Introduction to Functional Analysis, MATH 5740

Homework 5, Chapter 2

Due Tuesday, June 30 at 11:20

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting relevant results from the textbook or hypotheses.

- **2.32.** Prove that for $1 \le q \le p \le \infty$, we have $\ell^q \subseteq \ell^p$.
- **2.41(a).** Prove that (δ_n) is a Schauder basis for c_0 and for ℓ^p , $1 \le p < \infty$. HINT: Show that the sequence of partial sums $\sum_{k=1}^n x(k)\delta_k$ converges to $x = (x(1), x(2), \ldots)$ with respect to the sup norm in c_0 and the ℓ^p norm in ℓ^p . Use an ε argument.
- 2.41(c). Prove that a space with a Schauder basis is separable. HINT: Let A be the set of all finite linear combinations of elements of the Schauder basis with rational coefficients (or rational complex coefficients). Then A is countable. For $x \in X$ and $\varepsilon > 0$, find $a \in A$ such that $a \in B(x; \varepsilon)$. Construct a by taking N sufficiently large such that $\|\sum_{k=1}^{N} \alpha_k b_k x\| < \varepsilon/2$ (where $x = \sum_{k=1}^{\infty} \alpha_k b_k$ where $\{b_1, b_2, \ldots\}$ is the Schauder basis). Then approximate the first N parts of x with rational coefficients (within $\varepsilon/2$).
- **2.42.** Prove that $T \in \mathcal{B}(X, Y)$ is a contraction if and only if ||T|| < 1.