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Lemma 5.1.1

Lemma 5.1.1

Lemma 5.1.1. Consider the homogeneous system of equations

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
. . .

...
am1x1 + am2x2 + · · · + amnxn = 0

with coefficients aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) and unknowns xk (1 ≤ k ≤ n)
from field F. If n > m then the system has a nontrivial solution (that is, a
solution x1, x2, . . . , xn where xk 6= 0 for some 1 ≤ k ≤ n).

Proof. We prove the result by induction on the number of equations m.
First, suppose we have m = 1 equation in n > 1 unknowns:
a11x1 + a12x2 + · · ·+ a1nxn = 0. If a1j = 0 for 1 ≤ j ≤ n, then we have the
nontrivial solution x1 = x2 = · · · = xn = 1.
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Lemma 5.1.1

Lemma 5.1.1 (continued 1)

Proof (continued). If some coefficient a1j∗ 6= 0, then we have the
nontrivial solution

xk =

{
1 if k 6= j∗

−(a1j∗)
−1(a11 + a12 + · · ·+ a1n − a1j∗) if k = j∗

This proves the result for m = 1 and n > m.

Next suppose the result holds for a system of m − 1 equations in
n − 1 > m − 1 unknowns. If all coefficients aij = 0, then
x1 = x2 = · · · = xn = 1 is a nontrivial solution.
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Lemma 5.1.1

Lemma 5.1.1 (Continued 2)

Proof (continued). If some ai∗j∗ 6= 0, then consider the system of
equations (this system is obtained from the original one by eliminating the
variable xj∗ from all equations):

(a11 − (ai∗j∗)
−1a1j∗ai∗1)x1 + (a12 − (ai∗j∗)

−1a1j∗ai∗2)x2 + · · ·
+ (a1j∗ − (ai∗j∗)

−1a1j∗ai∗j∗)xj∗ + · · ·
+ (a1n − (ai∗j∗)

−1a1j∗ai∗n)xn = 0

(a21 − (ai∗j∗)
−1a2j∗ai∗1)x1 + (a22 − (ai∗j∗)

−1a2j∗ai∗2)x2 + · · ·
+ (a2j∗ − (ai∗j∗)

−1a2j∗ai∗j∗)xj∗ + · · ·
+ (a2n − (ai∗j∗)

−1a2j∗ai∗n)xn = 0

...
...

...

(am1 − (ai∗j∗)
−1amj∗ai∗1)x1 + (am2 − (ai∗j∗)

−1amj∗ai∗2)x2 + · · ·
+ (amj∗ − (ai∗j∗)

−1amj∗ai∗j∗)xj∗ + · · ·
+ (amn − (ai∗j∗)

−1amj∗ai∗n)xn = 0
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Lemma 5.1.1

Lemma 5.1.1 (continued 3)

Proof (continued). Notice that the coefficient of xj∗ is 0 in each
equation and that the j∗ equation is 0 = 0. Therefore, this is a system of
m − 1 equations in the n − 1 variables x1, x2, . . . , xj∗−1, xj∗+1, xj∗+2,
. . . , xn. By the induction hypothesis, this system has a nontrivial solution,
and this solution along with

xj∗ = −(ai∗j∗)
−1(aj∗1x1 + aj∗2x2 + · · ·+ aj∗(j∗−1)xj∗−1 + aj∗(j∗+1)xj∗+1

+aj∗(j∗+2)xj∗+2 + · · ·+ aj∗nxn)

forms a nontrivial solution to the original system of equations. Hence, by
induction, the result holds for all m ≥ 1 and all n > m.
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Theorem 5.1.1

Theorem 5.1.1

Theorem 5.1.1. Let 〈V , F〉 be a vector space with bases {v1, v2, . . . , vm}
and {w1,w2, . . . ,wn}. Then n = m.

Proof. Suppose n > m. Since {v1, v2, . . . , vm} is a basis, then for some
aij where 1 ≤ i ≤ m, 1 ≤ j ≤ n we have

w1 = a11v1 + a21v2 + · · ·+ am1vm

w2 = a12v1 + a22v2 + · · ·+ am2vm

...
...

...

wn = a1nv1 + a2nv2 + · · ·+ amnvm.

Let x1, x2, . . . , xn be (“unknown”) elements of F. Then

x1w1+x2w2+· · ·+xnwn = (x1a11+x2a12+· · ·+xna1n)v1+(x1a21+x2a22+

· · ·+ xna2n)v2 + · · ·+ (x1am1 + x2am2 + · · ·+ xnamn)vm.
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Theorem 5.1.1

Theorem 5.1.1 (continued)

Theorem 5.1.1. Let 〈V , F〉 be a vector space with bases {v1, v2, . . . , vm}
and {w1,w2, . . . ,wn}. Then n = m.

Proof (continued). The system of equations

x1a11 + x2a12 + · · ·+ xna1n = 0

x1a21 + x2a22 + · · ·+ xna2n = 0
...

...
...

x1am1 + x2am2 + · · ·+ xnamn = 0

has a nontrivial solution x1, x2, . . . , xn by Lemma 5.1.1, since n > m.
Therefore x1w1 + x2w2 + · · ·+ xnwn = 0 for x1, x2, . . . xn where xk 6= 0 for
some 1 ≤ k ≤ n. That is, the set of vectors {w1,w2, . . . ,wn} is linearly
dependent. But this is a contradiction since {w1,w2, . . . ,wn} is a basis for
〈V , F〉, and hence is a linearly independent set. Therefore n ≤ m.
Similarly, m ≤ n and we conclude that n = m.
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Theorem 5.1.1

Theorem 5.1.1 (continued)

Theorem 5.1.1. Let 〈V , F〉 be a vector space with bases {v1, v2, . . . , vm}
and {w1,w2, . . . ,wn}. Then n = m.

Proof (continued). The system of equations

x1a11 + x2a12 + · · ·+ xna1n = 0

x1a21 + x2a22 + · · ·+ xna2n = 0
...

...
...

x1am1 + x2am2 + · · ·+ xnamn = 0

has a nontrivial solution x1, x2, . . . , xn by Lemma 5.1.1, since n > m.
Therefore x1w1 + x2w2 + · · ·+ xnwn = 0 for x1, x2, . . . xn where xk 6= 0 for
some 1 ≤ k ≤ n. That is, the set of vectors {w1,w2, . . . ,wn} is linearly
dependent. But this is a contradiction since {w1,w2, . . . ,wn} is a basis for
〈V , F〉, and hence is a linearly independent set. Therefore n ≤ m.
Similarly, m ≤ n and we conclude that n = m.

() Introduction to Functional Analysis June 8, 2021 8 / 16



Theorem 5.1.2. The Fundamental Theorem of Finite Dimensional
Vector Spaces

Theorem 5.1.2

Theorem 5.1.2 The Fundamental Theorem of Finite Dimensional
Vector Spaces.
If 〈V , F〉 is an n-dimensional vector space, then 〈V , F〉 is isomorphic to
Fn = 〈V ∗, F〉 where V ∗ = {(f1, f2, . . . , fn) | f1, f2, . . . , fn ∈ F}, and scalar
multiplication and vector addition are defined component wise.

Proof. Let {v1, v2, . . . , vn} be a basis of 〈V , F〉. Define ϕ : V 7→ V ∗ as

ϕ((f1v1 + f2v2 + · · ·+ fnvn)) = (f1, f2, . . . , fn).

Since {v1, v2, . . . , vn} is a linearly independent set, then ϕ is one-to-one.
Since {v1, v2, . . . , vn} is a spanning set of 〈V , F〉 then ϕ is onto. Finally,
for any f , f ′ ∈ F and v, v′ ∈ V we have:
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Theorem 5.1.2. The Fundamental Theorem of Finite Dimensional
Vector Spaces

Theorem 5.1.2 (continued)

Proof (continued).

ϕ(f v + f ′v′) = ϕ(f (f1v1 + f2v2 + · · ·+ fnvn) + f ′(f ′1v1 + f ′2v2 + · · ·
+f ′nvn)) where v = f1v1 + f2v2 + · · ·+ fnvn

and v′ = f ′1v1 + f ′2v2 + · · ·+ f ′nvn

= ϕ((ff1 + f ′f ′1)v1 + (ff2 + f ′f ′2)v2 + · · · (ffn + f ′f ′n)vn)

= (ff1 + f ′f ′1 ,ff2 + f ′f ′2 , . . . ,ffn + f ′f ′n)

= (ff1,ff2, . . . ,ffn) + (f ′f ′1 , f
′f ′2 , . . . , f

′f ′n)

= f (f1, f2, . . . , fn) + f ′(f ′1 , f
′
2 , . . . , f

′
n)

= f ϕ(f1v1 + f2v2 + · · ·+ fnvn)

+f ′ϕ(f ′1v1 + f ′2v2 + · · ·+ f ′nvn)

= f ϕ(v) + f ′ϕ(v′).

Therefore ϕ is an isomorphism.
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Theorem 5.1.3

Theorem 5.1.3

Theorem 5.1.3. If T is a linear transformation from n-dimensional vector
space 〈V , F〉 to m-dimensional vector space 〈W , F〉 then T is equivalent
to the action of an m × n matrix AT : Fn 7→ Fm.

Proof. Let v ∈ V and consider the representation of v with respect to the
standard basis of 〈V , F〉, v = v1e1 + v2e2 + · · ·+ vnen := (v1, v2, . . . , vn).
Then applying T to v yields

T (v) = T (v1e1 + v2e2 + · · ·+ vnen)

= v1T (e1) + v2T (e2) + · · ·+ vnT (en).

The vectors T (ei ), 1 ≤ i ≤ n are elements of W . Suppose that, with
respect to the standard basis for 〈W , F〉, we have the representation
T (ei ) := (a1i , a2i , . . . , ami ) for 1 ≤ i ≤ n.
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Theorem 5.1.3

Theorem 5.1.3 (continued)

Theorem 5.1.3. If T is a linear transformation from n-dimensional vector
space 〈V , F〉 to m-dimensional vector space 〈W , F〉 then T is equivalent
to the action of an m × n matrix AT : Fn 7→ Fm.

Proof (continued.) Then defining

AT =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

 ,

we see that vector v is mapped equivalently under T and AT .
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Theorem 5.1.4

Theorem 5.1.4

Theorem 5.1.4. Let 〈V , F〉 be a vector space. Then there exists a set of
vectors B ⊂ V such that (1) B is linearly independent and (2) for any
v ∈ V there exists finite sets {b1,b2, . . . ,bn} ⊂ B and {f1, f2, . . . , fn} such
that v = f1b1 + f2b2 + · · ·+ fnbn. That is, B is a Hamel basis for 〈V , F〉.

Proof. Let P be the class whose members are the linearly independent
subsets of V . Then define the partial order ≺ on P as A ≺ B for A,B ∈ P
if A ⊂ B. Now for v 6= 0, {v} ∈ P and so P is nonempty. Next, suppose Q
is a totally ordered subset of P. Define M to be the union of all the sets in
Q. Then M ∈ P is an upper bound of Q. Hence by Zorn’s Lemma, P has
a maximal element, call it B. Since B is in P, B is linearly independent.
Also, any vector v must be a linear combination of elements of B, for if
not, then the set B

⋃
{v} would be in P and B would not be maximal.
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Exercise 5.1.3

Exercise 5.1.3

Exercise 5.1.3. If B1 and B2 are Hamel bases for a given infinite
dimensional vector space, then B1 and B2 are of the same cardinality.

Proof. Let B1 = {bi | i ∈ I}. That is, let B1 have indexing set I so that
|B1| = |I |. For any u ∈ B2 we have that u is a finite linear combination of
some finite subset of B1, say

u =
∑
i∈Ju

fibi

where Ju ⊂ I is a finite subset of set I . Now consider J = ∪u∈B2Ju. We
have J ⊆ I by construction.

ASSUME J 6= I . Then there is some i ′ ∈ I where i ′ /∈ J. Now bi ′ is in the
vector space and, since B2 is a basis, then

bi ′ =
∑
k∈K

fkck for some finite set K and ck ∈ B2

where not all fk are 0.
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Exercise 5.1.3

Exercise 5.1.3 (continued 1)

Exercise 5.1.3. If B1 and B2 are Hamel bases for a given infinite
dimensional vector space, then B1 and B2 are of the same cardinality.

Proof (continued). We then have

bi ′ =
∑
k∈K

fk

 ∑
i∈Jck

fibi

 for some nonzero fi ∈ F

(notice that, since i ′ /∈ J, then bi ′ is not in the sum on the right). But this
implies that the finite set of vectors

{bi ′} ∪

{
bi

∣∣∣∣∣ i ∈ Jck
,bi ′ =

∑
k∈K

fkck

}
⊂ B1

is not linearly independent, CONTRADICTING the fact that B1 is a basis.
So J = I .
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Exercise 5.1.3

Exercise 5.1.3 (continued 2)

Exercise 5.1.3. If B1 and B2 are Hamel bases for a given infinite
dimensional vector space, then B1 and B2 are of the same cardinality.

Proof (continued). Now each Ju is finite, and so by Exercise 0.8.11

|B1| = |I | = |J| = |∪u∈B2Ju| ≤ |B2|.

Interchanging the roles of B1 and B2, we conclude that |B2| ≤ |B1|.
Therefore, by the Schroeder-Bernstein Theorem (Theorem 0.8.6),
|B1| = |B2|.
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