearly independent
subsets of V. Then define the partial order < on Pas A< B for A,B € P
if AC B. Now forv # 0, {v} € P and so P is nonempty. Next, suppose @
is a totally ordered subset of P. Define M to be the union of all the sets in
Q. Then M € P is an upper bound of Q. Hence by Zorn’s Lemma, P has
a maximal element, call it B. Since B is in P, B is linearly independent.
Also, any vector v must be a linear combination of elements of B, for if
not, then the set B J{v} would be in P and B would not be maximal. [
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Exercise 5.1.3

Exercise 5.1.3. If By and B, are Hamel bases for a given infinite
dimensional vector space, then B; and B, are of the same cardinality.
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Exercise 5.1.3

Exercise 5.1.3. If By and B, are Hamel bases for a given infinite
dimensional vector space, then B; and B, are of the same cardinality.

Proof. Let B; = {b; | i € I}. That is, let B; have indexing set / so that
|B1| = |I|. For any u € By we have that u is a finite linear combination of
some finite subset of By, say

w Y it

i€y
where J,, C [ is a finite subset of set /. Now consider J = Uyep, Ju. We
have J C | by construction.
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Exercise 5.1.3

Exercise 5.1.3. If By and B, are Hamel bases for a given infinite
dimensional vector space, then B; and B, are of the same cardinality.

Proof. Let B; = {b; | i € I}. That is, let B; have indexing set / so that
|B1| = |I|. For any u € By we have that u is a finite linear combination of
some finite subset of By, say

a1,

i€y
where J,, C [ is a finite subset of set /. Now consider J = Uyep, Ju. We
have J C | by construction.

ASSUME J # I. Then there is some i’ € | where i’ ¢ J. Now b is in the
vector space and, since B, is a basis, then

b, = Z frci for some finite set K and ¢, € B,
keK

where not all 7, are 0.
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Exercise 5.1.3

Exercise 5.1.3 (continued 1)

Exercise 5.1.3. If By and B, are Hamel bases for a given infinite
dimensional vector space, then B; and B are of the same cardinality.

Proof (continued). We then have

b, = Z fx Z fib; | for some nonzero f; € F
keK fEJck

(notice that, since i’ ¢ J, then b is not in the sum on the right). But this
implies that the finite set of vectors

i € Jck;bi’ = Z fkck} Cc B

kekK

{b;/} U {b,‘

is not linearly independent, CONTRADICTING the fact that Bj is a basis.
So J=1.
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Exercise 5.1.3 (continued 2)

Exercise 5.1.3. If By and By are Hamel bases for a given infinite
dimensional vector space, then B; and B, are of the same cardinality.

Proof (continued). Now each J, is finite, and so by Exercise 0.8.11
1B1| = [I| = [J] = [UueB, Jul < [Bal-

Interchanging the roles of By and B, we conclude that |B,| < |B|.
Therefore, by the Schroeder-Bernstein Theorem (Theorem 0.8.6),
|B1| = [Ba|. O
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