Introduction to Functional Analysis, MATH 5740

Homework 4, Chapter 2

Due Wednesday, June 24 at 11:20

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting relevant results from the textbook or hypotheses.

- **2.20.** Consider the sup norm on c_0 and c_{00} .
 - (a) Prove that in c_0 the series $\sum_{k=1}^{\infty} \delta_k / k$ is convergent but not absolutely convergent.
 - (b) Give a series in c_{00} that is absolutely convergent but not convergent. HINT: Think *p*-series. NOTICE: By Theorem 2.12 that this implies that c_{00} is not complete.
- **2.22.** Prove that for linear space X with norms $\|\cdot\|_1$ and $\|\cdot\|_2$, if for all r > 0 there is s > 0 such that $B_2(0;s) \subseteq B_1(0;r)$ (where B_i denotes a ball with respect to $\|\cdot\|_i$), then $\|\cdot\|_1$ is weaker than $\|\cdot\|_2$. HINT: Use the definition of weaker norm.
- **2.27.** Prove that if a normed linear space X has a complete subspace M such that X/M is complete, then X is complete. HINT: Use the completeness of M to show M is closed. Choose an absolutely summable series in X, $\sum_{k=1}^{\infty} ||x_k||$. Show $\sum_{k=1}^{\infty} ||\overline{x}_k||$ is absolutely summable. Use this WITH DETAILS to show that $\sum_{k=1}^{\infty} x_k$ is summable and use Theorem 2.12.
- **2.25.** (Bonus) Let X be the space of all continuous functions f on [0, 1] such that f(0) = 0, with the sup norm. Let $Y = \{f \in X \mid \int_0^1 f(t) dt = 0\} \subseteq X$. Prove that for any $g \in X$ and positive integer $n \in \mathbb{N}$, there is a constant $\alpha \in \mathbb{R}$ such that $g - \alpha t^{1/n} \in Y$. Conclude that perpendiculars to closed proper subspaces need not exist. HINT: Show that Y is closed (you will need uniform convergence under the sup norm for this). Assume g is a perpendicular to Y. Use properties of $||g||_{\infty}$ and $\int_0^1 g(t) dt$ to conclude g is the 0 function.