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Chapter 5. Vector Spaces, Hilbert Spaces, and the L2 Space
5.4. Projections and Hilbert Space Isomorphisms—Proofs of Theorems
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Theorem 5.4.1

Theorem 5.4.1

Theorem 5.4.1. For any nonempty set S in a Hilbert space H, the set S⊥

is a Hilbert space.

Proof. Clearly, S⊥ is a vector space. We only need to show that it is
complete. Let (sn) be a Cauchy sequence in S⊥. Then, since H is
complete, there exists h ∈ H such that lim

n→∞
sn = h.

Now for all s ∈ S we

have
〈h, s〉 =

〈
lim

n→∞
sn, s

〉
= lim

n→∞
〈sn, s〉 = 0

since the inner product is continuous (Exercise 6 of Section 5.2). So
h ∈ S⊥ and (sn) converges in S⊥. Therefore S⊥ is complete.
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Theorem 5.4.2

Theorem 5.4.2

Theorem 5.4.2. Let S be a subspace of a Hilbert space H (that is, the
set of vectors in S is a subset of the set of vectors in H, and S itself is a
Hilbert space). Then for any h ∈ H, there exists a unique t ∈ S such that
inf
s∈S

‖h − s‖ = ‖h − t‖.

Proof. Let d = inf
s∈S

‖h − s‖ and choose a sequence (sn) ⊂ S such that

lim
n→∞

‖h − sn‖ = d . Then

‖sm − sn‖2 = ‖(sm − h)− (sn − h)‖2

= 2‖sm − h‖2 + 2‖sn − h‖2 − ‖sm + sn − 2h‖2

by the Parallelogram Law (Exercise 3 of Section 5.2)

= 2‖sm − h‖2 + 2‖sn − h‖2 − 4

∥∥∥∥h − 1

2
(sm + sn)

∥∥∥∥2

≤ 2‖sm − h‖2 + 2‖sn − h‖2 − 4d2 since
1

2
(sm + sn) ∈ S .
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Theorem 5.4.2

Theorem 5.4.2 (continued)

Proof (continued). Now the fact that lim
n→∞

‖h − sn‖ = d , implies that as

m, n →∞, ‖sm − sn‖ → 0 and so (sn) is Cauchy and hence convergent to
some t1 ∈ S , where lim

n→∞
‖h − sn‖ = ‖h − t1‖. For uniqueness, suppose for

some t2 ∈ S we also have lim
n→∞

‖h − sn‖ = ‖h − t2‖. Then

‖t1 − t2‖2 = 2‖h − t1‖2 + 2‖h − t2‖2 − 4

∥∥∥∥h − 1

2
(t1 + t2)

∥∥∥∥2

(as above)

= 4d2 − 4

∥∥∥∥h − 1

2
(t1 + t2)

∥∥∥∥2

.

Next,
1

2
(t1 + t2) ∈ S and so

∥∥∥∥h − 1

2
(t1 + t2)

∥∥∥∥ ≥ inf
s∈S

‖h − s‖ = d .

Therefore ‖t1 − t2‖2 = 0 and t1 = t2.
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Theorem 5.4.3

Theorem 5.4.3

Theorem 5.4.3. Let S be a subspace of a Hilbert space H. Then for all
h ∈ H, there exists a unique decomposition of the form h = s + s ′ where
s ∈ S and s ′ ∈ S⊥.

Proof. For h ∈ H, let t ∈ S be as defined in Theorem 5.4.2. Let r = h− t.
We will show s ′ = r ∈ S⊥. Now for any s1 ∈ S and any scalar a,

‖r‖2 = ‖h − t‖2 ≤ ‖h − (t + as1)‖2 = ‖r − as1‖2

= 〈r − as1, r − as1〉 = ‖r‖2 − 〈as1, r〉 − 〈r , as1〉+ |a|2‖s1‖2.

Therefore 0 ≤ |a|2‖s1‖2−〈as1, r〉− 〈r , as1〉. If the inner product is complex
valued and a is real, then we have 0 ≤ a2‖s1‖2 − 2aRe〈r , s1〉. If a ∈ R
with a > 0, then with a → 0+ we have that Re〈r , s1〉 ≤ 0. If a ∈ R with
a < 0, then with a → 0− we have that Re〈r , s1〉 ≥ 0. So Re〈r , s1〉 = 0.
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Theorem 5.4.3

Theorem 5.4.3 (continued)

Proof (continued). If a is purely imaginary, say a = ib where b ∈ R, then

0 ≤ b2‖s1‖2 − 〈ibs1, r〉 − 〈r , ibs1〉
= b2‖s1‖2 + ib〈s1, r〉 − ib〈r , s1〉
= b2‖s1‖2 + ib(2i Im〈s1, r〉)
= b2‖s1‖2 − 2bIm〈s1, r〉.

Therefore, b2‖s1‖2 ≥ 2bIm〈s1, r〉 and similar to above, by considering
b > 0, b → 0+ and b < 0, b → 0− we see that Im〈s1, r〉 = 0 = Im〈r , s1〉.
Hence, 〈r , s1〉 = 0 for all s1 ∈ S , and therefore r ∈ S⊥. So we have written
h as h = t + r where t = s ∈ S and r = s ′ ∈ S⊥.

Now suppose that h = t1 + r1 = t2 + r2 where t1, t2 ∈ S and r1, r2 ∈ S⊥.
Then t1 − t2 = r2 − r1 where t1 − t2 ∈ S and r2 − r1 ∈ S⊥. Since the only
element common to S and S⊥ is 0, then t1 − t2 = r2 − r1 = 0 and t1 = t2
and r1 = r2. Therefore the decomposition of h is unique.
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Theorem 5.4.4

Theorem 5.4.4

Theorem 5.4.4. A Hilbert space with a Schauder basis has an
orthonormal basis.

Proof. We start with a Schauder basis S = {s1, s2, . . .} and construct an
orthonormal basis R = {r1, r2, . . .} using a method called the
Gram-Schmidt process. First define r1 = s1/‖s1‖.

Now for k ≥ 2 define
Rk = span{r1, r2, . . . , rk−1} and

rk =
sk − projRk

(sk)

‖sk − projRk
(sk)‖

.

Then for i 6= j ,

〈ri , rj〉 =

〈
si − projRi

(si ), sj − projRj
(sj)

〉
‖si − projRi

(si )‖‖sj − projRj
(sj)‖

.

Clearly the ri ’s are unit vectors. We leave as an exercise the proof that the
ri ’s are pairwise orthogonal.
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Theorem 5.4.5

Theorem 5.4.5

Theorem 5.4.5. If R = {r1, r2, . . .} is an orthonormal basis for a Hilbert
space H and if h ∈ H, then

h =
∞∑

k=1

〈h, rk〉rk .

Proof. We know from Bessel’s Inequality (Corollary 5.2.1) that for all
n ∈ N,

n∑
k=1

|〈h, rk〉|2 ≤ ‖h‖2.

Therefore sn =
n∑

k=1

|〈h, rk〉|2 form a monotone bounded sequence of real

numbers and hence converges and is Cauchy. Define hn =
n∑

k=1

〈h, rk〉rk .
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Theorem 5.4.5

Theorem 5.4.5 (continued)

Proof (continued). Then for n > m, by the Pythagorean Theorem
(Theorem 5.2.3),

‖hn − hm‖2 =

∥∥∥∥∥
n∑

k=m+1

〈h, rk〉rk

∥∥∥∥∥
2

=
n∑

k=m+1

|〈h, rk〉|2,

and as a consequence, the sequence (hn) is a Cauchy sequence in H and
so converges to some h′ ∈ H. So for each i ∈ N,

〈h − h′, ri 〉 =

〈
h − lim

n→∞

n∑
k=1

〈h, rk〉rk , ri

〉

= lim
n→∞

〈
h −

n∑
k=1

〈h, rk〉rk , ri

〉
= 〈h, ri 〉 − 〈h, ri 〉 = 0

Therefore by Exercise 8 in the text, h − h′ = 0 and h =
∞∑

k=1

〈h, rk〉rk .
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Theorem 5.4.6

Theorem 5.4.6

Theorem 5.4.6. Let {r1, r2, . . .} be an orthonormal basis for Hilbert space
H, let Rk = span{r1, r2, . . . , rk−1}, and let h ∈ H. Then

inf
s∈Rk

‖h − s‖ = ‖h − t‖ where t =
k−1∑
i=1

〈h, ri 〉ri . That is, best

approximations of h are given by partial sums of the power series of h.

Proof. ASSUME to the contrary that there exists t ′ ∈ Rk where
infs∈Rk

‖h − s‖ = ‖h − t ′‖ < ‖h − t‖ (we know the infimum holds for a

unique element of Rk by Theorem 5.4.3). Then t ′ =
k−1∑
i=1

t ′i ri for some

t ′1, t
′
2, . . . , t

′
k−1. As we will see in Theorem 5.4.7,

‖h − t‖2 =

∥∥∥∥∥
∞∑

i=k

〈h, ri 〉ri

∥∥∥∥∥
2

=
∞∑

i=k

|〈h, ri 〉|2.
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Theorem 5.4.6

Theorem 5.4.6 (continued)

Proof (continued). Also

‖h − t ′‖2 =

∥∥∥∥∥
k−1∑
i=1

(〈h, ri 〉 − t ′i )ri +
∞∑

i=k

〈h, ri 〉ri

∥∥∥∥∥
2

=
k−1∑
i=1

|〈h, ri 〉 − t ′i |2 +
∞∑

i=k

|〈h, ri 〉|2.

=
k−1∑
i=1

|〈h, ri 〉 − t ′i |2 + ‖h − t‖2 ≥ ‖h − t‖2.

Clearly this CONTRADICTS ‖h − t ′‖ < ‖h − t‖. So the assumption that
such a t ′ exists is false, and the claim follows.
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Theorem 5.4.8

Theorem 5.4.8

Theorem 5.4.8 A Hilbert space with scalar field R or C is separable if and
only if it has a countable orthonormal basis.

Proof. Suppose H is separable and D = {d1, d2, . . .} is dense in H. For
k ≥ 2 define Dk = span{d1, d2, . . . , dk−1} and ek = dk − projDk

(dk).
Then the set E = {e1, e2, . . .} \ {0} is linearly independent (in the sense of
Schauder). The set of all finite linear combinations of elements of E are
dense in H (since this includes all elements of D; notice that the first
k − 1 elements of E span Dk−1). So E is a spanning set of H (in the sense
of Schauder). Normalizing the elements of E gives an orthonormal basis of
H, as claimed.
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Theorem 5.4.8

Theorem 5.4.8 (continued 1)

Theorem 5.4.8 A Hilbert space with scalar field R or C is separable if and
only if it has a countable orthonormal basis.

Proof (continued). Next, suppose R = {r1, r2 . . .} is an orthonormal
basis for H. Then for each h ∈ H, h =

∑∞
k=1〈h, rk〉rk , by Theorem 5.4.5.

Let ε > 0 be given. By Theorem 5.4.7, ‖h‖2 =
∑∞

k=1 |〈h, rk〉|2, and so
there exists N ∈ N such that for all n > N we have

∑∞
k=n |〈h, rk〉|2 < ε/2.

For each k ∈ {1, 2, . . . ,N}, there exists a rational number (or a rational
complex number if 〈h, rk〉 is complex) ak such that |〈h, rk〉 − ak |2 < ε

2N+1 .
Then ∥∥∥∥∥h −

N∑
k=1

ak rk

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑

k=1

〈h, rk〉rk −
N∑

k=1

ak rk

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑

k=1

(〈h, rk〉rk − ak rk) +
∞∑

k=N+1

〈h, rk〉rk

∥∥∥∥∥
2
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only if it has a countable orthonormal basis.
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Theorem 5.4.8

Theorem 5.4.8 (continued 2)

Theorem 5.4.8 A Hilbert space with scalar field R or C is separable if and
only if it has a countable orthonormal basis.

Proof (continued).

=

∥∥∥∥∥
N∑

k=1

(〈h, rk〉rk − ak rk)

∥∥∥∥∥
2

+

∥∥∥∥∥
∞∑

k=N+1

〈h, rk〉rk

∥∥∥∥∥
2

by the Pythagorean

Theorem (Theorem 5.2.3)

=
N∑

k=1

|〈h, rk〉 − ak |2 +
∞∑

k=N+1

|〈h, rk〉|2 < ε/2 + ε/2 = ε

and the set

D = {
∑n

k=1 ak rk | n ∈ N and ak is rational (or complex rational)}

is a countable dense subset of H.
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Theorem 5.4.9. The Fundamental Theorem of Infinite Dimensional
Vector Spaces

Theorem 5.4.9. The Fundamental Theorem of Infinite
Dimensional Vector Spaces

Theorem 5.4.9. The Fundamental Theorem of Infinite Dimensional
Vector Spaces.
Let H be a Hilbert space with a countable infinite orthonormal basis.
Then H is isomorphic to `2.
Proof. Let the orthonormal basis of H be R = {r1, r2, . . .}. Then for
h ∈ H, define π(h) to be the sequence of inner products of h with the
elements of R: π(h) = (〈r1, h〉, 〈r2, h〉, . . .) . Then π is linear:

π(ah1 + bh2) = (〈r1, ah1 + bh2〉, 〈r2, ah1 + bh2〉, . . .)
= (a〈r1, h1〉+ b〈r1, h2〉, a〈r2, h1〉+ b〈r2, h2〉, . . .)
= a (〈r1, h1〉, 〈r2, h1〉, . . .) + b (〈r1, h2〉, 〈r2, h2〉, . . .)
= aπ(h1) + bπ(h2).

By Theorem 5.4.5, h =
∞∑

k=1

〈h, rk〉rk and by Theorem 5.4.7 π(h) ∈ `2.
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Theorem 5.4.9. The Fundamental Theorem of Infinite Dimensional
Vector Spaces

Theorem 5.4.9 (continued 1)

Theorem 5.4.9. The Fundamental Theorem of Infinite Dimensional
Vector Spaces.
Let H be a Hilbert space with an infinite orthonormal basis. Then H is
isomorphic to `2.

Proof (continued). Now the representation of h in terms of the basis
elements is unique, so π is one-to-one. Next, let (a1, a2, . . .) ∈ `2, and
consider the partial sums, sn, of

∑∞
k=1 ak rk . Then for m < n,

‖sn − sm‖2 =
∥∥∑n

k=m+1 ak rk
∥∥2

=
∑n

k=m+1 |ak |2. Since
∞∑

k=1

|ak |2

converges (its associated sequence of partial sums is a monotone, bounded
sequence of real numbers), then the sequence of partial sums of this series
is convergent and hence Cauchy. Therefore, (sn) is a Cauchy sequence in
H and hence is convergent. So π is onto.
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Theorem 5.4.9. The Fundamental Theorem of Infinite Dimensional
Vector Spaces

Theorem 5.4.9 (continued 2)

Proof (continued). Now consider h, h′ ∈ H where h =
∞∑

k=1

ak rk and

h′ =
∞∑

k=1

a′k rk . Then

〈h, h′〉 =

〈 ∞∑
k=1

ak rk ,

∞∑
k=1

a′k rk

〉
=

∞∑
k=1

aka′k

=
〈
(a1, a2, . . .), (a

′
1, a

′
2, . . .)

〉
=

〈
π(h), π(h′)

〉
.

Therefore π is a Hilbert space isomorphism and H is isomorphic to `2, as
claimed.
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