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Chapter 5. Vector Spaces, Hilbert Spaces, and the L2 Space
5.2. Inner Product Spaces—Proofs of Theorems
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Theorem 5.2.1. The Schwarz Inequality

Theorem 5.2.1

Theorem 5.2.1. The Schwarz Inequality.
For all u, v in inner product space 〈V , C〉, we have

|〈u, v〉| ≤ ‖u‖‖v‖.

Proof. We know that for all a ∈ C

‖u + av‖2 = 〈u + av,u + av〉 ≥ 0.

In particular, this inequality holds for a = b
〈u, v〉
|〈u, v〉|

where b is real.

Therefore

〈u + av,u + av〉 = ‖u‖2 + a〈u, v〉+ a〈u, v〉+ |a|2‖v‖2

= ‖u‖2 + b
〈u, v〉
|〈u, v〉|

〈u, v〉+ b
〈u, v〉
|〈u, v〉|

〈u, v〉+ |b|2‖v‖2

= ‖u‖2 + 2b|〈u, v〉|+ b2‖v‖2 ≥ 0. (1)
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Theorem 5.2.1. The Schwarz Inequality

Theorem 5.2.1 (continued 1)

Proof (continued). Consider the function of b,

f (b) = ‖u‖2 + 2b|〈u, v〉|+ b2‖v‖2.

The graph of f is a concave-up parabola:
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Theorem 5.2.1. The Schwarz Inequality

Theorem 5.2.1 (continued 2)

Theorem 5.2.1. The Schwarz Inequality.
For all u, v in inner product space 〈V , C〉, we have

|〈u, v〉| ≤ ‖u‖‖v‖.

Proof (continued). To insure that (1) holds and that
‖u‖2 + 2b|〈u, v〉|+ b2‖v‖2 ≥ 0, we solve the equality

‖u‖2 + 2b|〈u, v〉|+ b2‖v‖2 = 0

for b, and get

b =
−2|〈u, v〉| ±

√
(2|〈u, v〉|)2 − 4‖v‖2‖u‖2

2‖v‖2
. (2)

Therefore, inequality (1) holds for all u and v if and only if the
discriminant of (2) is nonpositive:

(2|〈u, v〉|)2 − 4‖v‖2‖u‖2 ≤ 0.

That is, |〈u, v〉| ≤ ‖u‖‖v‖.
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Theorem 5.2.1 (continued 2)
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Theorem 5.2.2. The Triangle Inequality

Theorem 5.2.2. The Triangle Inequality

Theorem 5.2.2. The Triangle Inequality.
For all u, v in an inner product space 〈V , C〉 we have ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Proof. We have

‖u + v‖2 = 〈u + v,u + v〉 = 〈u,u〉+ 〈u, v〉+ 〈v,u〉+ 〈v, v〉
= ‖u‖2 + 〈u, v〉+ 〈u, v〉+ ‖v‖2

= ‖u‖2 + 2Re〈u, v〉+ ‖v‖2

≤ ‖u‖2 + 2|〈u, v〉|+ ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 by the Schwarz Inequality

= (‖u‖+ ‖v‖)2.

Taking square roots yields the result.
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Theorem 5.2.3. The Pythagorean Theorem

Theorem 5.2.3. The Pythagorean Theorem

Theorem 5.2.3. The Pythagorean Theorem
Let {v1, v2, . . . , vn} be an orthonormal set of vectors in an inner product
space 〈V , C〉. Then for all u ∈ V

‖u‖2 =
n∑

j=1

|〈u, vj〉|2 +

∥∥∥∥∥∥u−
n∑

j=1

〈vj ,u〉vj

∥∥∥∥∥∥
2

.

Proof. Trivially

u =
n∑

j=1

〈vj ,u〉vj +

u−
n∑

j=1

〈vj ,u〉vj

 .

(We will see latter that this is a rather fundamental decomposition of u.)
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Theorem 5.2.3. The Pythagorean Theorem

Theorem 5.2.3 (Continued 1)

Proof (continued). Since
〈∑n

j=1〈vj ,u〉vj ,u−
∑n

j=1〈vj ,u〉vj

〉
=

〈
n∑

j=1

〈vj ,u〉vj ,u

〉
−

〈
n∑

j=1

〈vj ,u〉vj ,

n∑
j=1

〈vj ,u〉vj

〉

=
n∑

j=1

〈vj ,u〉〈vj ,u〉 −
n∑

j=1

〈
〈vj ,u〉vj ,

n∑
k=1

〈vk ,u〉vk

〉

=
n∑

j=1

〈vj ,u〉〈vj ,u〉 −
n∑

j=1

n∑
k=1

〈〈vj ,u〉vj , 〈vk ,u〉vk〉

=
n∑

j=1

〈vj ,u〉〈vj ,u〉 −
n∑

j=1

n∑
k=1

〈vj ,u〉〈vk ,u〉〈vj , vk〉

=
n∑

j=1

|〈vj ,u〉|2 −
n∑

j=1

|〈vj ,u〉|2 = 0, . . .
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Theorem 5.2.3. The Pythagorean Theorem

Theorem 5.2.3 (Continued 2)

Proof (continued). . . . then these two vectors are orthogonal. Therefore

‖u‖2 = 〈u,u〉 =

〈
n∑

j=1

〈vj ,u〉vj +

u−
n∑

j=1

〈vj ,u〉vj

 ,

n∑
j=1

〈vj ,u〉vj +

u−
n∑

j=1

〈vj ,u〉vj

〉

=

〈
n∑

j=1

〈vj ,u〉vj ,

n∑
j=1

〈vj ,u〉vj

〉

+

〈
u−

n∑
j=1

〈vj ,u〉vj ,u−
n∑

j=1

〈vj ,u〉vj

〉

=
n∑

j=1

|〈vj ,u〉|2 +

∥∥∥∥∥∥u−
n∑

j=1

〈vj ,u〉vj

∥∥∥∥∥∥
2

.

() Introduction to Functional Analysis June 26, 2021 9 / 9


	Theorem 5.2.1. The Schwarz Inequality
	Theorem 5.2.2. The Triangle Inequality
	Theorem 5.2.3. The Pythagorean Theorem

