Introduction to Functional Analysis

Chapter 5. Vector Spaces, Hilbert Spaces, and the [?> Space
5.4. Projections and Hilbert Space Isomorphisms—Proofs of Theorems

Real Analysis

with an Introduction

Wavelets . Applications

Hong * Wang * Gardner

Introduction to Functional Analysis April 6, 2023 1/18



R —
Table of contents

© Theorem 5.4.1
© Theorem 5.4.2
© Theorem 5.4.3
@ Theorem 5.4.4
© Theorem 5.4.5
@ Theorem 5.4.6

@ Theorem 5.4.8

© Theorem 5.4.9. The Fundamental Theorem of Infinite Dimensional
Vector Spaces

Introduction to Functional Analysis April 6, 2023 2 /18



Theorem 5.4.1

Theorem 5.4.1. For any nonempty set S in a Hilbert space H, the set S+
is a Hilbert space.
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Theorem 5.4.1

Theorem 5.4.1. For any nonempty set S in a Hilbert space H, the set S+
is a Hilbert space.

Proof. Clearly, S* is a vector space. We only need to show that it is
complete. Let (s,) be a Cauchy sequence in S*. Then, since H is

complete, there exists h € H such that lim s, = h.
n—oo
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Theorem 5.4.1

Theorem 5.4.1. For any nonempty set S in a Hilbert space H, the set S+
is a Hilbert space.

Proof. Clearly, S* is a vector space. We only need to show that it is
complete. Let (s,) be a Cauchy sequence in S*. Then, since H is
complete, there exists h € H such that lim s, = h. Now for all s € S we

n—oo
have
(h,s) = < lim s,,,s> = lim (sp,5) =0
n—oo n—oo

since the inner product is continuous (Exercise 6 of Section 5.2). So
h € St and (s,) converges in S*. Therefore S* is complete. O
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Theorem 5.4.2

Theorem 5.4.2
Theorem 5.4.2. Let S be a subspace of a Hilbert space H (that is, the
set of vectors in S is a subset of the set of vectors in H, and S itself is a

Hilbert space). Then for any h € H, there exists a unique t € S such that
inf |[h—s|| = |lh—t].
seS
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Theorem 5.4.2

Theorem 5.4.2

Theorem 5.4.2. Let S be a subspace of a Hilbert space H (that is, the
set of vectors in S is a subset of the set of vectors in H, and S itself is a

Hilbert space). Then for any h € H, there exists a unique t € S such that
inf |[h—s|| = |lh—t].
seS

Proof. Let d = im; |h — s|| and choose a sequence (s,) C S such that
sE
lim [[h—sp|| =d. Then

[sm — 5n||2 = |[(sm—h) —(sn — h)”2
= 2H5m_hH2+2H5n_hH2_ H5m+5n_2th
by the Parallelogram Law (Exercise 3 of Section 5.2)

2
= 2lsm — hlI* +2||sn — hl* — 4

1
h— E(sm + sp)

1
< 2||sm — h||> + 2||s, — h||*> — 4d? since 5(sm+s) €S,
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Theorem 5.4.2 (continued)

Proof (continued). Now the fact that lim ||h— s,|| = d, implies that as

m,n — o0, ||Sm — sn|| — 0 and so (s,) is Cauchy and hence convergent to
some t; € S, where lim ||h—s,|| = ||h — t1]].
n—oo
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Theorem 5.4.2 (continued)

Proof (continued). Now the fact that lim ||h— s,|| = d, implies that as

m,n — o0, ||Sm — sn|| — 0 and so (s,) is Cauchy and hence convergent to

some t; € S, where lim ||h— s,|| = ||h — t1]|. For uniqueness, suppose for
n—oo
some t, € S we also have lim ||h — s,|| = ||h — t2||. Then
n—oo
1 2
|t1 — t|®> = 2|h—t|?>+2|h—t]*> — 4 Hh — §(t1 + t)|| (as above)

2

1

1 1
Next, 5(1“1 +t) €S andso ||h— §(t1 + t2)

> inf |[h—s| =d.
ses

Therefore ||t; — t2]|> =0 and t; = to. O
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Theorem 5.4.3

Theorem 5.4.3. Let S be a subspace of a Hilbert space H. Then for all

h € H, there exists a unique decomposition of the form h = s + s’ where
se€Sands €S+t
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Theorem 5.4.3

Theorem 5.4.3

Theorem 5.4.3. Let S be a subspace of a Hilbert space H. Then for all

h € H, there exists a unique decomposition of the form h = s + s’ where
se€Sands €S+t

Proof. For h € H, let t € S be as defined in Theorem 5.4.2. Let r = h—t.
We will show s’ = r € S*+. Now for any s; € S and any scalar a,

Irll? = llh = tl|* < |[h = (¢ + asy)l|* = ||r — ast||?

= (r—as;,r—as;) = Hr||2 — (asi, r) — (r,as;) + |a|2||51||2.
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Theorem 5.4.3

Theorem 5.4.3. Let S be a subspace of a Hilbert space H. Then for all

h € H, there exists a unique decomposition of the form h = s + s’ where
se€Sands €S+t

Proof. For h € H, let t € S be as defined in Theorem 5.4.2. Let r = h—t.
We will show s’ = r € S*+. Now for any s; € S and any scalar a,

Irll? = llh = tl|* < |[h = (¢ + asy)l|* = ||r — ast||?

= (r—as;,r—as;) = Hr||2 — (asi, r) — (r,as;) + |a|2||51||2.

Therefore 0 < |a|?||s1]|?> — (as1, r) — (r, as1). If the inner product is complex
valued and a is real, then we have 0 < a2||s1]|? — 2aRe(r, s1). If a € R
with a > 0, then with a2 — 0" we have that Re(r,s;) < 0. If a € R with

a < 0, then with a — 0~ we have that Re(r,s;) > 0. So Re(r,s1) = 0.
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Theorem 5.4.3 (continued)

Proof (continued). If a is purely imaginary, say a = ib where b € R, then

0 < b2||51||2 — (ibsy, r) — (r,ibsy)
= b2||51||2+ib<517r>_ib<r>51>
= b2||51||2 + ib(2ilm(sy, r))

= b?||s1||> — 2blm(sy, r).
Therefore, b?||s1]|> > 2blm(s;, r) and similar to above, by considering
b>0,b—0"and b<0, b— 0" we see that Im(s;,r) =0 = Im(r,s).

Hence, (r,s;) =0 for all s; € S, and therefore r € S1. So we have written
hash=t+rwheret=secSandr=5 € St.
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Theorem 5.4.3 (continued)

Proof (continued). If a is purely imaginary, say a = ib where b € R, then

0 < b2||51||2 — (ibsy, r) — (r,ibsy)
= b2||51||2—|—ib<517r>—ib<r,sl>
= b2||51||2 + ib(2ilm(sy, r))

= b?||s1||> — 2blm(sy, r).

Therefore, b?||s1]|> > 2blm(s;, r) and similar to above, by considering
b>0,b—0"and b<0, b— 0" we see that Im(s;,r) =0 = Im(r,s).
Hence, (r,s;) =0 for all s; € S, and therefore r € S1. So we have written
hash=t+rwheret=sc Sandr=s €St

Now suppose that h = t; +r = to + r» where t;,to € S and r,r» € S+.
Then t; —th = — r; where t; — t» € S and » — r; € S*. Since the only
element common to S and St is 0, thenti—th=rmn—rn=0and t; = t,
and 1 = r». Therefore the decomposition of h is unique. O
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Theorem 5.4.4

Theorem 5.4.4. A Hilbert space with a Schauder basis has an
orthonormal basis.
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Theorem 5.4.4

Theorem 5.4.4

Theorem 5.4.4. A Hilbert space with a Schauder basis has an
orthonormal basis.

Proof. We start with a Schauder basis S = {s1, s, ...} and construct an

orthonormal basis R = {r, r», ...} using a method called the
Gram-Schmidt process. First define rn = s1/||s1]|.
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Theorem 5.4.4

Theorem 5.4.4. A Hilbert space with a Schauder basis has an
orthonormal basis.

Proof. We start with a Schauder basis S = {s1, s, ...} and construct an
orthonormal basis R = {r, r», ...} using a method called the
Gram-Schmidt process. First define r; = s1/||s1||. Now for k > 2 define
Rk = span{ri,r,..., rk_1} and

Sk — Projg, (sk)

re = ' )
sk — projg, (s)|l

Then for i # j,

- <5i — projg,(si), sj — PFOJR,-(SJ)>
ri, ) = - - .
T Isi = proig,(si)lllls; — projg, (s7)ll

Clearly the r;'s are unit vectors. We leave as an exercise the proof that the
ri's are pairwise orthogonal. O
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Theorem 5.4.5

Theorem 5.4.5. If R = {r, r,...} is an orthonormal basis for a Hilbert
space H and if h € H, then

0
Z h rk
k=1
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Theorem 5.4.5

Theorem 5.4.5. If R = {r, r,...} is an orthonormal basis for a Hilbert
space H and if h € H, then

[e.9]
W
k=1
Proof. We know from Bessel's Inequality (Corollary 5.2.1) that for all

néeN,
> (k) < 1Al
k=1

n

Therefore s, = Z |(h, r)|? form a monotone bounded sequence of real

k=1
n

numbers and hence converges and is Cauchy. Define h, = E (h, ri)ri
k=1
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Theorem 5.4.5 (continued)

Proof (continued). Then for n > m, by the Pythagorean Theorem
(Theorem 5.2.3),

n 2

Z <h, rk>rk

k=m+1

n

= Y ()P

k=m+1

th - hmH2 =

and as a consequence, the sequence (h,) is a Cauchy sequence in H and
so converges to some b’ € H. So for each i € N,

(h—H,r) = <h— lim Z(h,rk>rk>ri>

k=1

n
= nli—>mc>o <h — Z(h, rk>rk, r,->
k=1
= <h7 ri> - <ha ri) =0

Therefore by Exercise 8 in the text, h— h' = 0 and h = Z(h, rorne. O
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Theorem 5.4.6

Theorem 5.4.6. Let {r1,r,...} be an orthonormal basis for Hilbert space
H, let Rx = span{ri,r2, ..., rk—1}, and let h € H. Then

k—1
sienlgk |h—s|| = ||h— t|| where t = Z}h, ri)ri. That is, best
approximations of h are given by partial sums of the power series of h.
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Theorem 5.4.6

Theorem 5.4.6. Let {r1,r,...} be an orthonormal basis for Hilbert space

H, let Rx = span{ri,r2, ..., rk—1}, and let h € H. Then
k—1

sienlgk |h—s|| = ||h— t|| where t = Z}h, ri)ri. That is, best
approximations of h are given by partial sums of the power series of h.

Proof. ASSUME to the contrary that there exists t' € R, where

infser, [[h —s|| = ||h—t'|| < ||h — t|| (we know the infimum holds for a
k—1

unique element of Ry by Theorem 5.4.3). Then t' = Z t'r; for some
i=1

t],th, ..., t;,_;. As we will see in Theorem 5.4.7,

ihr, ihr,
i=k =k
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lh —t]|* =




Theorem 5.4.6 (continued)

Proof (continued). Also

2
lh =t =

k— [e'S)

Z ((h,ri) — t,{)r,-+z<h, i

1

= Z!hr,—t|2+2\hr,

= Z! (hyri) — 2+ [lh = ¢]|* > [|h — ¢]|*.
i=1

Clearly this CONTRADICTS ||h — t'|| < ||h — t]|. So the assumption that
such a t’ exists is false, and the claim follows. O]
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Theorem 5.4.8

Theorem 5.4.8 A Hilbert space with scalar field R or C is separable if and
only if it has a countable orthonormal basis.
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Theorem 5.4.8

Theorem 5.4.8 A Hilbert space with scalar field R or C is separable if and
only if it has a countable orthonormal basis.

Proof. Suppose H is separable and D = {di, d, ...} is dense in H. For

k > 2 define Dy = span{dy,d>,...,dx_1} and ex = dx — projp, (dk).

Then the set E = {e1, e2,...} \ {0} is linearly independent (in the sense of
Schauder). The set of all finite linear combinations of elements of E are
dense in H (since this includes all elements of D; notice that the first

k — 1 elements of E span Dy_1). So E is a spanning set of H (in the sense
of Schauder). Normalizing the elements of E gives an orthonormal basis of
H, as claimed.
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Theorem 5.4.8

Theorem 5.4.8 (continued 1)

Theorem 5.4.8 A Hilbert space with scalar field R or C is separable if and
only if it has a countable orthonormal basis.

Proof (continued). Next, suppose R = {ri, r>...} is an orthonormal
basis for H. Then for each h € H, h =72 ;(h, ri)rk, by Theorem 5.4.5.
Let € > 0 be given. By Theorem 5.4.7, ||h|> = .7, [(h, rx)|?, and so
there exists N € N such that for all n > N we have Y32 |(h, )2 < g/2.
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Theorem 5.4.8 (continued 1)

Theorem 5.4.8 A Hilbert space with scalar field R or C is separable if and
only if it has a countable orthonormal basis.

Proof (continued). Next, suppose R = {ri, r>...} is an orthonormal
basis for H. Then for each h € H, h =72 ;(h, ri)rk, by Theorem 5.4.5.
Let € > 0 be given. By Theorem 5.4.7, ||h|> = .7, [(h, rx)|?, and so
there exists N € N such that for all n > N we have Y32 |(h, )2 < g/2.
For each k € {1,2,..., N}, there exists a rational number (or a rational
complex number if (h, ry) is complex) ax such that |(h, r) — ax|? < SHTT
Then

N 2 00 N 2
h— ag i = ZU‘I, rk>rk —Zakrk
k=1 k=1 k=1
N [eS) 2
= ((h, rk>rk—akrk)+ Z <h, rk>rk
k=1 k=N+1
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Theorem 5.4.8 (continued 2)

Theorem 5.4.8 A Hilbert space with scalar field R or C is separable if and
only if it has a countable orthonormal basis.

Proof (continued).

N 2 . 2
= Z(<h, rk)rk — akrk) + Z <h, rk>rk by the Pythagorean
k=1 k=N+1
Theorem (Theorem 5.2.3)
N oo
= S b —alP+ S Wbl <e/2te/2—c
k=1 k=N+1

and the set
D ={Y%_1akrk| n € N and a is rational (or complex rational)}

is a countable dense subset of H. O
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Theorem 5.4.9. The Fundamental Theorem of Infinite
Dimensional Vector Spaces

Theorem 5.4.9. The Fundamental Theorem of Infinite Dimensional
Vector Spaces.

Let H be a Hilbert space with a countable infinite orthonormal basis.
Then H is isomorphic to £2.
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Theorem 5.4.9. The Fundamental Theorem of Infinite
Dimensional Vector Spaces

Theorem 5.4.9. The Fundamental Theorem of Infinite Dimensional
Vector Spaces.

Let H be a Hilbert space with a countable infinite orthonormal basis.
Then H is isomorphic to £2.

Proof. Let the orthonormal basis of H be R = {ri, r,...}. Then for
h € H, define 7(h) to be the sequence of inner products of h with the
elements of R: w(h) = ({r1, h), (r2, h),...). Then 7 is linear:

m(ah1 + bhy) = ({n,ah1 + bha),(r, ah1 + bhy),...)
= (a(n, h) + b(ri, ha),al(ra, h1) + b(r2, h2),...)
= a((rn, ), (r,h),...)+b({r, h),{r,h),...)
= am(h) + br(hy).

(0.9]

By Theorem 5.4.5, h = Z(h, re)re and by Theorem 5.4.7 w(h) € ¢2.
k=1
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Theorem 5.4.9 (continued 1)

Theorem 5.4.9. The Fundamental Theorem of Infinite Dimensional
Vector Spaces.

Let H be a Hilbert space with an infinite orthonormal basis. Then H is
isomorphic to £2.

Proof (continued). Now the representation of h in terms of the basis
elements is unique, so 7 is one-to-one. Next, let (a1, az,...) € 2, and
consider the partial sums, s, of Ziozl aire. Then for m < n,

[e.9]
2 .
Isn = smll? = || kzms @il ™ = ke lak]? Since Z |ax?
k=1

converges (its associated sequence of partial sums is a monotone, bounded
sequence of real numbers), then the sequence of partial sums of this series
is convergent and hence Cauchy. Therefore, (s,) is a Cauchy sequence in
H and hence is convergent. So 7 is onto.

Introduction to Functional Analysis April 6, 2023 17 / 18



Theorem 5.4.9 (continued 2)

o0
Proof (continued). Now consider h, i € H where h = Z ari and
k=1

o
H = Z alri. Then
k=1

(h 0y = <§:akrk,§:a;<rk>:§:aka;(
k=1 -1 k=1

k
= ((ar,22,...), (3}, 3b,...)) = (m(h), m(H)).

Therefore 7 is a Hilbert space isomorphism and H is isomorphic to £2, as
claimed. ]
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