Introduction to Functional Analysis

Chapter 5. Vector Spaces, Hilbert Spaces, and the L^2 **Space** 5.1. Groups, Fields, Vector Spaces—Proofs of Theorems



Table of contents

1 Lemma 5.1.1

2 Theorem 5.1.1

- Theorem 5.1.2. The Fundamental Theorem of Finite Dimensional Vector Spaces
- 4 Theorem 5.1.3
- 5 Theorem 5.1.4

6 Exercise 5.1.3

Lemma 5.1.1

Lemma 5.1.1. Consider the homogeneous system of equations

with coefficients a_{ij} $(1 \le i \le m, 1 \le j \le n)$ and unknowns x_k $(1 \le k \le n)$ from field \mathbb{F} . If n > m then the system has a nontrivial solution (that is, a solution x_1, x_2, \ldots, x_n where $x_k \ne 0$ for some $1 \le k \le n$).

Proof. We prove the result by induction on the number of equations m. First, suppose we have m = 1 equation in n > 1 unknowns:

 $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0$. If $a_{1j} = 0$ for $1 \le j \le n$, then we have the nontrivial solution $x_1 = x_2 = \cdots = x_n = 1$.

Lemma 5.1.1

Lemma 5.1.1. Consider the homogeneous system of equations

with coefficients a_{ij} $(1 \le i \le m, 1 \le j \le n)$ and unknowns x_k $(1 \le k \le n)$ from field \mathbb{F} . If n > m then the system has a nontrivial solution (that is, a solution x_1, x_2, \ldots, x_n where $x_k \ne 0$ for some $1 \le k \le n$).

Proof. We prove the result by induction on the number of equations m. First, suppose we have m = 1 equation in n > 1 unknowns:

 $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0$. If $a_{1j} = 0$ for $1 \le j \le n$, then we have the nontrivial solution $x_1 = x_2 = \cdots = x_n = 1$.

Lemma 5.1.1 (continued 1)

Proof (continued). If some coefficient $a_{1j^*} \neq 0$, then we have the nontrivial solution

$$x_k = \begin{cases} 1 & \text{if } k \neq j^* \\ -(a_{1j^*})^{-1}(a_{11} + a_{12} + \dots + a_{1n} - a_{1j^*}) & \text{if } k = j^* \end{cases}$$

This proves the result for m = 1 and n > m.

Next suppose the result holds for a system of m-1 equations in n-1 > m-1 unknowns. If all coefficients $a_{ij} = 0$, then $x_1 = x_2 = \cdots = x_n = 1$ is a nontrivial solution.

Lemma 5.1.1 (continued 1)

Proof (continued). If some coefficient $a_{1j^*} \neq 0$, then we have the nontrivial solution

$$x_k = \begin{cases} 1 & \text{if } k \neq j^* \\ -(a_{1j^*})^{-1}(a_{11} + a_{12} + \dots + a_{1n} - a_{1j^*}) & \text{if } k = j^* \end{cases}$$

This proves the result for m = 1 and n > m.

Next suppose the result holds for a system of m-1 equations in n-1 > m-1 unknowns. If all coefficients $a_{ij} = 0$, then $x_1 = x_2 = \cdots = x_n = 1$ is a nontrivial solution.

Lemma 5.1.1 (Continued 2)

Proof (continued). If some $a_{i^*j^*} \neq 0$, then consider the system of equations (this system is obtained from the original one by eliminating the variable x_{j^*} from all equations):

$$(a_{11} - (a_{i^*j^*})^{-1}a_{1j^*}a_{i^*1})x_1 + (a_{12} - (a_{i^*j^*})^{-1}a_{1j^*}a_{i^*2})x_2 + \cdots + (a_{1j^*} - (a_{i^*j^*})^{-1}a_{1j^*}a_{i^*j^*})x_{j^*} + \cdots + (a_{1n} - (a_{i^*j^*})^{-1}a_{1j^*}a_{i^*n})x_n = 0 (a_{21} - (a_{i^*j^*})^{-1}a_{2j^*}a_{i^*1})x_1 + (a_{22} - (a_{i^*j^*})^{-1}a_{2j^*}a_{i^*2})x_2 + \cdots + (a_{2j^*} - (a_{i^*j^*})^{-1}a_{2j^*}a_{i^*j^*})x_{j^*} + \cdots + (a_{2n} - (a_{i^*j^*})^{-1}a_{2j^*}a_{i^*n})x_n = 0 \vdots \vdots \vdots \\ (a_{m1} - (a_{i^*j^*})^{-1}a_{mj^*}a_{i^*1})x_1 + (a_{m2} - (a_{i^*j^*})^{-1}a_{mj^*}a_{i^*2})x_2 + \cdots + (a_{mj^*} - (a_{i^*j^*})^{-1}a_{mj^*}a_{i^*j^*})x_{j^*} + \cdots + (a_{mn} - (a_{i^*j^*})^{-1}a_{mj^*}a_{i^*n})x_n = 0$$

Lemma 5.1.1 (continued 3)

Proof (continued). Notice that the coefficient of x_{j^*} is 0 in each equation and that the j^* equation is 0 = 0. Therefore, this is a system of m-1 equations in the n-1 variables $x_1, x_2, \ldots, x_{j^*-1}, x_{j^*+1}, x_{j^*+2}, \ldots, x_n$. By the induction hypothesis, this system has a nontrivial solution, and this solution along with

$$\begin{aligned} x_{j^*} &= -(a_{i^*j^*})^{-1}(a_{j^*1}x_1 + a_{j^*2}x_2 + \dots + a_{j^*(j^*-1)}x_{j^*-1} + a_{j^*(j^*+1)}x_{j^*+1} \\ &+ a_{j^*(j^*+2)}x_{j^*+2} + \dots + a_{j^*n}x_n) \end{aligned}$$

forms a nontrivial solution to the original system of equations. Hence, by induction, the result holds for all $m \ge 1$ and all n > m.

Theorem 5.1.1. Let $\langle V, \mathbb{F} \rangle$ be a vector space with bases $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$. Then n = m.

Proof. Suppose n > m. Since $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a basis, then for some a_{ij} where $1 \le i \le m, 1 \le j \le n$ we have

 $\mathbf{w}_1 = a_{11}\mathbf{v}_1 + a_{21}\mathbf{v}_2 + \dots + a_{m1}\mathbf{v}_m$ $\mathbf{w}_2 = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2 + \dots + a_{m2}\mathbf{v}_m$ $\vdots \vdots \vdots$ $\mathbf{w}_n = a_{1n}\mathbf{v}_1 + a_{2n}\mathbf{v}_2 + \dots + a_{mn}\mathbf{v}_m.$

Theorem 5.1.1. Let $\langle V, \mathbb{F} \rangle$ be a vector space with bases $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$. Then n = m.

Proof. Suppose n > m. Since $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a basis, then for some a_{ij} where $1 \le i \le m, 1 \le j \le n$ we have

 $\mathbf{w}_1 = a_{11}\mathbf{v}_1 + a_{21}\mathbf{v}_2 + \dots + a_{m1}\mathbf{v}_m$ $\mathbf{w}_2 = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2 + \dots + a_{m2}\mathbf{v}_m$ $\vdots \vdots \vdots$ $\mathbf{w}_n = a_{1n}\mathbf{v}_1 + a_{2n}\mathbf{v}_2 + \dots + a_{mn}\mathbf{v}_m.$

Let x_1, x_2, \ldots, x_n be ("unknown") elements of \mathbb{F} . Then

 $x_1\mathbf{w}_1 + x_2\mathbf{w}_2 + \dots + x_n\mathbf{w}_n = (x_1a_{11} + x_2a_{12} + \dots + x_na_{1n})\mathbf{v}_1 + (x_1a_{21} + x_2a_{22} + \dots + x_na_{1n})\mathbf{v}_1$

 $\cdots + x_n a_{2n})\mathbf{v}_2 + \cdots + (x_1 a_{m1} + x_2 a_{m2} + \cdots + x_n a_{mn})\mathbf{v}_m.$

Theorem 5.1.1. Let $\langle V, \mathbb{F} \rangle$ be a vector space with bases $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$. Then n = m.

Proof. Suppose n > m. Since $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a basis, then for some a_{ij} where $1 \le i \le m, 1 \le j \le n$ we have

 $\mathbf{w}_1 = a_{11}\mathbf{v}_1 + a_{21}\mathbf{v}_2 + \dots + a_{m1}\mathbf{v}_m$ $\mathbf{w}_2 = a_{12}\mathbf{v}_1 + a_{22}\mathbf{v}_2 + \dots + a_{m2}\mathbf{v}_m$ $\vdots \vdots \vdots$ $\mathbf{w}_n = a_{1n}\mathbf{v}_1 + a_{2n}\mathbf{v}_2 + \dots + a_{mn}\mathbf{v}_m.$

Let x_1, x_2, \ldots, x_n be ("unknown") elements of \mathbb{F} . Then

 $x_1\mathbf{w}_1 + x_2\mathbf{w}_2 + \dots + x_n\mathbf{w}_n = (x_1a_{11} + x_2a_{12} + \dots + x_na_{1n})\mathbf{v}_1 + (x_1a_{21} + x_2a_{22} + \dots + x_na_{1n})\mathbf{v}_1$

$$\cdots + x_n a_{2n})\mathbf{v}_2 + \cdots + (x_1 a_{m1} + x_2 a_{m2} + \cdots + x_n a_{mn})\mathbf{v}_m.$$

٠

Theorem 5.1.1 (continued)

Theorem 5.1.1. Let $\langle V, \mathbb{F} \rangle$ be a vector space with bases $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$. Then n = m.

Proof (continued). The system of equations

$$x_{1}a_{11} + x_{2}a_{12} + \dots + x_{n}a_{1n} = 0$$

$$x_{1}a_{21} + x_{2}a_{22} + \dots + x_{n}a_{2n} = 0$$

$$\vdots \vdots \vdots$$

$$x_{1}a_{m1} + x_{2}a_{m2} + \dots + x_{n}a_{mn} = 0$$

has a nontrivial solution $x_1, x_2, ..., x_n$ by Lemma 5.1.1, since n > m. Therefore $x_1\mathbf{w}_1 + x_2\mathbf{w}_2 + \cdots + x_n\mathbf{w}_n = \mathbf{0}$ for $x_1, x_2, ..., x_n$ where $x_k \neq 0$ for some $1 \le k \le n$. That is, the set of vectors $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ is linearly dependent. But this is a contradiction since $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ is a basis for $\langle V, \mathbb{F} \rangle$, and hence is a linearly independent set. Therefore $n \le m$. Similarly, $m \le n$ and we conclude that n = m.

Theorem 5.1.1 (continued)

Theorem 5.1.1. Let $\langle V, \mathbb{F} \rangle$ be a vector space with bases $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$. Then n = m.

Proof (continued). The system of equations

$$x_{1}a_{11} + x_{2}a_{12} + \dots + x_{n}a_{1n} = 0$$

$$x_{1}a_{21} + x_{2}a_{22} + \dots + x_{n}a_{2n} = 0$$

$$\vdots \vdots \vdots$$

$$x_{1}a_{m1} + x_{2}a_{m2} + \dots + x_{n}a_{mn} = 0$$

has a nontrivial solution $x_1, x_2, ..., x_n$ by Lemma 5.1.1, since n > m. Therefore $x_1\mathbf{w}_1 + x_2\mathbf{w}_2 + \cdots + x_n\mathbf{w}_n = \mathbf{0}$ for $x_1, x_2, ..., x_n$ where $x_k \neq 0$ for some $1 \le k \le n$. That is, the set of vectors $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ is linearly dependent. But this is a contradiction since $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ is a basis for $\langle V, \mathbb{F} \rangle$, and hence is a linearly independent set. Therefore $n \le m$. Similarly, $m \le n$ and we conclude that n = m.

Theorem 5.1.2 The Fundamental Theorem of Finite Dimensional Vector Spaces.

If $\langle V, \mathbb{F} \rangle$ is an *n*-dimensional vector space, then $\langle V, \mathbb{F} \rangle$ is isomorphic to $\mathbb{F}^n = \langle V^*, \mathbb{F} \rangle$ where $V^* = \{(f_1, f_2, \ldots, f_n) \mid f_1, f_2, \ldots, f_n \in \mathbb{F}\}$, and scalar multiplication and vector addition are defined component wise.

Proof. Let
$$\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$
 be a basis of $\langle V, \mathbb{F} \rangle$. Define $\varphi : V \mapsto V^*$ as

$$\varphi((f_1\mathbf{v}_1+f_2\mathbf{v}_2+\cdots+f_n\mathbf{v}_n))=(f_1,f_2,\ldots,f_n).$$

Since $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set, then φ is one-to-one. Since $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a spanning set of $\langle V, \mathbb{F} \rangle$ then φ is onto. Finally, for any $f, f' \in \mathbb{F}$ and $\mathbf{v}, \mathbf{v}' \in V$ we have:

Theorem 5.1.2 The Fundamental Theorem of Finite Dimensional Vector Spaces.

If $\langle V, \mathbb{F} \rangle$ is an *n*-dimensional vector space, then $\langle V, \mathbb{F} \rangle$ is isomorphic to $\mathbb{F}^n = \langle V^*, \mathbb{F} \rangle$ where $V^* = \{(f_1, f_2, \ldots, f_n) \mid f_1, f_2, \ldots, f_n \in \mathbb{F}\}$, and scalar multiplication and vector addition are defined component wise.

Proof. Let
$$\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$
 be a basis of $\langle V, \mathbb{F} \rangle$. Define $\varphi : V \mapsto V^*$ as

$$\varphi((f_1\mathbf{v}_1+f_2\mathbf{v}_2+\cdots+f_n\mathbf{v}_n))=(f_1,f_2,\ldots,f_n).$$

Since $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set, then φ is one-to-one. Since $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a spanning set of $\langle V, \mathbb{F} \rangle$ then φ is onto. Finally, for any $f, f' \in \mathbb{F}$ and $\mathbf{v}, \mathbf{v}' \in V$ we have:

Theorem 5.1.2 (continued)

Proof (continued).

$$\begin{aligned} \varphi(f\mathbf{v} + f'\mathbf{v}') &= \varphi(f(f_1\mathbf{v}_1 + f_2\mathbf{v}_2 + \dots + f_n\mathbf{v}_n) + f'(f_1'\mathbf{v}_1 + f_2'\mathbf{v}_2 + \dots + f_n'\mathbf{v}_n)) \text{ where } \mathbf{v} &= f_1\mathbf{v}_1 + f_2\mathbf{v}_2 + \dots + f_n\mathbf{v}_n \\ &= and \mathbf{v}' = f_1'\mathbf{v}_1 + f_2'\mathbf{v}_2 + \dots + f_n'\mathbf{v}_n \\ &= \varphi((ff_1 + f'f_1')\mathbf{v}_1 + (ff_2 + f'f_2')\mathbf{v}_2 + \dots (ff_n + f'f_n')\mathbf{v}_n) \\ &= (ff_1 + f'f_1', ff_2 + f'f_2', \dots, ff_n + f'f_n') \\ &= (ff_1, ff_2, \dots, ff_n) + (f'f_1', f'f_2', \dots, f'f_n') \\ &= f(f_1, f_2, \dots, f_n) + f'(f_1', f_2', \dots, f_n') \\ &= f\varphi(f_1\mathbf{v}_1 + f_2\mathbf{v}_2 + \dots + f_n\mathbf{v}_n) \\ &+ f'\varphi(f_1'\mathbf{v}_1 + f_2'\mathbf{v}_2 + \dots + f_n'\mathbf{v}_n) \\ &= f\varphi(\mathbf{v}) + f'\varphi(\mathbf{v}'). \end{aligned}$$

Therefore φ is an isomorphism.

- (

Theorem 5.1.3. If T is a linear transformation from *n*-dimensional vector space $\langle V, \mathbb{F} \rangle$ to *m*-dimensional vector space $\langle W, \mathbb{F} \rangle$ then T is equivalent to the action of an $m \times n$ matrix $A_T : \mathbb{F}^n \mapsto \mathbb{F}^m$.

Proof. Let $\mathbf{v} \in V$ and consider the representation of \mathbf{v} with respect to the standard basis of $\langle V, \mathbb{F} \rangle$, $\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \cdots + v_n \mathbf{e}_n := (v_1, v_2, \ldots, v_n)$. Then applying T to \mathbf{v} yields

$$T(\mathbf{v}) = T(v_1\mathbf{e}_1 + v_2\mathbf{e}_2 + \dots + v_n\mathbf{e}_n)$$

= $v_1T(\mathbf{e}_1) + v_2T(\mathbf{e}_2) + \dots + v_nT(\mathbf{e}_n).$

The vectors $T(\mathbf{e}_i)$, $1 \le i \le n$ are elements of W. Suppose that, with respect to the standard basis for $\langle W, \mathbb{F} \rangle$, we have the representation $T(\mathbf{e}_i) := (a_{1i}, a_{2i}, \ldots, a_{mi})$ for $1 \le i \le n$.

Theorem 5.1.3. If T is a linear transformation from *n*-dimensional vector space $\langle V, \mathbb{F} \rangle$ to *m*-dimensional vector space $\langle W, \mathbb{F} \rangle$ then T is equivalent to the action of an $m \times n$ matrix $A_T : \mathbb{F}^n \mapsto \mathbb{F}^m$.

Proof. Let $\mathbf{v} \in V$ and consider the representation of \mathbf{v} with respect to the standard basis of $\langle V, \mathbb{F} \rangle$, $\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \cdots + v_n \mathbf{e}_n := (v_1, v_2, \ldots, v_n)$. Then applying T to \mathbf{v} yields

$$T(\mathbf{v}) = T(v_1\mathbf{e}_1 + v_2\mathbf{e}_2 + \dots + v_n\mathbf{e}_n)$$

= $v_1T(\mathbf{e}_1) + v_2T(\mathbf{e}_2) + \dots + v_nT(\mathbf{e}_n).$

The vectors $T(\mathbf{e}_i)$, $1 \le i \le n$ are elements of W. Suppose that, with respect to the standard basis for $\langle W, \mathbb{F} \rangle$, we have the representation $T(\mathbf{e}_i) := (a_{1i}, a_{2i}, \dots, a_{mi})$ for $1 \le i \le n$.

Theorem 5.1.3 (continued)

Theorem 5.1.3. If T is a linear transformation from *n*-dimensional vector space $\langle V, \mathbb{F} \rangle$ to *m*-dimensional vector space $\langle W, \mathbb{F} \rangle$ then T is equivalent to the action of an $m \times n$ matrix $A_T : \mathbb{F}^n \mapsto \mathbb{F}^m$.

Proof (continued.) Then defining

$$A_{T} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

we see that vector \mathbf{v} is mapped equivalently under T and A_T .

Theorem 5.1.4. Let $\langle V, \mathbb{F} \rangle$ be a vector space. Then there exists a set of vectors $B \subset V$ such that (1) B is linearly independent and (2) for any $\mathbf{v} \in V$ there exists finite sets $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\} \subset B$ and $\{f_1, f_2, \dots, f_n\}$ such that $\mathbf{v} = f_1\mathbf{b}_1 + f_2\mathbf{b}_2 + \dots + f_n\mathbf{b}_n$. That is, B is a Hamel basis for $\langle V, \mathbb{F} \rangle$.

Proof. Let *P* be the class whose members are the linearly independent subsets of *V*. Then define the partial order \prec on *P* as $A \prec B$ for $A, B \in P$ if $A \subset B$. Now for $\mathbf{v} \neq \mathbf{0}$, $\{\mathbf{v}\} \in P$ and so *P* is nonempty. Next, suppose *Q* is a totally ordered subset of *P*. Define *M* to be the union of all the sets in *Q*. Then $M \in P$ is an upper bound of *Q*. Hence by Zorn's Lemma, *P* has a maximal element, call it *B*. Since *B* is in *P*, *B* is linearly independent. Also, any vector \mathbf{v} must be a linear combination of elements of *B*, for if not, then the set $B \bigcup \{\mathbf{v}\}$ would be in *P* and *B* would not be maximal. \Box

Theorem 5.1.4. Let $\langle V, \mathbb{F} \rangle$ be a vector space. Then there exists a set of vectors $B \subset V$ such that (1) B is linearly independent and (2) for any $\mathbf{v} \in V$ there exists finite sets $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\} \subset B$ and $\{f_1, f_2, \dots, f_n\}$ such that $\mathbf{v} = f_1\mathbf{b}_1 + f_2\mathbf{b}_2 + \dots + f_n\mathbf{b}_n$. That is, B is a Hamel basis for $\langle V, \mathbb{F} \rangle$.

Proof. Let *P* be the class whose members are the linearly independent subsets of *V*. Then define the partial order \prec on *P* as $A \prec B$ for $A, B \in P$ if $A \subset B$. Now for $\mathbf{v} \neq \mathbf{0}$, $\{\mathbf{v}\} \in P$ and so *P* is nonempty. Next, suppose *Q* is a totally ordered subset of *P*. Define *M* to be the union of all the sets in *Q*. Then $M \in P$ is an upper bound of *Q*. Hence by Zorn's Lemma, *P* has a maximal element, call it *B*. Since *B* is in *P*, *B* is linearly independent. Also, any vector \mathbf{v} must be a linear combination of elements of *B*, for if not, then the set $B \bigcup \{\mathbf{v}\}$ would be in *P* and *B* would not be maximal.

Exercise 5.1.3

Exercise 5.1.3. If B_1 and B_2 are Hamel bases for a given infinite dimensional vector space, then B_1 and B_2 are of the same cardinality.

Proof. Let $B_1 = {\mathbf{b}_i \mid i \in I}$. That is, let B_1 have indexing set I so that $|B_1| = |I|$. For any $\mathbf{u} \in B_2$ we have that \mathbf{u} is a finite linear combination of some finite subset of B_1 , say

$$\mathbf{u} = \sum_{i \in J_{\mathbf{u}}} f_i \mathbf{b}_i$$

where $J_{\mathbf{u}} \subset I$ is a finite subset of set I. Now consider $J = \bigcup_{\mathbf{u} \in B_2} J_{\mathbf{u}}$. We have $J \subseteq I$ by construction.

Exercise 5.1.3

Exercise 5.1.3. If B_1 and B_2 are Hamel bases for a given infinite dimensional vector space, then B_1 and B_2 are of the same cardinality.

Proof. Let $B_1 = {\mathbf{b}_i \mid i \in I}$. That is, let B_1 have indexing set I so that $|B_1| = |I|$. For any $\mathbf{u} \in B_2$ we have that \mathbf{u} is a finite linear combination of some finite subset of B_1 , say

$$\mathbf{u} = \sum_{i \in J_{\mathbf{u}}} f_i \mathbf{b}_i$$

where $J_{\mathbf{u}} \subset I$ is a finite subset of set *I*. Now consider $J = \bigcup_{\mathbf{u} \in B_2} J_{\mathbf{u}}$. We have $J \subseteq I$ by construction.

ASSUME $J \neq I$. Then there is some $i' \in I$ where $i' \notin J$. Now $\mathbf{b}_{i'}$ is in the vector space and, since B_2 is a basis, then

$$\mathbf{b}_{i'} = \sum_{k \in K} f_k \mathbf{c}_k$$
 for some finite set K and $\mathbf{c}_k \in B_2$

where not all f_k are 0.

Exercise 5.1.3

Exercise 5.1.3. If B_1 and B_2 are Hamel bases for a given infinite dimensional vector space, then B_1 and B_2 are of the same cardinality.

Proof. Let $B_1 = {\mathbf{b}_i \mid i \in I}$. That is, let B_1 have indexing set I so that $|B_1| = |I|$. For any $\mathbf{u} \in B_2$ we have that \mathbf{u} is a finite linear combination of some finite subset of B_1 , say

$$\mathbf{u} = \sum_{i \in J_{\mathbf{u}}} f_i \mathbf{b}_i$$

where $J_{\mathbf{u}} \subset I$ is a finite subset of set *I*. Now consider $J = \bigcup_{\mathbf{u} \in B_2} J_{\mathbf{u}}$. We have $J \subseteq I$ by construction.

ASSUME $J \neq I$. Then there is some $i' \in I$ where $i' \notin J$. Now $\mathbf{b}_{i'}$ is in the vector space and, since B_2 is a basis, then

$$\mathbf{b}_{i'} = \sum_{k \in \mathcal{K}} f_k \mathbf{c}_k$$
 for some finite set \mathcal{K} and $\mathbf{c}_k \in B_2$

where not all f_k are 0.

Exercise 5.1.3 (continued 1)

Exercise 5.1.3. If B_1 and B_2 are Hamel bases for a given infinite dimensional vector space, then B_1 and B_2 are of the same cardinality.

Proof (continued). We then have

$$\mathbf{b}_{i'} = \sum_{k \in \mathcal{K}} f_k \left(\sum_{i \in J_{\mathbf{c}_k}} f_i \mathbf{b}_i \right)$$
 for some nonzero $f_i \in \mathbb{F}$

(notice that, since $i' \notin J$, then $\mathbf{b}_{i'}$ is not in the sum on the right). But this implies that the finite set of vectors

$$\{\mathbf{b}_{i'}\} \cup \left\{\mathbf{b}_i \ \middle| \ i \in J_{\mathbf{c}_k}, \mathbf{b}_{i'} = \sum_{k \in \mathcal{K}} f_k \mathbf{c}_k \right\} \subset B_1$$

is not linearly independent, CONTRADICTING the fact that B_1 is a basis. So J = I.

Exercise 5.1.3 (continued 2)

Exercise 5.1.3. If B_1 and B_2 are Hamel bases for a given infinite dimensional vector space, then B_1 and B_2 are of the same cardinality.

Proof (continued). Now each J_{u} is finite, and so by Exercise 0.8.11

$$|B_1| = |I| = |J| = |\cup_{\mathbf{u} \in B_2} J_{\mathbf{u}}| \le |B_2|.$$

Interchanging the roles of B_1 and B_2 , we conclude that $|B_2| \le |B_1|$. Therefore, by the Schroeder-Bernstein Theorem (Theorem 0.8.6), $|B_1| = |B_2|$.