Introduction to Functional Analysis

Chapter 5. Vector Spaces, Hilbert Spaces, and the *L*² **Space** 5.2. Inner Product Spaces—Proofs of Theorems

1 Theorem 5.2.1. The Schwarz Inequality

2 Theorem 5.2.2. The Triangle Inequality

3 Theorem 5.2.3. The Pythagorean Theorem

Theorem 5.2.1

Theorem 5.2.1. The Schwarz Inequality.

For all \mathbf{u}, \mathbf{v} in inner product space $\langle V, \mathbb{C} \rangle$, we have

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|.$

Proof. We know that for all $a \in \mathbb{C}$

$$\|\mathbf{u} + a\mathbf{v}\|^2 = \langle \mathbf{u} + a\mathbf{v}, \mathbf{u} + a\mathbf{v} \rangle \ge 0.$$

In particular, this inequality holds for $a = b \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{|\langle \mathbf{u}, \mathbf{v} \rangle|}$ where b is real.

Theorem 5.2.1

Theorem 5.2.1. The Schwarz Inequality.

For all \mathbf{u}, \mathbf{v} in inner product space $\langle V, \mathbb{C} \rangle$, we have

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|.$

Proof. We know that for all $a \in \mathbb{C}$

$$\|\mathbf{u} + a\mathbf{v}\|^2 = \langle \mathbf{u} + a\mathbf{v}, \mathbf{u} + a\mathbf{v} \rangle \ge 0.$$

In particular, this inequality holds for $a = b \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{|\langle \mathbf{u}, \mathbf{v} \rangle|}$ where *b* is real. Therefore

$$\begin{aligned} \langle \mathbf{u} + a\mathbf{v}, \mathbf{u} + a\mathbf{v} \rangle &= \|\mathbf{u}\|^2 + a\langle \mathbf{u}, \mathbf{v} \rangle + \overline{a\langle \mathbf{u}, \mathbf{v} \rangle} + |a|^2 \|\mathbf{v}\|^2 \\ &= \|\mathbf{u}\|^2 + b \frac{\overline{\langle \mathbf{u}, \mathbf{v} \rangle}}{|\langle \mathbf{u}, \mathbf{v} \rangle|} \langle \mathbf{u}, \mathbf{v} \rangle + b \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{|\langle \mathbf{u}, \mathbf{v} \rangle|} \overline{\langle \mathbf{u}, \mathbf{v} \rangle} + |b|^2 \|\mathbf{v}\|^2 \\ &= \|\mathbf{u}\|^2 + 2b |\langle \mathbf{u}, \mathbf{v} \rangle| + b^2 \|\mathbf{v}\|^2 \ge 0. \end{aligned}$$
(1)

Theorem 5.2.1

Theorem 5.2.1. The Schwarz Inequality.

For all \mathbf{u}, \mathbf{v} in inner product space $\langle V, \mathbb{C} \rangle$, we have

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|.$

Proof. We know that for all $a \in \mathbb{C}$

$$\|\mathbf{u} + a\mathbf{v}\|^2 = \langle \mathbf{u} + a\mathbf{v}, \mathbf{u} + a\mathbf{v} \rangle \ge 0.$$

In particular, this inequality holds for $a = b \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{|\langle \mathbf{u}, \mathbf{v} \rangle|}$ where *b* is real. Therefore

$$\begin{aligned} \langle \mathbf{u} + a\mathbf{v}, \mathbf{u} + a\mathbf{v} \rangle &= \|\mathbf{u}\|^2 + a\langle \mathbf{u}, \mathbf{v} \rangle + \overline{a\langle \mathbf{u}, \mathbf{v} \rangle} + |a|^2 \|\mathbf{v}\|^2 \\ &= \|\mathbf{u}\|^2 + b \frac{\overline{\langle \mathbf{u}, \mathbf{v} \rangle}}{|\langle \mathbf{u}, \mathbf{v} \rangle|} \langle \mathbf{u}, \mathbf{v} \rangle + b \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{|\langle \mathbf{u}, \mathbf{v} \rangle|} \overline{\langle \mathbf{u}, \mathbf{v} \rangle} + |b|^2 \|\mathbf{v}\|^2 \\ &= \|\mathbf{u}\|^2 + 2b |\langle \mathbf{u}, \mathbf{v} \rangle| + b^2 \|\mathbf{v}\|^2 \ge 0. \end{aligned}$$

Theorem 5.2.1 (continued 1)

Proof (continued). Consider the function of *b*,

$$f(b) = \|\mathbf{u}\|^2 + 2b|\langle \mathbf{u}, \mathbf{v} \rangle| + b^2 \|\mathbf{v}\|^2.$$

The graph of f is a concave-up parabola:

Theorem 5.2.1 (continued 2)

Theorem 5.2.1. The Schwarz Inequality.

For all \mathbf{u}, \mathbf{v} in inner product space $\langle V, \mathbb{C} \rangle$, we have

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|.$

Proof (continued). To insure that (1) holds and that $\|\mathbf{u}\|^2 + 2b|\langle \mathbf{u}, \mathbf{v} \rangle| + b^2 \|\mathbf{v}\|^2 \ge 0$, we solve the equality $\|\mathbf{u}\|^2 + 2b|\langle \mathbf{u}, \mathbf{v} \rangle| + b^2 \|\mathbf{v}\|^2 = 0$

for b, and get

$$b = \frac{-2|\langle \mathbf{u}, \mathbf{v} \rangle| \pm \sqrt{(2|\langle \mathbf{u}, \mathbf{v} \rangle|)^2 - 4\|\mathbf{v}\|^2 \|\mathbf{u}\|^2}}{2\|\mathbf{v}\|^2}.$$
 (2)

Therefore, inequality (1) holds for all u and v if and only if the discriminant of (2) is nonpositive:

$$(2|\langle \mathbf{u},\mathbf{v}\rangle|)^2 - 4\|\mathbf{v}\|^2\|\mathbf{u}\|^2 \leq 0.$$

That is, $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|.$

Theorem 5.2.1 (continued 2)

Theorem 5.2.1. The Schwarz Inequality.

For all \mathbf{u},\mathbf{v} in inner product space $\langle V,\mathbb{C}\rangle$, we have

 $|\langle \mathbf{u},\mathbf{v}\rangle| \leq \|\mathbf{u}\|\|\mathbf{v}\|.$

Proof (continued). To insure that (1) holds and that $\|\mathbf{u}\|^2 + 2b|\langle \mathbf{u}, \mathbf{v} \rangle| + b^2 \|\mathbf{v}\|^2 \ge 0$, we solve the equality $\|\mathbf{u}\|^2 + 2b|\langle \mathbf{u}, \mathbf{v} \rangle| + b^2 \|\mathbf{v}\|^2 = 0$

for b, and get

$$b = \frac{-2|\langle \mathbf{u}, \mathbf{v} \rangle| \pm \sqrt{(2|\langle \mathbf{u}, \mathbf{v} \rangle|)^2 - 4\|\mathbf{v}\|^2 \|\mathbf{u}\|^2}}{2\|\mathbf{v}\|^2}.$$
 (2)

Therefore, inequality (1) holds for all \mathbf{u} and \mathbf{v} if and only if the discriminant of (2) is nonpositive:

$$(2|\langle \mathbf{u}, \mathbf{v} \rangle|)^2 - 4\|\mathbf{v}\|^2 \|\mathbf{u}\|^2 \leq 0.$$

That is, $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|.$

Theorem 5.2.2. The Triangle Inequality

Theorem 5.2.2. The Triangle Inequality.

For all \mathbf{u}, \mathbf{v} in an inner product space $\langle V, \mathbb{C} \rangle$ we have $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Proof. We have

$$\begin{split} \|\mathbf{u} + \mathbf{v}\|^2 &= \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle \\ &= \|\mathbf{u}\|^2 + \langle \mathbf{u}, \mathbf{v} \rangle + \overline{\langle \mathbf{u}, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \\ &= \|\mathbf{u}\|^2 + 2\operatorname{Re}\langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2 \\ &\leq \|\mathbf{u}\|^2 + 2|\langle \mathbf{u}, \mathbf{v} \rangle| + \|\mathbf{v}\|^2 \\ &\leq \|\mathbf{u}\|^2 + 2\|\mathbf{u}\|\|\mathbf{v}\| + \|\mathbf{v}\|^2 \text{ by the Schwarz Inequality} \\ &= (\|\mathbf{u}\| + \|\mathbf{v}\|)^2. \end{split}$$

Taking square roots yields the result.

Theorem 5.2.2. The Triangle Inequality

Theorem 5.2.2. The Triangle Inequality.

For all \mathbf{u}, \mathbf{v} in an inner product space $\langle V, \mathbb{C} \rangle$ we have $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Proof. We have

$$\begin{split} \|\mathbf{u} + \mathbf{v}\|^2 &= \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle \\ &= \|\mathbf{u}\|^2 + \langle \mathbf{u}, \mathbf{v} \rangle + \overline{\langle \mathbf{u}, \mathbf{v} \rangle} + \|\mathbf{v}\|^2 \\ &= \|\mathbf{u}\|^2 + 2\operatorname{Re}\langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2 \\ &\leq \|\mathbf{u}\|^2 + 2|\langle \mathbf{u}, \mathbf{v} \rangle| + \|\mathbf{v}\|^2 \\ &\leq \|\mathbf{u}\|^2 + 2\|\mathbf{u}\|\|\mathbf{v}\| + \|\mathbf{v}\|^2 \text{ by the Schwarz Inequality} \\ &= (\|\mathbf{u}\| + \|\mathbf{v}\|)^2. \end{split}$$

Taking square roots yields the result.

Theorem 5.2.3. The Pythagorean Theorem

Theorem 5.2.3. The Pythagorean Theorem

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an orthonormal set of vectors in an inner product space $\langle V, \mathbb{C} \rangle$. Then for all $\mathbf{u} \in V$

$$\|\mathbf{u}\|^2 = \sum_{j=1}^n |\langle \mathbf{u}, \mathbf{v}_j \rangle|^2 + \left\|\mathbf{u} - \sum_{j=1}^n \langle \mathbf{v}_j, \mathbf{u} \rangle \mathbf{v}_j\right\|^2$$

Proof. Trivially

$$\mathbf{u} = \sum_{j=1}^{n} \langle \mathbf{v}_j, \mathbf{u} \rangle \mathbf{v}_j + \left(\mathbf{u} - \sum_{j=1}^{n} \langle \mathbf{v}_j, \mathbf{u} \rangle \mathbf{v}_j \right)$$

(We will see latter that this is a rather fundamental decomposition of u.)

Theorem 5.2.3. The Pythagorean Theorem

Theorem 5.2.3. The Pythagorean Theorem

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an orthonormal set of vectors in an inner product space $\langle V, \mathbb{C} \rangle$. Then for all $\mathbf{u} \in V$

$$\|\mathbf{u}\|^{2} = \sum_{j=1}^{n} |\langle \mathbf{u}, \mathbf{v}_{j} \rangle|^{2} + \left\|\mathbf{u} - \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j}\right\|^{2}$$

Proof. Trivially

$$\mathbf{u} = \sum_{j=1}^{n} \langle \mathbf{v}_j, \mathbf{u} \rangle \mathbf{v}_j + \left(\mathbf{u} - \sum_{j=1}^{n} \langle \mathbf{v}_j, \mathbf{u} \rangle \mathbf{v}_j \right)$$

(We will see latter that this is a rather fundamental decomposition of \mathbf{u} .)

Theorem 5.2.3 (Continued 1)

Proof (continued). Since $\left\langle \sum_{j=1}^{n} \langle \mathbf{v}_j, \mathbf{u} \rangle \mathbf{v}_j, \mathbf{u} - \sum_{j=1}^{n} \langle \mathbf{v}_j, \mathbf{u} \rangle \mathbf{v}_j \right\rangle$ $= \left\langle \sum_{i=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j}, \mathbf{u} \right\rangle - \left\langle \sum_{i=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j}, \sum_{i=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j} \right\rangle$ $=\sum_{i=1}^{n}\overline{\langle \mathbf{v}_{j},\mathbf{u}\rangle}\langle \mathbf{v}_{j},\mathbf{u}\rangle - \sum_{i=1}^{n}\left\langle \langle \mathbf{v}_{j},\mathbf{u}\rangle \mathbf{v}_{j},\sum_{i=1}^{n}\langle \mathbf{v}_{k},\mathbf{u}\rangle \mathbf{v}_{k}\right\rangle$ $= \sum_{i=1}^{n} \overline{\langle \mathbf{v}_{j}, \mathbf{u} \rangle} \langle \mathbf{v}_{j}, \mathbf{u} \rangle - \sum_{i=1}^{n} \sum_{j=1}^{n} \langle \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j}, \langle \mathbf{v}_{k}, \mathbf{u} \rangle \mathbf{v}_{k} \rangle$ $= \sum_{i=1}^{n} \overline{\langle \mathbf{v}_{j}, \mathbf{u} \rangle} \langle \mathbf{v}_{j}, \mathbf{u} \rangle - \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{\langle \mathbf{v}_{j}, \mathbf{u} \rangle} \langle \mathbf{v}_{k}, \mathbf{u} \rangle \langle \mathbf{v}_{j}, \mathbf{v}_{k} \rangle$ $= \sum_{i=1}^{n} |\langle \mathbf{v}_j, \mathbf{u} \rangle|^2 - \sum_{j=1}^{n} |\langle \mathbf{v}_j, \mathbf{u} \rangle|^2 = 0, \dots$

()

Theorem 5.2.3 (Continued 2)

Proof (continued). ... then these two vectors are orthogonal. Therefore

$$\begin{aligned} \|\mathbf{u}\|^{2} &= \langle \mathbf{u}, \mathbf{u} \rangle = \left\langle \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j} + \left(\mathbf{u} - \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j} \right) \right\rangle \\ &= \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j} + \left(\mathbf{u} - \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j} \right) \right\rangle \\ &= \left\langle \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j}, \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j} \right\rangle \\ &+ \left\langle \mathbf{u} - \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j}, \mathbf{u} - \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j} \right\rangle \\ &= \sum_{j=1}^{n} |\langle \mathbf{v}_{j}, \mathbf{u} \rangle|^{2} + \left\| \mathbf{u} - \sum_{j=1}^{n} \langle \mathbf{v}_{j}, \mathbf{u} \rangle \mathbf{v}_{j} \right\|^{2}. \end{aligned}$$