Introduction to Functional Analysis, MATH 5740

Homework 3, Chapter 2

Due Friday, June 19 at 11:20

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting relevant results from the textbook or hypotheses.

- **2.13.** Let c_{00} denote the set of all sequences that have only finitely many nonzero entries. Define $T: c_{00} \to \mathbb{F}$ as $T(x) = \sum_{k=1}^{\infty} x(k)$. Let c_{00} have the sup norm. Show that T is not bounded.
- **2.15.** Let $T: X \to Y$ be a linear operator. Prove $||T|| = \sup\{||Tx|| \mid x \in \overline{B}(1)\}$.
- **2.19.** Recall that c_0 is the linear space of all sequences which converge to 0. Let $T \in \mathcal{B}(c_0)$ be the left-shift operator: $T(x(1), x(2), x(3), \ldots) = (x(2), x(3), x(4), \ldots)$. Prove that for all $x \in c_0$ the sequence of vectors $(T^n x)$ converges to 0 under the sup norm (on c_0), but (T^n) does not converge to 0 with respect to the norm on $\mathcal{B}(c_0)$. HINT: Use an ε argument to show $(T^n x) \to 0$. To show (T^n) does not converge to 0 in $\mathcal{B}(c_0)$, show that for all $n \in \mathbb{N}$, $||T^n|| \ge 1$.